| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Virtual ALSA driver for PCM testing/fuzzing |
| * |
| * Copyright 2023 Ivan Orlov <ivan.orlov0322@gmail.com> |
| * |
| * This is a simple virtual ALSA driver, which can be used for audio applications/PCM middle layer |
| * testing or fuzzing. |
| * It can: |
| * - Simulate 'playback' and 'capture' actions |
| * - Generate random or pattern-based capture data |
| * - Check playback buffer for containing looped template, and notify about the results |
| * through the debugfs entry |
| * - Inject delays into the playback and capturing processes. See 'inject_delay' parameter. |
| * - Inject errors during the PCM callbacks. |
| * - Register custom RESET ioctl and notify when it is called through the debugfs entry |
| * - Work in interleaved and non-interleaved modes |
| * - Support up to 8 substreams |
| * - Support up to 4 channels |
| * - Support framerates from 8 kHz to 48 kHz |
| * |
| * When driver works in the capture mode with multiple channels, it duplicates the looped |
| * pattern to each separate channel. For example, if we have 2 channels, format = U8, interleaved |
| * access mode and pattern 'abacaba', the DMA buffer will look like aabbccaabbaaaa..., so buffer for |
| * each channel will contain abacabaabacaba... Same for the non-interleaved mode. |
| * |
| * However, it may break the capturing on the higher framerates with small period size, so it is |
| * better to choose larger period sizes. |
| * |
| * You can find the corresponding selftest in the 'alsa' selftests folder. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <sound/pcm.h> |
| #include <sound/core.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/platform_device.h> |
| #include <linux/timer.h> |
| #include <linux/random.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| |
| #define DEVNAME "pcmtestd" |
| #define CARD_NAME "pcm-test-card" |
| #define TIMER_PER_SEC 5 |
| #define TIMER_INTERVAL (HZ / TIMER_PER_SEC) |
| #define DELAY_JIFFIES HZ |
| #define PLAYBACK_SUBSTREAM_CNT 8 |
| #define CAPTURE_SUBSTREAM_CNT 8 |
| #define MAX_CHANNELS_NUM 4 |
| |
| #define DEFAULT_PATTERN "abacaba" |
| #define DEFAULT_PATTERN_LEN 7 |
| |
| #define FILL_MODE_RAND 0 |
| #define FILL_MODE_PAT 1 |
| |
| #define MAX_PATTERN_LEN 4096 |
| |
| static int index = -1; |
| static char *id = "pcmtest"; |
| static bool enable = true; |
| static int inject_delay; |
| static bool inject_hwpars_err; |
| static bool inject_prepare_err; |
| static bool inject_trigger_err; |
| |
| static short fill_mode = FILL_MODE_PAT; |
| |
| static u8 playback_capture_test; |
| static u8 ioctl_reset_test; |
| static struct dentry *driver_debug_dir; |
| |
| module_param(index, int, 0444); |
| MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard"); |
| module_param(id, charp, 0444); |
| MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard"); |
| module_param(enable, bool, 0444); |
| MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); |
| module_param(fill_mode, short, 0600); |
| MODULE_PARM_DESC(fill_mode, "Buffer fill mode: rand(0) or pattern(1)"); |
| module_param(inject_delay, int, 0600); |
| MODULE_PARM_DESC(inject_delay, "Inject delays during playback/capture (in jiffies)"); |
| module_param(inject_hwpars_err, bool, 0600); |
| MODULE_PARM_DESC(inject_hwpars_err, "Inject EBUSY error in the 'hw_params' callback"); |
| module_param(inject_prepare_err, bool, 0600); |
| MODULE_PARM_DESC(inject_prepare_err, "Inject EINVAL error in the 'prepare' callback"); |
| module_param(inject_trigger_err, bool, 0600); |
| MODULE_PARM_DESC(inject_trigger_err, "Inject EINVAL error in the 'trigger' callback"); |
| |
| struct pcmtst { |
| struct snd_pcm *pcm; |
| struct snd_card *card; |
| struct platform_device *pdev; |
| }; |
| |
| struct pcmtst_buf_iter { |
| size_t buf_pos; // position in the DMA buffer |
| size_t period_pos; // period-relative position |
| size_t b_rw; // Bytes to write on every timer tick |
| size_t s_rw_ch; // Samples to write to one channel on every tick |
| unsigned int sample_bytes; // sample_bits / 8 |
| bool is_buf_corrupted; // playback test result indicator |
| size_t period_bytes; // bytes in a one period |
| bool interleaved; // Interleaved/Non-interleaved mode |
| size_t total_bytes; // Total bytes read/written |
| size_t chan_block; // Bytes in one channel buffer when non-interleaved |
| struct snd_pcm_substream *substream; |
| struct timer_list timer_instance; |
| }; |
| |
| static struct pcmtst *pcmtst; |
| |
| static struct snd_pcm_hardware snd_pcmtst_hw = { |
| .info = (SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| SNDRV_PCM_INFO_NONINTERLEAVED | |
| SNDRV_PCM_INFO_MMAP_VALID), |
| .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, |
| .rates = SNDRV_PCM_RATE_8000_48000, |
| .rate_min = 8000, |
| .rate_max = 48000, |
| .channels_min = 1, |
| .channels_max = MAX_CHANNELS_NUM, |
| .buffer_bytes_max = 128 * 1024, |
| .period_bytes_min = 4096, |
| .period_bytes_max = 32768, |
| .periods_min = 1, |
| .periods_max = 1024, |
| }; |
| |
| struct pattern_buf { |
| char *buf; |
| u32 len; |
| }; |
| |
| static int buf_allocated; |
| static struct pattern_buf patt_bufs[MAX_CHANNELS_NUM]; |
| |
| static inline void inc_buf_pos(struct pcmtst_buf_iter *v_iter, size_t by, size_t bytes) |
| { |
| v_iter->total_bytes += by; |
| v_iter->buf_pos += by; |
| v_iter->buf_pos %= bytes; |
| } |
| |
| /* |
| * Position in the DMA buffer when we are in the non-interleaved mode. We increment buf_pos |
| * every time we write a byte to any channel, so the position in the current channel buffer is |
| * (position in the DMA buffer) / count_of_channels + size_of_channel_buf * current_channel |
| */ |
| static inline size_t buf_pos_n(struct pcmtst_buf_iter *v_iter, unsigned int channels, |
| unsigned int chan_num) |
| { |
| return v_iter->buf_pos / channels + v_iter->chan_block * chan_num; |
| } |
| |
| /* |
| * Get the count of bytes written for the current channel in the interleaved mode. |
| * This is (count of samples written for the current channel) * bytes_in_sample + |
| * (relative position in the current sample) |
| */ |
| static inline size_t ch_pos_i(size_t b_total, unsigned int channels, unsigned int b_sample) |
| { |
| return b_total / channels / b_sample * b_sample + (b_total % b_sample); |
| } |
| |
| static void check_buf_block_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| size_t i; |
| short ch_num; |
| u8 current_byte; |
| |
| for (i = 0; i < v_iter->b_rw; i++) { |
| current_byte = runtime->dma_area[v_iter->buf_pos]; |
| if (!current_byte) |
| break; |
| ch_num = (v_iter->total_bytes / v_iter->sample_bytes) % runtime->channels; |
| if (current_byte != patt_bufs[ch_num].buf[ch_pos_i(v_iter->total_bytes, |
| runtime->channels, |
| v_iter->sample_bytes) |
| % patt_bufs[ch_num].len]) { |
| v_iter->is_buf_corrupted = true; |
| break; |
| } |
| inc_buf_pos(v_iter, 1, runtime->dma_bytes); |
| } |
| // If we broke during the loop, add remaining bytes to the buffer position. |
| inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes); |
| } |
| |
| static void check_buf_block_ni(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| unsigned int channels = runtime->channels; |
| size_t i; |
| short ch_num; |
| u8 current_byte; |
| |
| for (i = 0; i < v_iter->b_rw; i++) { |
| current_byte = runtime->dma_area[buf_pos_n(v_iter, channels, i % channels)]; |
| if (!current_byte) |
| break; |
| ch_num = i % channels; |
| if (current_byte != patt_bufs[ch_num].buf[(v_iter->total_bytes / channels) |
| % patt_bufs[ch_num].len]) { |
| v_iter->is_buf_corrupted = true; |
| break; |
| } |
| inc_buf_pos(v_iter, 1, runtime->dma_bytes); |
| } |
| inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes); |
| } |
| |
| /* |
| * Check one block of the buffer. Here we iterate the buffer until we find '0'. This condition is |
| * necessary because we need to detect when the reading/writing ends, so we assume that the pattern |
| * doesn't contain zeros. |
| */ |
| static void check_buf_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| if (v_iter->interleaved) |
| check_buf_block_i(v_iter, runtime); |
| else |
| check_buf_block_ni(v_iter, runtime); |
| } |
| |
| /* |
| * Fill buffer in the non-interleaved mode. The order of samples is C0, ..., C0, C1, ..., C1, C2... |
| * The channel buffers lay in the DMA buffer continuously (see default copy_user and copy_kernel |
| * handlers in the pcm_lib.c file). |
| * |
| * Here we increment the DMA buffer position every time we write a byte to any channel 'buffer'. |
| * We need this to simulate the correct hardware pointer moving. |
| */ |
| static void fill_block_pattern_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| size_t i; |
| unsigned int channels = runtime->channels; |
| short ch_num; |
| |
| for (i = 0; i < v_iter->b_rw; i++) { |
| ch_num = i % channels; |
| runtime->dma_area[buf_pos_n(v_iter, channels, i % channels)] = |
| patt_bufs[ch_num].buf[(v_iter->total_bytes / channels) |
| % patt_bufs[ch_num].len]; |
| inc_buf_pos(v_iter, 1, runtime->dma_bytes); |
| } |
| } |
| |
| // Fill buffer in the interleaved mode. The order of samples is C0, C1, C2, C0, C1, C2, ... |
| static void fill_block_pattern_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| size_t sample; |
| size_t pos_in_ch, pos_pattern; |
| short ch, pos_sample; |
| |
| pos_in_ch = ch_pos_i(v_iter->total_bytes, runtime->channels, v_iter->sample_bytes); |
| |
| for (sample = 0; sample < v_iter->s_rw_ch; sample++) { |
| for (ch = 0; ch < runtime->channels; ch++) { |
| for (pos_sample = 0; pos_sample < v_iter->sample_bytes; pos_sample++) { |
| pos_pattern = (pos_in_ch + sample * v_iter->sample_bytes |
| + pos_sample) % patt_bufs[ch].len; |
| runtime->dma_area[v_iter->buf_pos] = patt_bufs[ch].buf[pos_pattern]; |
| inc_buf_pos(v_iter, 1, runtime->dma_bytes); |
| } |
| } |
| } |
| } |
| |
| static void fill_block_pattern(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| if (v_iter->interleaved) |
| fill_block_pattern_i(v_iter, runtime); |
| else |
| fill_block_pattern_n(v_iter, runtime); |
| } |
| |
| static void fill_block_rand_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| unsigned int channels = runtime->channels; |
| // Remaining space in all channel buffers |
| size_t bytes_remain = runtime->dma_bytes - v_iter->buf_pos; |
| unsigned int i; |
| |
| for (i = 0; i < channels; i++) { |
| if (v_iter->b_rw <= bytes_remain) { |
| //b_rw - count of bytes must be written for all channels at each timer tick |
| get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i), |
| v_iter->b_rw / channels); |
| } else { |
| // Write to the end of buffer and start from the beginning of it |
| get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i), |
| bytes_remain / channels); |
| get_random_bytes(runtime->dma_area + v_iter->chan_block * i, |
| (v_iter->b_rw - bytes_remain) / channels); |
| } |
| } |
| inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes); |
| } |
| |
| static void fill_block_rand_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| size_t in_cur_block = runtime->dma_bytes - v_iter->buf_pos; |
| |
| if (v_iter->b_rw <= in_cur_block) { |
| get_random_bytes(&runtime->dma_area[v_iter->buf_pos], v_iter->b_rw); |
| } else { |
| get_random_bytes(&runtime->dma_area[v_iter->buf_pos], in_cur_block); |
| get_random_bytes(runtime->dma_area, v_iter->b_rw - in_cur_block); |
| } |
| inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes); |
| } |
| |
| static void fill_block_random(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| if (v_iter->interleaved) |
| fill_block_rand_i(v_iter, runtime); |
| else |
| fill_block_rand_n(v_iter, runtime); |
| } |
| |
| static void fill_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime) |
| { |
| switch (fill_mode) { |
| case FILL_MODE_RAND: |
| fill_block_random(v_iter, runtime); |
| break; |
| case FILL_MODE_PAT: |
| fill_block_pattern(v_iter, runtime); |
| break; |
| } |
| } |
| |
| /* |
| * Here we iterate through the buffer by (buffer_size / iterates_per_second) bytes. |
| * The driver uses timer to simulate the hardware pointer moving, and notify the PCM middle layer |
| * about period elapsed. |
| */ |
| static void timer_timeout(struct timer_list *data) |
| { |
| struct pcmtst_buf_iter *v_iter; |
| struct snd_pcm_substream *substream; |
| |
| v_iter = from_timer(v_iter, data, timer_instance); |
| substream = v_iter->substream; |
| |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !v_iter->is_buf_corrupted) |
| check_buf_block(v_iter, substream->runtime); |
| else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) |
| fill_block(v_iter, substream->runtime); |
| else |
| inc_buf_pos(v_iter, v_iter->b_rw, substream->runtime->dma_bytes); |
| |
| v_iter->period_pos += v_iter->b_rw; |
| if (v_iter->period_pos >= v_iter->period_bytes) { |
| v_iter->period_pos %= v_iter->period_bytes; |
| snd_pcm_period_elapsed(substream); |
| } |
| mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL + inject_delay); |
| } |
| |
| static int snd_pcmtst_pcm_open(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct pcmtst_buf_iter *v_iter; |
| |
| v_iter = kzalloc(sizeof(*v_iter), GFP_KERNEL); |
| if (!v_iter) |
| return -ENOMEM; |
| |
| runtime->hw = snd_pcmtst_hw; |
| runtime->private_data = v_iter; |
| v_iter->substream = substream; |
| v_iter->buf_pos = 0; |
| v_iter->is_buf_corrupted = false; |
| v_iter->period_pos = 0; |
| v_iter->total_bytes = 0; |
| |
| playback_capture_test = 0; |
| ioctl_reset_test = 0; |
| |
| timer_setup(&v_iter->timer_instance, timer_timeout, 0); |
| mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL); |
| return 0; |
| } |
| |
| static int snd_pcmtst_pcm_close(struct snd_pcm_substream *substream) |
| { |
| struct pcmtst_buf_iter *v_iter = substream->runtime->private_data; |
| |
| timer_shutdown_sync(&v_iter->timer_instance); |
| v_iter->substream = NULL; |
| playback_capture_test = !v_iter->is_buf_corrupted; |
| kfree(v_iter); |
| return 0; |
| } |
| |
| static int snd_pcmtst_pcm_trigger(struct snd_pcm_substream *substream, int cmd) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct pcmtst_buf_iter *v_iter = runtime->private_data; |
| |
| if (inject_trigger_err) |
| return -EINVAL; |
| |
| v_iter->sample_bytes = runtime->sample_bits / 8; |
| v_iter->period_bytes = frames_to_bytes(runtime, runtime->period_size); |
| if (runtime->access == SNDRV_PCM_ACCESS_RW_NONINTERLEAVED || |
| runtime->access == SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED) { |
| v_iter->chan_block = runtime->dma_bytes / runtime->channels; |
| v_iter->interleaved = false; |
| } else { |
| v_iter->interleaved = true; |
| } |
| // We want to record RATE * ch_cnt samples per sec, it is rate * sample_bytes * ch_cnt bytes |
| v_iter->s_rw_ch = runtime->rate / TIMER_PER_SEC; |
| v_iter->b_rw = v_iter->s_rw_ch * v_iter->sample_bytes * runtime->channels; |
| |
| return 0; |
| } |
| |
| static snd_pcm_uframes_t snd_pcmtst_pcm_pointer(struct snd_pcm_substream *substream) |
| { |
| struct pcmtst_buf_iter *v_iter = substream->runtime->private_data; |
| |
| return bytes_to_frames(substream->runtime, v_iter->buf_pos); |
| } |
| |
| static int snd_pcmtst_free(struct pcmtst *pcmtst) |
| { |
| if (!pcmtst) |
| return 0; |
| kfree(pcmtst); |
| return 0; |
| } |
| |
| // These callbacks are required, but empty - all freeing occurs in pdev_remove |
| static int snd_pcmtst_dev_free(struct snd_device *device) |
| { |
| return 0; |
| } |
| |
| static void pcmtst_pdev_release(struct device *dev) |
| { |
| } |
| |
| static int snd_pcmtst_pcm_prepare(struct snd_pcm_substream *substream) |
| { |
| if (inject_prepare_err) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int snd_pcmtst_pcm_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *params) |
| { |
| if (inject_hwpars_err) |
| return -EBUSY; |
| return 0; |
| } |
| |
| static int snd_pcmtst_pcm_hw_free(struct snd_pcm_substream *substream) |
| { |
| return 0; |
| } |
| |
| static int snd_pcmtst_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg) |
| { |
| switch (cmd) { |
| case SNDRV_PCM_IOCTL1_RESET: |
| ioctl_reset_test = 1; |
| break; |
| } |
| return snd_pcm_lib_ioctl(substream, cmd, arg); |
| } |
| |
| static const struct snd_pcm_ops snd_pcmtst_playback_ops = { |
| .open = snd_pcmtst_pcm_open, |
| .close = snd_pcmtst_pcm_close, |
| .trigger = snd_pcmtst_pcm_trigger, |
| .hw_params = snd_pcmtst_pcm_hw_params, |
| .ioctl = snd_pcmtst_ioctl, |
| .hw_free = snd_pcmtst_pcm_hw_free, |
| .prepare = snd_pcmtst_pcm_prepare, |
| .pointer = snd_pcmtst_pcm_pointer, |
| }; |
| |
| static const struct snd_pcm_ops snd_pcmtst_capture_ops = { |
| .open = snd_pcmtst_pcm_open, |
| .close = snd_pcmtst_pcm_close, |
| .trigger = snd_pcmtst_pcm_trigger, |
| .hw_params = snd_pcmtst_pcm_hw_params, |
| .hw_free = snd_pcmtst_pcm_hw_free, |
| .ioctl = snd_pcmtst_ioctl, |
| .prepare = snd_pcmtst_pcm_prepare, |
| .pointer = snd_pcmtst_pcm_pointer, |
| }; |
| |
| static int snd_pcmtst_new_pcm(struct pcmtst *pcmtst) |
| { |
| struct snd_pcm *pcm; |
| int err; |
| |
| err = snd_pcm_new(pcmtst->card, "PCMTest", 0, PLAYBACK_SUBSTREAM_CNT, |
| CAPTURE_SUBSTREAM_CNT, &pcm); |
| if (err < 0) |
| return err; |
| pcm->private_data = pcmtst; |
| strcpy(pcm->name, "PCMTest"); |
| pcmtst->pcm = pcm; |
| snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pcmtst_playback_ops); |
| snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pcmtst_capture_ops); |
| |
| err = snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pcmtst->pdev->dev, |
| 0, 128 * 1024); |
| return err; |
| } |
| |
| static int snd_pcmtst_create(struct snd_card *card, struct platform_device *pdev, |
| struct pcmtst **r_pcmtst) |
| { |
| struct pcmtst *pcmtst; |
| int err; |
| static const struct snd_device_ops ops = { |
| .dev_free = snd_pcmtst_dev_free, |
| }; |
| |
| pcmtst = kzalloc(sizeof(*pcmtst), GFP_KERNEL); |
| if (!pcmtst) |
| return -ENOMEM; |
| pcmtst->card = card; |
| pcmtst->pdev = pdev; |
| |
| err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, pcmtst, &ops); |
| if (err < 0) |
| goto _err_free_chip; |
| |
| err = snd_pcmtst_new_pcm(pcmtst); |
| if (err < 0) |
| goto _err_free_chip; |
| |
| *r_pcmtst = pcmtst; |
| return 0; |
| |
| _err_free_chip: |
| snd_pcmtst_free(pcmtst); |
| return err; |
| } |
| |
| static int pcmtst_probe(struct platform_device *pdev) |
| { |
| struct snd_card *card; |
| int err; |
| |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) |
| return err; |
| |
| err = snd_devm_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card); |
| if (err < 0) |
| return err; |
| err = snd_pcmtst_create(card, pdev, &pcmtst); |
| if (err < 0) |
| return err; |
| |
| strcpy(card->driver, "PCM-TEST Driver"); |
| strcpy(card->shortname, "PCM-Test"); |
| strcpy(card->longname, "PCM-Test virtual driver"); |
| |
| err = snd_card_register(card); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static int pdev_remove(struct platform_device *dev) |
| { |
| snd_pcmtst_free(pcmtst); |
| return 0; |
| } |
| |
| static struct platform_device pcmtst_pdev = { |
| .name = "pcmtest", |
| .dev.release = pcmtst_pdev_release, |
| }; |
| |
| static struct platform_driver pcmtst_pdrv = { |
| .probe = pcmtst_probe, |
| .remove = pdev_remove, |
| .driver = { |
| .name = "pcmtest", |
| }, |
| }; |
| |
| static ssize_t pattern_write(struct file *file, const char __user *u_buff, size_t len, loff_t *off) |
| { |
| struct pattern_buf *patt_buf = file->f_inode->i_private; |
| ssize_t to_write = len; |
| |
| if (*off + to_write > MAX_PATTERN_LEN) |
| to_write = MAX_PATTERN_LEN - *off; |
| |
| // Crop silently everything over the buffer |
| if (to_write <= 0) |
| return len; |
| |
| if (copy_from_user(patt_buf->buf + *off, u_buff, to_write)) |
| return -EFAULT; |
| |
| patt_buf->len = *off + to_write; |
| *off += to_write; |
| |
| return to_write; |
| } |
| |
| static ssize_t pattern_read(struct file *file, char __user *u_buff, size_t len, loff_t *off) |
| { |
| struct pattern_buf *patt_buf = file->f_inode->i_private; |
| ssize_t to_read = len; |
| |
| if (*off + to_read >= MAX_PATTERN_LEN) |
| to_read = MAX_PATTERN_LEN - *off; |
| if (to_read <= 0) |
| return 0; |
| |
| if (copy_to_user(u_buff, patt_buf->buf + *off, to_read)) |
| to_read = 0; |
| else |
| *off += to_read; |
| |
| return to_read; |
| } |
| |
| static const struct file_operations fill_pattern_fops = { |
| .read = pattern_read, |
| .write = pattern_write, |
| }; |
| |
| static int setup_patt_bufs(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(patt_bufs); i++) { |
| patt_bufs[i].buf = kzalloc(MAX_PATTERN_LEN, GFP_KERNEL); |
| if (!patt_bufs[i].buf) |
| break; |
| strcpy(patt_bufs[i].buf, DEFAULT_PATTERN); |
| patt_bufs[i].len = DEFAULT_PATTERN_LEN; |
| } |
| |
| return i; |
| } |
| |
| static const char * const pattern_files[] = { "fill_pattern0", "fill_pattern1", |
| "fill_pattern2", "fill_pattern3"}; |
| static int init_debug_files(int buf_count) |
| { |
| size_t i; |
| char len_file_name[32]; |
| |
| driver_debug_dir = debugfs_create_dir("pcmtest", NULL); |
| if (IS_ERR(driver_debug_dir)) |
| return PTR_ERR(driver_debug_dir); |
| debugfs_create_u8("pc_test", 0444, driver_debug_dir, &playback_capture_test); |
| debugfs_create_u8("ioctl_test", 0444, driver_debug_dir, &ioctl_reset_test); |
| |
| for (i = 0; i < buf_count; i++) { |
| debugfs_create_file(pattern_files[i], 0600, driver_debug_dir, |
| &patt_bufs[i], &fill_pattern_fops); |
| snprintf(len_file_name, sizeof(len_file_name), "%s_len", pattern_files[i]); |
| debugfs_create_u32(len_file_name, 0444, driver_debug_dir, &patt_bufs[i].len); |
| } |
| |
| return 0; |
| } |
| |
| static void free_pattern_buffers(void) |
| { |
| int i; |
| |
| for (i = 0; i < buf_allocated; i++) |
| kfree(patt_bufs[i].buf); |
| } |
| |
| static void clear_debug_files(void) |
| { |
| debugfs_remove_recursive(driver_debug_dir); |
| } |
| |
| static int __init mod_init(void) |
| { |
| int err = 0; |
| |
| buf_allocated = setup_patt_bufs(); |
| if (!buf_allocated) |
| return -ENOMEM; |
| |
| snd_pcmtst_hw.channels_max = buf_allocated; |
| |
| err = init_debug_files(buf_allocated); |
| if (err) |
| return err; |
| err = platform_device_register(&pcmtst_pdev); |
| if (err) |
| return err; |
| err = platform_driver_register(&pcmtst_pdrv); |
| if (err) |
| platform_device_unregister(&pcmtst_pdev); |
| return err; |
| } |
| |
| static void __exit mod_exit(void) |
| { |
| clear_debug_files(); |
| free_pattern_buffers(); |
| |
| platform_driver_unregister(&pcmtst_pdrv); |
| platform_device_unregister(&pcmtst_pdev); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Ivan Orlov"); |
| module_init(mod_init); |
| module_exit(mod_exit); |