| /* |
| * Linux-DVB Driver for DiBcom's DiB7000M and |
| * first generation DiB7000P-demodulator-family. |
| * |
| * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation, version 2. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/i2c.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "dib7000m.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0) |
| |
| struct dib7000m_state { |
| struct dvb_frontend demod; |
| struct dib7000m_config cfg; |
| |
| u8 i2c_addr; |
| struct i2c_adapter *i2c_adap; |
| |
| struct dibx000_i2c_master i2c_master; |
| |
| /* offset is 1 in case of the 7000MC */ |
| u8 reg_offs; |
| |
| u16 wbd_ref; |
| |
| u8 current_band; |
| fe_bandwidth_t current_bandwidth; |
| struct dibx000_agc_config *current_agc; |
| u32 timf; |
| u32 timf_default; |
| u32 internal_clk; |
| |
| u8 div_force_off : 1; |
| u8 div_state : 1; |
| u16 div_sync_wait; |
| |
| u16 revision; |
| |
| u8 agc_state; |
| }; |
| |
| enum dib7000m_power_mode { |
| DIB7000M_POWER_ALL = 0, |
| |
| DIB7000M_POWER_NO, |
| DIB7000M_POWER_INTERF_ANALOG_AGC, |
| DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, |
| DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD, |
| DIB7000M_POWER_INTERFACE_ONLY, |
| }; |
| |
| static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg) |
| { |
| u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff }; |
| u8 rb[2]; |
| struct i2c_msg msg[2] = { |
| { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, |
| { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, |
| }; |
| |
| if (i2c_transfer(state->i2c_adap, msg, 2) != 2) |
| dprintk("i2c read error on %d",reg); |
| |
| return (rb[0] << 8) | rb[1]; |
| } |
| |
| static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val) |
| { |
| u8 b[4] = { |
| (reg >> 8) & 0xff, reg & 0xff, |
| (val >> 8) & 0xff, val & 0xff, |
| }; |
| struct i2c_msg msg = { |
| .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 |
| }; |
| return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| } |
| static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf) |
| { |
| u16 l = 0, r, *n; |
| n = buf; |
| l = *n++; |
| while (l) { |
| r = *n++; |
| |
| if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC |
| r++; |
| |
| do { |
| dib7000m_write_word(state, r, *n++); |
| r++; |
| } while (--l); |
| l = *n++; |
| } |
| } |
| |
| static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) |
| { |
| int ret = 0; |
| u16 outreg, fifo_threshold, smo_mode, |
| sram = 0x0005; /* by default SRAM output is disabled */ |
| |
| outreg = 0; |
| fifo_threshold = 1792; |
| smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1); |
| |
| dprintk( "setting output mode for demod %p to %d", &state->demod, mode); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| outreg = (1 << 10); /* 0x0400 */ |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| break; |
| case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ |
| break; |
| case OUTMODE_DIVERSITY: |
| if (state->cfg.hostbus_diversity) |
| outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| else |
| sram |= 0x0c00; |
| break; |
| case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| outreg = (1 << 10) | (5 << 6); |
| break; |
| case OUTMODE_HIGH_Z: // disable |
| outreg = 0; |
| break; |
| default: |
| dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); |
| break; |
| } |
| |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5) ; |
| |
| ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode); |
| ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */ |
| ret |= dib7000m_write_word(state, 1795, outreg); |
| ret |= dib7000m_write_word(state, 1805, sram); |
| |
| if (state->revision == 0x4003) { |
| u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd; |
| if (mode == OUTMODE_DIVERSITY) |
| clk_cfg1 |= (1 << 1); // P_O_CLK_en |
| dib7000m_write_word(state, 909, clk_cfg1); |
| } |
| return ret; |
| } |
| |
| static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode) |
| { |
| /* by default everything is going to be powered off */ |
| u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff; |
| u8 offset = 0; |
| |
| /* now, depending on the requested mode, we power on */ |
| switch (mode) { |
| /* power up everything in the demod */ |
| case DIB7000M_POWER_ALL: |
| reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; |
| break; |
| |
| /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ |
| case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ |
| reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); |
| break; |
| |
| case DIB7000M_POWER_INTERF_ANALOG_AGC: |
| reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); |
| reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); |
| reg_906 &= ~((1 << 0)); |
| break; |
| |
| case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: |
| reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000; |
| break; |
| |
| case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD: |
| reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000; |
| break; |
| case DIB7000M_POWER_NO: |
| break; |
| } |
| |
| /* always power down unused parts */ |
| if (!state->cfg.mobile_mode) |
| reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); |
| |
| /* P_sdio_select_clk = 0 on MC and after*/ |
| if (state->revision != 0x4000) |
| reg_906 <<= 1; |
| |
| if (state->revision == 0x4003) |
| offset = 1; |
| |
| dib7000m_write_word(state, 903 + offset, reg_903); |
| dib7000m_write_word(state, 904 + offset, reg_904); |
| dib7000m_write_word(state, 905 + offset, reg_905); |
| dib7000m_write_word(state, 906 + offset, reg_906); |
| } |
| |
| static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no) |
| { |
| int ret = 0; |
| u16 reg_913 = dib7000m_read_word(state, 913), |
| reg_914 = dib7000m_read_word(state, 914); |
| |
| switch (no) { |
| case DIBX000_SLOW_ADC_ON: |
| reg_914 |= (1 << 1) | (1 << 0); |
| ret |= dib7000m_write_word(state, 914, reg_914); |
| reg_914 &= ~(1 << 1); |
| break; |
| |
| case DIBX000_SLOW_ADC_OFF: |
| reg_914 |= (1 << 1) | (1 << 0); |
| break; |
| |
| case DIBX000_ADC_ON: |
| if (state->revision == 0x4000) { // workaround for PA/MA |
| // power-up ADC |
| dib7000m_write_word(state, 913, 0); |
| dib7000m_write_word(state, 914, reg_914 & 0x3); |
| // power-down bandgag |
| dib7000m_write_word(state, 913, (1 << 15)); |
| dib7000m_write_word(state, 914, reg_914 & 0x3); |
| } |
| |
| reg_913 &= 0x0fff; |
| reg_914 &= 0x0003; |
| break; |
| |
| case DIBX000_ADC_OFF: // leave the VBG voltage on |
| reg_913 |= (1 << 14) | (1 << 13) | (1 << 12); |
| reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); |
| break; |
| |
| case DIBX000_VBG_ENABLE: |
| reg_913 &= ~(1 << 15); |
| break; |
| |
| case DIBX000_VBG_DISABLE: |
| reg_913 |= (1 << 15); |
| break; |
| |
| default: |
| break; |
| } |
| |
| // dprintk( "913: %x, 914: %x", reg_913, reg_914); |
| ret |= dib7000m_write_word(state, 913, reg_913); |
| ret |= dib7000m_write_word(state, 914, reg_914); |
| |
| return ret; |
| } |
| |
| static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw) |
| { |
| u32 timf; |
| |
| // store the current bandwidth for later use |
| state->current_bandwidth = bw; |
| |
| if (state->timf == 0) { |
| dprintk( "using default timf"); |
| timf = state->timf_default; |
| } else { |
| dprintk( "using updated timf"); |
| timf = state->timf; |
| } |
| |
| timf = timf * (bw / 50) / 160; |
| |
| dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); |
| dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff)); |
| |
| return 0; |
| } |
| |
| static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| |
| if (state->div_force_off) { |
| dprintk( "diversity combination deactivated - forced by COFDM parameters"); |
| onoff = 0; |
| } |
| state->div_state = (u8)onoff; |
| |
| if (onoff) { |
| dib7000m_write_word(state, 263 + state->reg_offs, 6); |
| dib7000m_write_word(state, 264 + state->reg_offs, 6); |
| dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); |
| } else { |
| dib7000m_write_word(state, 263 + state->reg_offs, 1); |
| dib7000m_write_word(state, 264 + state->reg_offs, 0); |
| dib7000m_write_word(state, 266 + state->reg_offs, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000m_sad_calib(struct dib7000m_state *state) |
| { |
| |
| /* internal */ |
| // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth |
| dib7000m_write_word(state, 929, (0 << 1) | (0 << 0)); |
| dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096 |
| |
| /* do the calibration */ |
| dib7000m_write_word(state, 929, (1 << 0)); |
| dib7000m_write_word(state, 929, (0 << 0)); |
| |
| msleep(1); |
| |
| return 0; |
| } |
| |
| static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw) |
| { |
| dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); |
| dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff)); |
| dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); |
| dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff)); |
| |
| dib7000m_write_word(state, 928, bw->sad_cfg); |
| } |
| |
| static void dib7000m_reset_pll(struct dib7000m_state *state) |
| { |
| const struct dibx000_bandwidth_config *bw = state->cfg.bw; |
| u16 reg_907,reg_910; |
| |
| /* default */ |
| reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) | |
| (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | |
| (bw->enable_refdiv << 1) | (0 << 0); |
| reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset; |
| |
| // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value) |
| // this is only working only for 30 MHz crystals |
| if (!state->cfg.quartz_direct) { |
| reg_910 |= (1 << 5); // forcing the predivider to 1 |
| |
| // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2) |
| if(state->cfg.input_clk_is_div_2) |
| reg_907 |= (16 << 9); |
| else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary |
| reg_907 |= (8 << 9); |
| } else { |
| reg_907 |= (bw->pll_ratio & 0x3f) << 9; |
| reg_910 |= (bw->pll_prediv << 5); |
| } |
| |
| dib7000m_write_word(state, 910, reg_910); // pll cfg |
| dib7000m_write_word(state, 907, reg_907); // clk cfg0 |
| dib7000m_write_word(state, 908, 0x0006); // clk_cfg1 |
| |
| dib7000m_reset_pll_common(state, bw); |
| } |
| |
| static void dib7000mc_reset_pll(struct dib7000m_state *state) |
| { |
| const struct dibx000_bandwidth_config *bw = state->cfg.bw; |
| u16 clk_cfg1; |
| |
| // clk_cfg0 |
| dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0)); |
| |
| // clk_cfg1 |
| //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) | |
| clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) | |
| (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) | |
| (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0); |
| dib7000m_write_word(state, 908, clk_cfg1); |
| clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3); |
| dib7000m_write_word(state, 908, clk_cfg1); |
| |
| // smpl_cfg |
| dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7)); |
| |
| dib7000m_reset_pll_common(state, bw); |
| } |
| |
| static int dib7000m_reset_gpio(struct dib7000m_state *st) |
| { |
| /* reset the GPIOs */ |
| dib7000m_write_word(st, 773, st->cfg.gpio_dir); |
| dib7000m_write_word(st, 774, st->cfg.gpio_val); |
| |
| /* TODO 782 is P_gpio_od */ |
| |
| dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos); |
| |
| dib7000m_write_word(st, 780, st->cfg.pwm_freq_div); |
| return 0; |
| } |
| |
| static u16 dib7000m_defaults_common[] = |
| |
| { |
| // auto search configuration |
| 3, 2, |
| 0x0004, |
| 0x1000, |
| 0x0814, |
| |
| 12, 6, |
| 0x001b, |
| 0x7740, |
| 0x005b, |
| 0x8d80, |
| 0x01c9, |
| 0xc380, |
| 0x0000, |
| 0x0080, |
| 0x0000, |
| 0x0090, |
| 0x0001, |
| 0xd4c0, |
| |
| 1, 26, |
| 0x6680, // P_corm_thres Lock algorithms configuration |
| |
| 1, 170, |
| 0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on |
| |
| 8, 173, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| |
| 1, 182, |
| 8192, // P_fft_nb_to_cut |
| |
| 2, 195, |
| 0x0ccd, // P_pha3_thres |
| 0, // P_cti_use_cpe, P_cti_use_prog |
| |
| 1, 205, |
| 0x200f, // P_cspu_regul, P_cspu_win_cut |
| |
| 5, 214, |
| 0x023d, // P_adp_regul_cnt |
| 0x00a4, // P_adp_noise_cnt |
| 0x00a4, // P_adp_regul_ext |
| 0x7ff0, // P_adp_noise_ext |
| 0x3ccc, // P_adp_fil |
| |
| 1, 226, |
| 0, // P_2d_byp_ti_num |
| |
| 1, 255, |
| 0x800, // P_equal_thres_wgn |
| |
| 1, 263, |
| 0x0001, |
| |
| 1, 281, |
| 0x0010, // P_fec_* |
| |
| 1, 294, |
| 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard |
| |
| 0 |
| }; |
| |
| static u16 dib7000m_defaults[] = |
| |
| { |
| /* set ADC level to -16 */ |
| 11, 76, |
| (1 << 13) - 825 - 117, |
| (1 << 13) - 837 - 117, |
| (1 << 13) - 811 - 117, |
| (1 << 13) - 766 - 117, |
| (1 << 13) - 737 - 117, |
| (1 << 13) - 693 - 117, |
| (1 << 13) - 648 - 117, |
| (1 << 13) - 619 - 117, |
| (1 << 13) - 575 - 117, |
| (1 << 13) - 531 - 117, |
| (1 << 13) - 501 - 117, |
| |
| // Tuner IO bank: max drive (14mA) |
| 1, 912, |
| 0x2c8a, |
| |
| 1, 1817, |
| 1, |
| |
| 0, |
| }; |
| |
| static int dib7000m_demod_reset(struct dib7000m_state *state) |
| { |
| dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); |
| |
| /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ |
| dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE); |
| |
| /* restart all parts */ |
| dib7000m_write_word(state, 898, 0xffff); |
| dib7000m_write_word(state, 899, 0xffff); |
| dib7000m_write_word(state, 900, 0xff0f); |
| dib7000m_write_word(state, 901, 0xfffc); |
| |
| dib7000m_write_word(state, 898, 0); |
| dib7000m_write_word(state, 899, 0); |
| dib7000m_write_word(state, 900, 0); |
| dib7000m_write_word(state, 901, 0); |
| |
| if (state->revision == 0x4000) |
| dib7000m_reset_pll(state); |
| else |
| dib7000mc_reset_pll(state); |
| |
| if (dib7000m_reset_gpio(state) != 0) |
| dprintk( "GPIO reset was not successful."); |
| |
| if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0) |
| dprintk( "OUTPUT_MODE could not be reset."); |
| |
| /* unforce divstr regardless whether i2c enumeration was done or not */ |
| dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) ); |
| |
| dib7000m_set_bandwidth(state, 8000); |
| |
| dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| dib7000m_sad_calib(state); |
| dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF); |
| |
| if (state->cfg.dvbt_mode) |
| dib7000m_write_word(state, 1796, 0x0); // select DVB-T output |
| |
| if (state->cfg.mobile_mode) |
| dib7000m_write_word(state, 261 + state->reg_offs, 2); |
| else |
| dib7000m_write_word(state, 224 + state->reg_offs, 1); |
| |
| // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... |
| if(state->cfg.tuner_is_baseband) |
| dib7000m_write_word(state, 36, 0x0755); |
| else |
| dib7000m_write_word(state, 36, 0x1f55); |
| |
| // P_divclksel=3 P_divbitsel=1 |
| if (state->revision == 0x4000) |
| dib7000m_write_word(state, 909, (3 << 10) | (1 << 6)); |
| else |
| dib7000m_write_word(state, 909, (3 << 4) | 1); |
| |
| dib7000m_write_tab(state, dib7000m_defaults_common); |
| dib7000m_write_tab(state, dib7000m_defaults); |
| |
| dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY); |
| |
| state->internal_clk = state->cfg.bw->internal; |
| |
| return 0; |
| } |
| |
| static void dib7000m_restart_agc(struct dib7000m_state *state) |
| { |
| // P_restart_iqc & P_restart_agc |
| dib7000m_write_word(state, 898, 0x0c00); |
| dib7000m_write_word(state, 898, 0x0000); |
| } |
| |
| static int dib7000m_agc_soft_split(struct dib7000m_state *state) |
| { |
| u16 agc,split_offset; |
| |
| if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) |
| return 0; |
| |
| // n_agc_global |
| agc = dib7000m_read_word(state, 390); |
| |
| if (agc > state->current_agc->split.min_thres) |
| split_offset = state->current_agc->split.min; |
| else if (agc < state->current_agc->split.max_thres) |
| split_offset = state->current_agc->split.max; |
| else |
| split_offset = state->current_agc->split.max * |
| (agc - state->current_agc->split.min_thres) / |
| (state->current_agc->split.max_thres - state->current_agc->split.min_thres); |
| |
| dprintk( "AGC split_offset: %d",split_offset); |
| |
| // P_agc_force_split and P_agc_split_offset |
| return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset); |
| } |
| |
| static int dib7000m_update_lna(struct dib7000m_state *state) |
| { |
| u16 dyn_gain; |
| |
| if (state->cfg.update_lna) { |
| // read dyn_gain here (because it is demod-dependent and not fe) |
| dyn_gain = dib7000m_read_word(state, 390); |
| |
| if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed |
| dib7000m_restart_agc(state); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) |
| { |
| struct dibx000_agc_config *agc = NULL; |
| int i; |
| if (state->current_band == band && state->current_agc != NULL) |
| return 0; |
| state->current_band = band; |
| |
| for (i = 0; i < state->cfg.agc_config_count; i++) |
| if (state->cfg.agc[i].band_caps & band) { |
| agc = &state->cfg.agc[i]; |
| break; |
| } |
| |
| if (agc == NULL) { |
| dprintk( "no valid AGC configuration found for band 0x%02x",band); |
| return -EINVAL; |
| } |
| |
| state->current_agc = agc; |
| |
| /* AGC */ |
| dib7000m_write_word(state, 72 , agc->setup); |
| dib7000m_write_word(state, 73 , agc->inv_gain); |
| dib7000m_write_word(state, 74 , agc->time_stabiliz); |
| dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock); |
| |
| // Demod AGC loop configuration |
| dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp); |
| dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp); |
| |
| dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", |
| state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| |
| /* AGC continued */ |
| if (state->wbd_ref != 0) |
| dib7000m_write_word(state, 102, state->wbd_ref); |
| else // use default |
| dib7000m_write_word(state, 102, agc->wbd_ref); |
| |
| dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); |
| dib7000m_write_word(state, 104, agc->agc1_max); |
| dib7000m_write_word(state, 105, agc->agc1_min); |
| dib7000m_write_word(state, 106, agc->agc2_max); |
| dib7000m_write_word(state, 107, agc->agc2_min); |
| dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); |
| dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| |
| if (state->revision > 0x4000) { // settings for the MC |
| dib7000m_write_word(state, 71, agc->agc1_pt3); |
| // dprintk( "929: %x %d %d", |
| // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel); |
| dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); |
| } else { |
| // wrong default values |
| u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 }; |
| for (i = 0; i < 9; i++) |
| dib7000m_write_word(state, 88 + i, b[i]); |
| } |
| return 0; |
| } |
| |
| static void dib7000m_update_timf(struct dib7000m_state *state) |
| { |
| u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437); |
| state->timf = timf * 160 / (state->current_bandwidth / 50); |
| dib7000m_write_word(state, 23, (u16) (timf >> 16)); |
| dib7000m_write_word(state, 24, (u16) (timf & 0xffff)); |
| dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default); |
| } |
| |
| static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| u16 cfg_72 = dib7000m_read_word(state, 72); |
| int ret = -1; |
| u8 *agc_state = &state->agc_state; |
| u8 agc_split; |
| |
| switch (state->agc_state) { |
| case 0: |
| // set power-up level: interf+analog+AGC |
| dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC); |
| dib7000m_set_adc_state(state, DIBX000_ADC_ON); |
| |
| if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) |
| return -1; |
| |
| ret = 7; /* ADC power up */ |
| (*agc_state)++; |
| break; |
| |
| case 1: |
| /* AGC initialization */ |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 1); |
| |
| dib7000m_write_word(state, 75, 32768); |
| if (!state->current_agc->perform_agc_softsplit) { |
| /* we are using the wbd - so slow AGC startup */ |
| dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */ |
| (*agc_state)++; |
| ret = 5; |
| } else { |
| /* default AGC startup */ |
| (*agc_state) = 4; |
| /* wait AGC rough lock time */ |
| ret = 7; |
| } |
| |
| dib7000m_restart_agc(state); |
| break; |
| |
| case 2: /* fast split search path after 5sec */ |
| dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */ |
| dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */ |
| (*agc_state)++; |
| ret = 14; |
| break; |
| |
| case 3: /* split search ended */ |
| agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */ |
| dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */ |
| |
| dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */ |
| dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ |
| |
| dib7000m_restart_agc(state); |
| |
| dprintk( "SPLIT %p: %hd", demod, agc_split); |
| |
| (*agc_state)++; |
| ret = 5; |
| break; |
| |
| case 4: /* LNA startup */ |
| /* wait AGC accurate lock time */ |
| ret = 7; |
| |
| if (dib7000m_update_lna(state)) |
| // wait only AGC rough lock time |
| ret = 5; |
| else |
| (*agc_state)++; |
| break; |
| |
| case 5: |
| dib7000m_agc_soft_split(state); |
| |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 0); |
| |
| (*agc_state)++; |
| break; |
| |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq) |
| { |
| u16 value, est[4]; |
| |
| dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| |
| /* nfft, guard, qam, alpha */ |
| value = 0; |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= (0 << 7); break; |
| case /* 4K MODE */ 255: value |= (2 << 7); break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= (1 << 7); break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_32: value |= (0 << 5); break; |
| case GUARD_INTERVAL_1_16: value |= (1 << 5); break; |
| case GUARD_INTERVAL_1_4: value |= (3 << 5); break; |
| default: |
| case GUARD_INTERVAL_1_8: value |= (2 << 5); break; |
| } |
| switch (ch->u.ofdm.constellation) { |
| case QPSK: value |= (0 << 3); break; |
| case QAM_16: value |= (1 << 3); break; |
| default: |
| case QAM_64: value |= (2 << 3); break; |
| } |
| switch (HIERARCHY_1) { |
| case HIERARCHY_2: value |= 2; break; |
| case HIERARCHY_4: value |= 4; break; |
| default: |
| case HIERARCHY_1: value |= 1; break; |
| } |
| dib7000m_write_word(state, 0, value); |
| dib7000m_write_word(state, 5, (seq << 4)); |
| |
| /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ |
| value = 0; |
| if (1 != 0) |
| value |= (1 << 6); |
| if (ch->u.ofdm.hierarchy_information == 1) |
| value |= (1 << 4); |
| if (1 == 1) |
| value |= 1; |
| switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { |
| case FEC_2_3: value |= (2 << 1); break; |
| case FEC_3_4: value |= (3 << 1); break; |
| case FEC_5_6: value |= (5 << 1); break; |
| case FEC_7_8: value |= (7 << 1); break; |
| default: |
| case FEC_1_2: value |= (1 << 1); break; |
| } |
| dib7000m_write_word(state, 267 + state->reg_offs, value); |
| |
| /* offset loop parameters */ |
| |
| /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */ |
| dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80); |
| |
| /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ |
| dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3)); |
| |
| /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */ |
| dib7000m_write_word(state, 32, (0 << 4) | 0x3); |
| |
| /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */ |
| dib7000m_write_word(state, 33, (0 << 4) | 0x5); |
| |
| /* P_dvsy_sync_wait */ |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_8K: value = 256; break; |
| case /* 4K MODE */ 255: value = 128; break; |
| case TRANSMISSION_MODE_2K: |
| default: value = 64; break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_16: value *= 2; break; |
| case GUARD_INTERVAL_1_8: value *= 4; break; |
| case GUARD_INTERVAL_1_4: value *= 8; break; |
| default: |
| case GUARD_INTERVAL_1_32: value *= 1; break; |
| } |
| state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO |
| |
| /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */ |
| /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ |
| if (1 == 1 || state->revision > 0x4000) |
| state->div_force_off = 0; |
| else |
| state->div_force_off = 1; |
| dib7000m_set_diversity_in(&state->demod, state->div_state); |
| |
| /* channel estimation fine configuration */ |
| switch (ch->u.ofdm.constellation) { |
| case QAM_64: |
| est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ |
| est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ |
| break; |
| case QAM_16: |
| est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ |
| est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ |
| break; |
| default: |
| est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ |
| est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ |
| est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ |
| break; |
| } |
| for (value = 0; value < 4; value++) |
| dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]); |
| |
| // set power-up level: autosearch |
| dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD); |
| } |
| |
| static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| struct dvb_frontend_parameters schan; |
| int ret = 0; |
| u32 value, factor; |
| |
| schan = *ch; |
| |
| schan.u.ofdm.constellation = QAM_64; |
| schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; |
| schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; |
| schan.u.ofdm.code_rate_HP = FEC_2_3; |
| schan.u.ofdm.code_rate_LP = FEC_3_4; |
| schan.u.ofdm.hierarchy_information = 0; |
| |
| dib7000m_set_channel(state, &schan, 7); |
| |
| factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth); |
| if (factor >= 5000) |
| factor = 1; |
| else |
| factor = 6; |
| |
| // always use the setting for 8MHz here lock_time for 7,6 MHz are longer |
| value = 30 * state->internal_clk * factor; |
| ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time |
| ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time |
| value = 100 * state->internal_clk * factor; |
| ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time |
| ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time |
| value = 500 * state->internal_clk * factor; |
| ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time |
| ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time |
| |
| // start search |
| value = dib7000m_read_word(state, 0); |
| ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9))); |
| |
| /* clear n_irq_pending */ |
| if (state->revision == 0x4000) |
| dib7000m_write_word(state, 1793, 0); |
| else |
| dib7000m_read_word(state, 537); |
| |
| ret |= dib7000m_write_word(state, 0, (u16) value); |
| |
| return ret; |
| } |
| |
| static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg) |
| { |
| u16 irq_pending = dib7000m_read_word(state, reg); |
| |
| if (irq_pending & 0x1) { // failed |
| dprintk( "autosearch failed"); |
| return 1; |
| } |
| |
| if (irq_pending & 0x2) { // succeeded |
| dprintk( "autosearch succeeded"); |
| return 2; |
| } |
| return 0; // still pending |
| } |
| |
| static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| if (state->revision == 0x4000) |
| return dib7000m_autosearch_irq(state, 1793); |
| else |
| return dib7000m_autosearch_irq(state, 537); |
| } |
| |
| static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| int ret = 0; |
| u16 value; |
| |
| // we are already tuned - just resuming from suspend |
| if (ch != NULL) |
| dib7000m_set_channel(state, ch, 0); |
| else |
| return -EINVAL; |
| |
| // restart demod |
| ret |= dib7000m_write_word(state, 898, 0x4000); |
| ret |= dib7000m_write_word(state, 898, 0x0000); |
| msleep(45); |
| |
| dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD); |
| /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ |
| ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); |
| |
| // never achieved a lock before - wait for timfreq to update |
| if (state->timf == 0) |
| msleep(200); |
| |
| //dump_reg(state); |
| /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ |
| value = (6 << 8) | 0x80; |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= (7 << 12); break; |
| case /* 4K MODE */ 255: value |= (8 << 12); break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= (9 << 12); break; |
| } |
| ret |= dib7000m_write_word(state, 26, value); |
| |
| /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ |
| value = (0 << 4); |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= 0x6; break; |
| case /* 4K MODE */ 255: value |= 0x7; break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= 0x8; break; |
| } |
| ret |= dib7000m_write_word(state, 32, value); |
| |
| /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ |
| value = (0 << 4); |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= 0x6; break; |
| case /* 4K MODE */ 255: value |= 0x7; break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= 0x8; break; |
| } |
| ret |= dib7000m_write_word(state, 33, value); |
| |
| // we achieved a lock - it's time to update the timf freq |
| if ((dib7000m_read_word(state, 535) >> 6) & 0x1) |
| dib7000m_update_timf(state); |
| |
| dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| return ret; |
| } |
| |
| static int dib7000m_wakeup(struct dvb_frontend *demod) |
| { |
| struct dib7000m_state *state = demod->demodulator_priv; |
| |
| dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); |
| |
| if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) |
| dprintk( "could not start Slow ADC"); |
| |
| return 0; |
| } |
| |
| static int dib7000m_sleep(struct dvb_frontend *demod) |
| { |
| struct dib7000m_state *st = demod->demodulator_priv; |
| dib7000m_set_output_mode(st, OUTMODE_HIGH_Z); |
| dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY); |
| return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | |
| dib7000m_set_adc_state(st, DIBX000_ADC_OFF); |
| } |
| |
| static int dib7000m_identify(struct dib7000m_state *state) |
| { |
| u16 value; |
| |
| if ((value = dib7000m_read_word(state, 896)) != 0x01b3) { |
| dprintk( "wrong Vendor ID (0x%x)",value); |
| return -EREMOTEIO; |
| } |
| |
| state->revision = dib7000m_read_word(state, 897); |
| if (state->revision != 0x4000 && |
| state->revision != 0x4001 && |
| state->revision != 0x4002 && |
| state->revision != 0x4003) { |
| dprintk( "wrong Device ID (0x%x)",value); |
| return -EREMOTEIO; |
| } |
| |
| /* protect this driver to be used with 7000PC */ |
| if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) { |
| dprintk( "this driver does not work with DiB7000PC"); |
| return -EREMOTEIO; |
| } |
| |
| switch (state->revision) { |
| case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break; |
| case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break; |
| case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break; |
| case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int dib7000m_get_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| u16 tps = dib7000m_read_word(state,480); |
| |
| fep->inversion = INVERSION_AUTO; |
| |
| fep->u.ofdm.bandwidth = state->current_bandwidth; |
| |
| switch ((tps >> 8) & 0x3) { |
| case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; |
| case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; |
| /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ |
| } |
| |
| switch (tps & 0x3) { |
| case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; |
| case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; |
| case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; |
| case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; |
| } |
| |
| switch ((tps >> 14) & 0x3) { |
| case 0: fep->u.ofdm.constellation = QPSK; break; |
| case 1: fep->u.ofdm.constellation = QAM_16; break; |
| case 2: |
| default: fep->u.ofdm.constellation = QAM_64; break; |
| } |
| |
| /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ |
| /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ |
| |
| fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; |
| switch ((tps >> 5) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; |
| |
| } |
| |
| switch ((tps >> 2) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; |
| } |
| |
| /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */ |
| |
| return 0; |
| } |
| |
| static int dib7000m_set_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| int time, ret; |
| |
| dib7000m_set_output_mode(state, OUTMODE_HIGH_Z); |
| |
| state->current_bandwidth = fep->u.ofdm.bandwidth; |
| dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth)); |
| |
| if (fe->ops.tuner_ops.set_params) |
| fe->ops.tuner_ops.set_params(fe, fep); |
| |
| /* start up the AGC */ |
| state->agc_state = 0; |
| do { |
| time = dib7000m_agc_startup(fe, fep); |
| if (time != -1) |
| msleep(time); |
| } while (time != -1); |
| |
| if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || |
| fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || |
| fep->u.ofdm.constellation == QAM_AUTO || |
| fep->u.ofdm.code_rate_HP == FEC_AUTO) { |
| int i = 800, found; |
| |
| dib7000m_autosearch_start(fe, fep); |
| do { |
| msleep(1); |
| found = dib7000m_autosearch_is_irq(fe); |
| } while (found == 0 && i--); |
| |
| dprintk("autosearch returns: %d",found); |
| if (found == 0 || found == 1) |
| return 0; // no channel found |
| |
| dib7000m_get_frontend(fe, fep); |
| } |
| |
| ret = dib7000m_tune(fe, fep); |
| |
| /* make this a config parameter */ |
| dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO); |
| return ret; |
| } |
| |
| static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| u16 lock = dib7000m_read_word(state, 535); |
| |
| *stat = 0; |
| |
| if (lock & 0x8000) |
| *stat |= FE_HAS_SIGNAL; |
| if (lock & 0x3000) |
| *stat |= FE_HAS_CARRIER; |
| if (lock & 0x0100) |
| *stat |= FE_HAS_VITERBI; |
| if (lock & 0x0010) |
| *stat |= FE_HAS_SYNC; |
| if (lock & 0x0008) |
| *stat |= FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527); |
| return 0; |
| } |
| |
| static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| *unc = dib7000m_read_word(state, 534); |
| return 0; |
| } |
| |
| static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength) |
| { |
| struct dib7000m_state *state = fe->demodulator_priv; |
| u16 val = dib7000m_read_word(state, 390); |
| *strength = 65535 - val; |
| return 0; |
| } |
| |
| static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr) |
| { |
| *snr = 0x0000; |
| return 0; |
| } |
| |
| static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| return 0; |
| } |
| |
| static void dib7000m_release(struct dvb_frontend *demod) |
| { |
| struct dib7000m_state *st = demod->demodulator_priv; |
| dibx000_exit_i2c_master(&st->i2c_master); |
| kfree(st); |
| } |
| |
| struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) |
| { |
| struct dib7000m_state *st = demod->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| } |
| EXPORT_SYMBOL(dib7000m_get_i2c_master); |
| |
| static int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, |
| u8 default_addr, struct dib7000m_config cfg[]) |
| { |
| struct dib7000m_state st = { .i2c_adap = i2c }; |
| int k = 0; |
| u8 new_addr = 0; |
| |
| for (k = no_of_demods-1; k >= 0; k--) { |
| st.cfg = cfg[k]; |
| |
| /* designated i2c address */ |
| new_addr = (0x40 + k) << 1; |
| st.i2c_addr = new_addr; |
| if (dib7000m_identify(&st) != 0) { |
| st.i2c_addr = default_addr; |
| if (dib7000m_identify(&st) != 0) { |
| dprintk("DiB7000M #%d: not identified", k); |
| return -EIO; |
| } |
| } |
| |
| /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY); |
| |
| dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output |
| |
| /* set new i2c address and force divstart */ |
| dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2); |
| |
| dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| st.cfg = cfg[k]; |
| st.i2c_addr = (0x40 + k) << 1; |
| |
| // unforce divstr |
| dib7000m_write_word(&st,1794, st.i2c_addr << 2); |
| |
| /* deactivate div - it was just for i2c-enumeration */ |
| dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dib7000m_i2c_enumeration); |
| |
| static struct dvb_frontend_ops dib7000m_ops; |
| struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg) |
| { |
| struct dvb_frontend *demod; |
| struct dib7000m_state *st; |
| st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| |
| memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config)); |
| st->i2c_adap = i2c_adap; |
| st->i2c_addr = i2c_addr; |
| |
| demod = &st->demod; |
| demod->demodulator_priv = st; |
| memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops)); |
| |
| st->timf_default = cfg->bw->timf; |
| |
| if (dib7000m_identify(st) != 0) |
| goto error; |
| |
| if (st->revision == 0x4000) |
| dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr); |
| else |
| dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr); |
| |
| dib7000m_demod_reset(st); |
| |
| return demod; |
| |
| error: |
| kfree(st); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dib7000m_attach); |
| |
| static struct dvb_frontend_ops dib7000m_ops = { |
| .info = { |
| .name = "DiBcom 7000MA/MB/PA/PB/MC", |
| .type = FE_OFDM, |
| .frequency_min = 44250000, |
| .frequency_max = 867250000, |
| .frequency_stepsize = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | |
| FE_CAN_GUARD_INTERVAL_AUTO | |
| FE_CAN_RECOVER | |
| FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib7000m_release, |
| |
| .init = dib7000m_wakeup, |
| .sleep = dib7000m_sleep, |
| |
| .set_frontend = dib7000m_set_frontend, |
| .get_tune_settings = dib7000m_fe_get_tune_settings, |
| .get_frontend = dib7000m_get_frontend, |
| |
| .read_status = dib7000m_read_status, |
| .read_ber = dib7000m_read_ber, |
| .read_signal_strength = dib7000m_read_signal_strength, |
| .read_snr = dib7000m_read_snr, |
| .read_ucblocks = dib7000m_read_unc_blocks, |
| }; |
| |
| MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator"); |
| MODULE_LICENSE("GPL"); |