| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * |
| */ |
| |
| #include "tonga_smc.h" |
| #include "smu7_dyn_defaults.h" |
| |
| #include "smu7_hwmgr.h" |
| #include "hardwaremanager.h" |
| #include "ppatomctrl.h" |
| #include "pp_debug.h" |
| #include "cgs_common.h" |
| #include "atombios.h" |
| #include "tonga_smumgr.h" |
| #include "pppcielanes.h" |
| #include "pp_endian.h" |
| #include "smu7_ppsmc.h" |
| |
| #include "smu72_discrete.h" |
| |
| #include "smu/smu_7_1_2_d.h" |
| #include "smu/smu_7_1_2_sh_mask.h" |
| |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| |
| #include "dce/dce_10_0_d.h" |
| #include "dce/dce_10_0_sh_mask.h" |
| |
| |
| #define VOLTAGE_SCALE 4 |
| #define POWERTUNE_DEFAULT_SET_MAX 1 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define VDDC_VDDCI_DELTA 200 |
| |
| |
| static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
| /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
| */ |
| {1, 0xF, 0xFD, 0x19, |
| 5, 45, 0, 0xB0000, |
| {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, |
| 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
| {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, |
| 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} |
| }, |
| }; |
| |
| /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ |
| static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { |
| {600, 1050, 3, 0}, |
| {600, 1050, 6, 1} |
| }; |
| |
| /* [FF, SS] type, [] 4 voltage ranges, |
| * and [Floor Freq, Boundary Freq, VID min , VID max] |
| */ |
| static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { |
| { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
| { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } |
| }; |
| |
| /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ |
| static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { |
| {0, 1, 3, 2, 4, 5}, |
| {0, 2, 4, 5, 6, 5} |
| }; |
| |
| /* PPGen has the gain setting generated in x * 100 unit |
| * This function is to convert the unit to x * 4096(0x1000) unit. |
| * This is the unit expected by SMC firmware |
| */ |
| |
| |
| static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| { |
| uint32_t i = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| /* clock - voltage dependency table is empty table */ |
| if (allowed_clock_voltage_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| voltage->VddGfx = phm_get_voltage_index( |
| pptable_info->vddgfx_lookup_table, |
| allowed_clock_voltage_table->entries[i].vddgfx); |
| voltage->Vddc = phm_get_voltage_index( |
| pptable_info->vddc_lookup_table, |
| allowed_clock_voltage_table->entries[i].vddc); |
| |
| if (allowed_clock_voltage_table->entries[i].vddci) |
| voltage->Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); |
| else |
| voltage->Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, |
| allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); |
| |
| |
| if (allowed_clock_voltage_table->entries[i].mvdd) |
| *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; |
| |
| voltage->Phases = 1; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| allowed_clock_voltage_table->entries[i-1].vddgfx); |
| voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, |
| allowed_clock_voltage_table->entries[i-1].vddc); |
| |
| if (allowed_clock_voltage_table->entries[i-1].vddci) |
| voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, |
| allowed_clock_voltage_table->entries[i-1].vddci); |
| |
| if (allowed_clock_voltage_table->entries[i-1].mvdd) |
| *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; |
| |
| return 0; |
| } |
| |
| |
| /** |
| * Vddc table preparation for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| table->VddcLevelCount = data->vddc_voltage_table.count; |
| for (count = 0; count < table->VddcLevelCount; count++) { |
| table->VddcTable[count] = |
| PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
| } |
| return 0; |
| } |
| |
| /** |
| * VddGfx table preparation for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| unsigned int count; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| table->VddGfxLevelCount = data->vddgfx_voltage_table.count; |
| for (count = 0; count < data->vddgfx_voltage_table.count; count++) { |
| table->VddGfxTable[count] = |
| PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); |
| } |
| return 0; |
| } |
| |
| /** |
| * Vddci table preparation for SMC. |
| * |
| * @param *hwmgr The address of the hardware manager. |
| * @param *table The SMC DPM table structure to be populated. |
| * @return 0 |
| */ |
| static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| |
| table->VddciLevelCount = data->vddci_voltage_table.count; |
| for (count = 0; count < table->VddciLevelCount; count++) { |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| table->VddciTable[count] = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| table->SmioTable1.Pattern[count].Voltage = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ |
| table->SmioTable1.Pattern[count].Smio = |
| (uint8_t) count; |
| table->Smio[count] |= |
| data->vddci_voltage_table.entries[count].smio_low; |
| table->VddciTable[count] = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| } |
| } |
| |
| table->SmioMask1 = data->vddci_voltage_table.mask_low; |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
| |
| return 0; |
| } |
| |
| /** |
| * Mvdd table preparation for SMC. |
| * |
| * @param *hwmgr The address of the hardware manager. |
| * @param *table The SMC DPM table structure to be populated. |
| * @return 0 |
| */ |
| static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| table->MvddLevelCount = data->mvdd_voltage_table.count; |
| for (count = 0; count < table->MvddLevelCount; count++) { |
| table->SmioTable2.Pattern[count].Voltage = |
| PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
| table->SmioTable2.Pattern[count].Smio = |
| (uint8_t) count; |
| table->Smio[count] |= |
| data->mvdd_voltage_table.entries[count].smio_low; |
| } |
| table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of vddc and vddgfx CAC tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = |
| pptable_info->vddgfx_lookup_table; |
| struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = |
| pptable_info->vddc_lookup_table; |
| |
| /* table is already swapped, so in order to use the value from it |
| * we need to swap it back. |
| */ |
| uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); |
| uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); |
| |
| for (count = 0; count < vddc_level_count; count++) { |
| /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ |
| index = phm_get_voltage_index(vddc_lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
| table->BapmVddcVidHiSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
| table->BapmVddcVidHiSidd2[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
| } |
| |
| if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) { |
| /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ |
| for (count = 0; count < vddgfx_level_count; count++) { |
| index = phm_get_voltage_index(vddgfx_lookup_table, |
| convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); |
| table->BapmVddGfxVidHiSidd2[count] = |
| convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); |
| } |
| } else { |
| for (count = 0; count < vddc_level_count; count++) { |
| index = phm_get_voltage_index(vddc_lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddGfxVidLoSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
| table->BapmVddGfxVidHiSidd[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
| table->BapmVddGfxVidHiSidd2[count] = |
| convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of voltage tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| |
| static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = tonga_populate_smc_vddc_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not populate VDDC voltage table to SMC", |
| return -EINVAL); |
| |
| result = tonga_populate_smc_vdd_ci_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not populate VDDCI voltage table to SMC", |
| return -EINVAL); |
| |
| result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not populate VDDGFX voltage table to SMC", |
| return -EINVAL); |
| |
| result = tonga_populate_smc_mvdd_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not populate MVDD voltage table to SMC", |
| return -EINVAL); |
| |
| result = tonga_populate_cac_tables(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not populate CAC voltage tables to SMC", |
| return -EINVAL); |
| |
| return 0; |
| } |
| |
| static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU72_Discrete_Ulv *state) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
| VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
| |
| state->VddcPhase = 1; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| |
| return 0; |
| } |
| |
| static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| struct SMU72_Discrete_DpmTable *table) |
| { |
| return tonga_populate_ulv_level(hwmgr, &table->Ulv); |
| } |
| |
| static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = |
| (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = |
| 1; |
| table->LinkLevel[i].SPC = |
| (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = |
| PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = |
| PP_HOST_TO_SMC_UL(30); |
| } |
| |
| smu_data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t reference_clock; |
| uint32_t reference_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
| reference_clock = atomctrl_get_reference_clock(hwmgr); |
| |
| reference_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider*/ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup*/ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
| CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
| CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| pp_atomctrl_internal_ss_info ss_info; |
| |
| uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
| if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
| /* |
| * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| * ss_info.speed_spectrum_rate -- in unit of khz |
| */ |
| /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
| uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
| |
| /* clkv = 2 * D * fbdiv / NS */ |
| uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
| |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); |
| cg_spll_spread_spectrum = |
| PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = |
| PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); |
| } |
| } |
| |
| sclk->SclkFrequency = engine_clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param engine_clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint16_t sclk_activity_level_threshold, |
| SMU72_Discrete_GraphicsLevel *graphic_level) |
| { |
| int result; |
| uint32_t mvdd; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
| |
| /* populate graphics levels*/ |
| result = tonga_get_dependecy_volt_by_clk(hwmgr, |
| pptable_info->vdd_dep_on_sclk, engine_clock, |
| &graphic_level->MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find VDDC voltage value for VDDC " |
| "engine clock dependency table", return result); |
| |
| /* SCLK frequency in units of 10KHz*/ |
| graphic_level->SclkFrequency = engine_clock; |
| /* Indicates maximum activity level for this performance level. 50% for now*/ |
| graphic_level->ActivityLevel = sclk_activity_level_threshold; |
| |
| graphic_level->CcPwrDynRm = 0; |
| graphic_level->CcPwrDynRm1 = 0; |
| /* this level can be used if activity is high enough.*/ |
| graphic_level->EnabledForActivity = 0; |
| /* this level can be used for throttling.*/ |
| graphic_level->EnabledForThrottle = 1; |
| graphic_level->UpHyst = 0; |
| graphic_level->DownHyst = 0; |
| graphic_level->VoltageDownHyst = 0; |
| graphic_level->PowerThrottle = 0; |
| |
| data->display_timing.min_clock_in_sr = |
| hwmgr->display_config.min_core_set_clock_in_sr; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) |
| graphic_level->DeepSleepDivId = |
| smu7_get_sleep_divider_id_from_clock(engine_clock, |
| data->display_timing.min_clock_in_sr); |
| |
| /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| if (!result) { |
| /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ |
| /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; |
| uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; |
| uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); |
| |
| uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * |
| SMU72_MAX_LEVELS_GRAPHICS; |
| |
| SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
| |
| uint32_t i, max_entry; |
| uint8_t highest_pcie_level_enabled = 0; |
| uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
| uint8_t count = 0; |
| int result = 0; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = tonga_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)smu_data->activity_target[i], |
| &(smu_data->smc_state_table.GraphicsLevel[i])); |
| if (result != 0) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| } |
| |
| /* Only enable level 0 for now. */ |
| smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| |
| /* set highest level watermark to high */ |
| if (dpm_table->sclk_table.count > 1) |
| smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| smu_data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = |
| (uint8_t) ((i < max_entry) ? i : max_entry); |
| } |
| } else { |
| if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) |
| printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0 !"); |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<(highest_pcie_level_enabled+1))) != 0)) { |
| highest_pcie_level_enabled++; |
| } |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<lowest_pcie_level_enabled)) == 0)) { |
| lowest_pcie_level_enabled++; |
| } |
| |
| while ((count < highest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { |
| count++; |
| } |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
| |
| |
| /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) |
| smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
| smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
| smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change*/ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_address, |
| (uint8_t *)levels, (uint32_t)level_array_size, |
| SMC_RAM_END); |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MCLK structure using the provided memory clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param memory_clock the memory clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int tonga_calculate_mclk_params( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU72_Discrete_MemoryLevel *mclk, |
| bool strobe_mode, |
| bool dllStateOn |
| ) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| |
| pp_atomctrl_memory_clock_param mpll_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| memory_clock, &mpll_param, strobe_mode); |
| PP_ASSERT_WITH_CODE( |
| !result, |
| "Error retrieving Memory Clock Parameters from VBIOS.", |
| return result); |
| |
| /* MPLL_FUNC_CNTL setup*/ |
| mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, |
| mpll_param.bw_ctrl); |
| |
| /* MPLL_FUNC_CNTL_1 setup*/ |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKF, |
| mpll_param.mpll_fb_divider.cl_kf); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, CLKFRAC, |
| mpll_param.mpll_fb_divider.clk_frac); |
| mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
| MPLL_FUNC_CNTL_1, VCO_MODE, |
| mpll_param.vco_mode); |
| |
| /* MPLL_AD_FUNC_CNTL setup*/ |
| mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
| MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, |
| mpll_param.mpll_post_divider); |
| |
| if (data->is_memory_gddr5) { |
| /* MPLL_DQ_FUNC_CNTL setup*/ |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_SEL, |
| mpll_param.yclk_sel); |
| mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
| MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, |
| mpll_param.mpll_post_divider); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| /* |
| ************************************ |
| Fref = Reference Frequency |
| NF = Feedback divider ratio |
| NR = Reference divider ratio |
| Fnom = Nominal VCO output frequency = Fref * NF / NR |
| Fs = Spreading Rate |
| D = Percentage down-spread / 2 |
| Fint = Reference input frequency to PFD = Fref / NR |
| NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
| CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
| NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
| CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
| ************************************* |
| */ |
| pp_atomctrl_internal_ss_info ss_info; |
| uint32_t freq_nom; |
| uint32_t tmp; |
| uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| |
| /* for GDDR5 for all modes and DDR3 */ |
| if (1 == mpll_param.qdr) |
| freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| else |
| freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| |
| /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| tmp = (freq_nom / reference_clock); |
| tmp = tmp * tmp; |
| |
| if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
| /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
| /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
| /* = reference_clock * 5 / speed_spectrum_rate */ |
| uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| |
| /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
| /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
| uint32_t clkv = |
| (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| |
| mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
| mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
| } |
| } |
| |
| /* MCLK_PWRMGT_CNTL setup */ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
| |
| /* Save the result data to outpupt memory level structure */ |
| mclk->MclkFrequency = memory_clock; |
| mclk->MpllFuncCntl = mpll_func_cntl; |
| mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| mclk->DllCntl = dll_cntl; |
| mclk->MpllSs1 = mpll_ss1; |
| mclk->MpllSs2 = mpll_ss2; |
| |
| return 0; |
| } |
| |
| static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, |
| bool strobe_mode) |
| { |
| uint8_t mc_para_index; |
| |
| if (strobe_mode) { |
| if (memory_clock < 12500) |
| mc_para_index = 0x00; |
| else if (memory_clock > 47500) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| } else { |
| if (memory_clock < 65000) |
| mc_para_index = 0x00; |
| else if (memory_clock > 135000) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| } |
| |
| return mc_para_index; |
| } |
| |
| static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| { |
| uint8_t mc_para_index; |
| |
| if (memory_clock < 10000) |
| mc_para_index = 0; |
| else if (memory_clock >= 80000) |
| mc_para_index = 0x0f; |
| else |
| mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| |
| return mc_para_index; |
| } |
| |
| |
| static int tonga_populate_single_memory_level( |
| struct pp_hwmgr *hwmgr, |
| uint32_t memory_clock, |
| SMU72_Discrete_MemoryLevel *memory_level |
| ) |
| { |
| uint32_t mvdd = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| bool dll_state_on; |
| struct cgs_display_info info = {0}; |
| uint32_t mclk_edc_wr_enable_threshold = 40000; |
| uint32_t mclk_stutter_mode_threshold = 30000; |
| uint32_t mclk_edc_enable_threshold = 40000; |
| uint32_t mclk_strobe_mode_threshold = 40000; |
| |
| if (NULL != pptable_info->vdd_dep_on_mclk) { |
| result = tonga_get_dependecy_volt_by_clk(hwmgr, |
| pptable_info->vdd_dep_on_mclk, |
| memory_clock, |
| &memory_level->MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE( |
| !result, |
| "can not find MinVddc voltage value from memory VDDC " |
| "voltage dependency table", |
| return result); |
| } |
| |
| if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) |
| memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; |
| else |
| memory_level->MinMvdd = mvdd; |
| |
| memory_level->EnabledForThrottle = 1; |
| memory_level->EnabledForActivity = 0; |
| memory_level->UpHyst = 0; |
| memory_level->DownHyst = 100; |
| memory_level->VoltageDownHyst = 0; |
| |
| /* Indicates maximum activity level for this performance level.*/ |
| memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| memory_level->StutterEnable = 0; |
| memory_level->StrobeEnable = 0; |
| memory_level->EdcReadEnable = 0; |
| memory_level->EdcWriteEnable = 0; |
| memory_level->RttEnable = 0; |
| |
| /* default set to low watermark. Highest level will be set to high later.*/ |
| memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| data->display_timing.num_existing_displays = info.display_count; |
| |
| if ((mclk_stutter_mode_threshold != 0) && |
| (memory_clock <= mclk_stutter_mode_threshold) && |
| (!data->is_uvd_enabled) |
| && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) |
| && (data->display_timing.num_existing_displays <= 2) |
| && (data->display_timing.num_existing_displays != 0)) |
| memory_level->StutterEnable = 1; |
| |
| /* decide strobe mode*/ |
| memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
| (memory_clock <= mclk_strobe_mode_threshold); |
| |
| /* decide EDC mode and memory clock ratio*/ |
| if (data->is_memory_gddr5) { |
| memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, |
| memory_level->StrobeEnable); |
| |
| if ((mclk_edc_enable_threshold != 0) && |
| (memory_clock > mclk_edc_enable_threshold)) { |
| memory_level->EdcReadEnable = 1; |
| } |
| |
| if ((mclk_edc_wr_enable_threshold != 0) && |
| (memory_clock > mclk_edc_wr_enable_threshold)) { |
| memory_level->EdcWriteEnable = 1; |
| } |
| |
| if (memory_level->StrobeEnable) { |
| if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= |
| ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } else { |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| } else { |
| dll_state_on = data->dll_default_on; |
| } |
| } else { |
| memory_level->StrobeRatio = |
| tonga_get_ddr3_mclk_frequency_ratio(memory_clock); |
| dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
| } |
| |
| result = tonga_calculate_mclk_params(hwmgr, |
| memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
| |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); |
| /* MCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
| /* Indicates maximum activity level for this performance level.*/ |
| CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
| CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
| } |
| |
| return result; |
| } |
| |
| int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t level_array_address = |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, MemoryLevel); |
| uint32_t level_array_size = |
| sizeof(SMU72_Discrete_MemoryLevel) * |
| SMU72_MAX_LEVELS_MEMORY; |
| SMU72_Discrete_MemoryLevel *levels = |
| smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| memset(levels, 0x00, level_array_size); |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", |
| return -EINVAL); |
| result = tonga_populate_single_memory_level( |
| hwmgr, |
| dpm_table->mclk_table.dpm_levels[i].value, |
| &(smu_data->smc_state_table.MemoryLevel[i])); |
| if (result) |
| return result; |
| } |
| |
| /* Only enable level 0 for now.*/ |
| smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| |
| /* |
| * in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in a higher state |
| * by default such that we are not effected by up threshold or and MCLK DPM latency. |
| */ |
| smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); |
| |
| smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| /* set highest level watermark to high*/ |
| smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change*/ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, |
| level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, |
| SMC_RAM_END); |
| |
| return result; |
| } |
| |
| static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| uint32_t mclk, SMIO_Pattern *smio_pattern) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| /* Always round to higher voltage. */ |
| smio_pattern->Voltage = |
| data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", |
| return -EINVAL); |
| } else { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| |
| SMIO_Pattern voltage_level; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| |
| /* The ACPI state should not do DPM on DC (or ever).*/ |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| table->ACPILevel.MinVoltage = |
| smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; |
| |
| /* assign zero for now*/ |
| table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| |
| /* get the engine clock dividers for this clock value*/ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| /* divider ID for required SCLK*/ |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, |
| SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| |
| /* For various features to be enabled/disabled while this level is active.*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| /* SCLK frequency in units of 10KHz*/ |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| table->MemoryACPILevel.MinVoltage = |
| smu_data->smc_state_table.MemoryLevel[0].MinVoltage; |
| |
| /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ |
| |
| if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| /* Force reset on DLL*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
| |
| /* Disable DLL in ACPIState*/ |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
| mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
| MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
| |
| /* Enable DLL bypass signal*/ |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK0_BYPASS, 0); |
| dll_cntl = PHM_SET_FIELD(dll_cntl, |
| DLL_CNTL, MRDCK1_BYPASS, 0); |
| |
| table->MemoryACPILevel.DllCntl = |
| PP_HOST_TO_SMC_UL(dll_cntl); |
| table->MemoryACPILevel.MclkPwrmgtCntl = |
| PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
| table->MemoryACPILevel.MpllAdFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
| table->MemoryACPILevel.MpllDqFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
| table->MemoryACPILevel.MpllFuncCntl_1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
| table->MemoryACPILevel.MpllFuncCntl_2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
| table->MemoryACPILevel.MpllSs1 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
| table->MemoryACPILevel.MpllSs2 = |
| PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| /* Indicates maximum activity level for this performance level.*/ |
| table->MemoryACPILevel.ActivityLevel = |
| PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| table->MemoryACPILevel.StutterEnable = 0; |
| table->MemoryACPILevel.StrobeEnable = 0; |
| table->MemoryACPILevel.EdcReadEnable = 0; |
| table->MemoryACPILevel.EdcWriteEnable = 0; |
| table->MemoryACPILevel.RttEnable = 0; |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| pptable_info->mm_dep_table; |
| |
| table->UvdLevelCount = (uint8_t) (mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage.Vddc = |
| phm_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->UvdLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
| phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->UvdLevel[count].MinVoltage.Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| table->UvdLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi( |
| hwmgr, |
| table->UvdLevel[count].VclkFrequency, |
| ÷rs); |
| |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find divide id for Vclk clock", |
| return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find divide id for Dclk clock", |
| return result); |
| |
| table->UvdLevel[count].DclkDivider = |
| (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| } |
| |
| return result; |
| |
| } |
| |
| static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| pptable_info->mm_dep_table; |
| |
| table->VceLevelCount = (uint8_t) (mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = |
| mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage.Vddc = |
| phm_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->VceLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
| phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->VceLevel[count].MinVoltage.Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| table->VceLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| pptable_info->mm_dep_table; |
| |
| table->AcpLevelCount = (uint8_t) (mm_table->count); |
| table->AcpBootLevel = 0; |
| |
| for (count = 0; count < table->AcpLevelCount; count++) { |
| table->AcpLevel[count].Frequency = |
| pptable_info->mm_dep_table->entries[count].aclk; |
| table->AcpLevel[count].MinVoltage.Vddc = |
| phm_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->AcpLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
| phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->AcpLevel[count].MinVoltage.Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| table->AcpLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->AcpLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find divide id for engine clock", return result); |
| |
| table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint8_t count; |
| pp_atomctrl_clock_dividers_vi dividers; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| pptable_info->mm_dep_table; |
| |
| table->SamuBootLevel = 0; |
| table->SamuLevelCount = (uint8_t) (mm_table->count); |
| |
| for (count = 0; count < table->SamuLevelCount; count++) { |
| /* not sure whether we need evclk or not */ |
| table->SamuLevel[count].Frequency = |
| pptable_info->mm_dep_table->entries[count].samclock; |
| table->SamuLevel[count].MinVoltage.Vddc = |
| phm_get_voltage_index(pptable_info->vddc_lookup_table, |
| mm_table->entries[count].vddc); |
| table->SamuLevel[count].MinVoltage.VddGfx = |
| (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
| phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
| mm_table->entries[count].vddgfx) : 0; |
| table->SamuLevel[count].MinVoltage.Vddci = |
| phm_get_voltage_id(&data->vddci_voltage_table, |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| table->SamuLevel[count].MinVoltage.Phases = 1; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->SamuLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((!result), |
| "can not find divide id for samu clock", return result); |
| |
| table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_memory_timing_parameters( |
| struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint32_t memory_clock, |
| struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs |
| ) |
| { |
| uint32_t dramTiming; |
| uint32_t dramTiming2; |
| uint32_t burstTime; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| engine_clock, memory_clock); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| |
| return 0; |
| } |
| |
| /** |
| * Setup parameters for the MC ARB. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| int result = 0; |
| SMU72_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| |
| memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = tonga_populate_memory_timing_parameters |
| (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| |
| if (result) |
| break; |
| } |
| } |
| |
| if (!result) { |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU72_Discrete_MCArbDramTimingTable), |
| SMC_RAM_END |
| ); |
| } |
| |
| return result; |
| } |
| |
| static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table*/ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
| |
| if (result != 0) { |
| smu_data->smc_state_table.GraphicsBootLevel = 0; |
| printk(KERN_ERR "[powerplay] VBIOS did not find boot engine " |
| "clock value in dependency table. " |
| "Using Graphics DPM level 0 !"); |
| result = 0; |
| } |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
| |
| if (result != 0) { |
| smu_data->smc_state_table.MemoryBootLevel = 0; |
| printk(KERN_ERR "[powerplay] VBIOS did not find boot " |
| "engine clock value in dependency table." |
| "Using Memory DPM level 0 !"); |
| result = 0; |
| } |
| |
| table->BootVoltage.Vddc = |
| phm_get_voltage_id(&(data->vddc_voltage_table), |
| data->vbios_boot_state.vddc_bootup_value); |
| table->BootVoltage.VddGfx = |
| phm_get_voltage_id(&(data->vddgfx_voltage_table), |
| data->vbios_boot_state.vddgfx_bootup_value); |
| table->BootVoltage.Vddci = |
| phm_get_voltage_id(&(data->vddci_voltage_table), |
| data->vbios_boot_state.vddci_bootup_value); |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return result; |
| } |
| |
| static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
| volt_with_cks, value; |
| uint16_t clock_freq_u16; |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
| volt_offset = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| uint32_t hw_revision, dev_id; |
| struct cgs_system_info sys_info = {0}; |
| |
| stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| |
| sys_info.size = sizeof(struct cgs_system_info); |
| |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV; |
| cgs_query_system_info(hwmgr->device, &sys_info); |
| hw_revision = (uint32_t)sys_info.value; |
| |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; |
| cgs_query_system_info(hwmgr->device, &sys_info); |
| dev_id = (uint32_t)sys_info.value; |
| |
| /* Read SMU_Eefuse to read and calculate RO and determine |
| * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
| */ |
| efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (146 * 4)); |
| efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (148 * 4)); |
| efuse &= 0xFF000000; |
| efuse = efuse >> 24; |
| efuse2 &= 0xF; |
| |
| if (efuse2 == 1) |
| ro = (2300 - 1350) * efuse / 255 + 1350; |
| else |
| ro = (2500 - 1000) * efuse / 255 + 1000; |
| |
| if (ro >= 1660) |
| type = 0; |
| else |
| type = 1; |
| |
| /* Populate Stretch amount */ |
| smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; |
| |
| |
| /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| for (i = 0; i < sclk_table->count; i++) { |
| smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| sclk_table->entries[i].cks_enable << i; |
| if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { |
| volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * |
| (sclk_table->entries[i].clk/100) / 10000) * 1000 / |
| (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); |
| volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * |
| (sclk_table->entries[i].clk/100) / 100000) * 1000 / |
| (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); |
| } else { |
| volt_without_cks = (uint32_t)((14041 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
| (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
| volt_with_cks = (uint32_t)((13946 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
| (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
| } |
| if (volt_without_cks >= volt_with_cks) |
| volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
| smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| } |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| STRETCH_ENABLE, 0x0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| staticEnable, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x0); |
| |
| /* Populate CKS Lookup Table */ |
| if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
| stretch_amount2 = 0; |
| else if (stretch_amount == 3 || stretch_amount == 4) |
| stretch_amount2 = 1; |
| else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| PP_ASSERT_WITH_CODE(false, |
| "Stretch Amount in PPTable not supported\n", |
| return -EINVAL); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL); |
| value &= 0xFFC2FF87; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
| tonga_clock_stretcher_lookup_table[stretch_amount2][0]; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
| tonga_clock_stretcher_lookup_table[stretch_amount2][1]; |
| clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. |
| GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. |
| SclkFrequency) / 100); |
| if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < |
| clock_freq_u16 && |
| tonga_clock_stretcher_lookup_table[stretch_amount2][1] > |
| clock_freq_u16) { |
| /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
| value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
| /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
| value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
| /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
| value |= (tonga_clock_stretch_amount_conversion |
| [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] |
| [stretch_amount]) << 3; |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].minFreq); |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].maxFreq); |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
| tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
| (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL, value); |
| |
| /* Populate DDT Lookup Table */ |
| for (i = 0; i < 4; i++) { |
| /* Assign the minimum and maximum VID stored |
| * in the last row of Clock Stretcher Voltage Table. |
| */ |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].minVID = |
| (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].maxVID = |
| (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; |
| /* Loop through each SCLK and check the frequency |
| * to see if it lies within the frequency for clock stretcher. |
| */ |
| for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { |
| cks_setting = 0; |
| clock_freq = PP_SMC_TO_HOST_UL( |
| smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); |
| /* Check the allowed frequency against the sclk level[j]. |
| * Sclk's endianness has already been converted, |
| * and it's in 10Khz unit, |
| * as opposed to Data table, which is in Mhz unit. |
| */ |
| if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { |
| cks_setting |= 0x2; |
| if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) |
| cks_setting |= 0x1; |
| } |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. |
| ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL); |
| value &= 0xFFFFFFFE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL, value); |
| |
| return 0; |
| } |
| |
| /** |
| * Populates the SMC VRConfig field in DPM table. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| /* Splitted mode */ |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= config; |
| } else { |
| printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should " |
| "be both on SVI2 control in splitted mode !\n"); |
| } |
| } else { |
| /* Merged mode */ |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| printk(KERN_ERR "[ powerplay ] VDDC should be on " |
| "SVI2 control in merged mode !\n"); |
| } |
| } |
| |
| /* Set Vddci Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
| } |
| |
| /* Set Mvdd Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| * Initialize the ARB DRAM timing table's index field. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int tonga_init_arb_table_index(struct pp_smumgr *smumgr) |
| { |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); |
| uint32_t tmp; |
| int result; |
| |
| /* |
| * This is a read-modify-write on the first byte of the ARB table. |
| * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure |
| * is the field 'current'. |
| * This solution is ugly, but we never write the whole table only |
| * individual fields in it. |
| * In reality this field should not be in that structure |
| * but in a soft register. |
| */ |
| result = smu7_read_smc_sram_dword(smumgr, |
| smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); |
| |
| if (result != 0) |
| return result; |
| |
| tmp &= 0x00FFFFFF; |
| tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
| |
| return smu7_write_smc_sram_dword(smumgr, |
| smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); |
| } |
| |
| |
| static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
| SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
| int i, j, k; |
| const uint16_t *pdef1, *pdef2; |
| |
| dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( |
| (uint16_t)(cac_dtp_table->usTDP * 256)); |
| dpm_table->TargetTdp = PP_HOST_TO_SMC_US( |
| (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); |
| |
| PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
| "Target Operating Temp is out of Range !", |
| ); |
| |
| dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); |
| dpm_table->GpuTjHyst = 8; |
| |
| dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
| |
| dpm_table->BAPM_TEMP_GRADIENT = |
| PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient); |
| pdef1 = defaults->bapmti_r; |
| pdef2 = defaults->bapmti_rc; |
| |
| for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { |
| for (j = 0; j < SMU72_DTE_SOURCES; j++) { |
| for (k = 0; k < SMU72_DTE_SINKS; k++) { |
| dpm_table->BAPMTI_R[i][j][k] = |
| PP_HOST_TO_SMC_US(*pdef1); |
| dpm_table->BAPMTI_RC[i][j][k] = |
| PP_HOST_TO_SMC_US(*pdef2); |
| pdef1++; |
| pdef2++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
| smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; |
| smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| |
| return 0; |
| } |
| |
| static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t tdc_limit; |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| /* TDC number of fraction bits are changed from 8 to 7 |
| * for Fiji as requested by SMC team |
| */ |
| tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); |
| smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
| smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| defaults->tdc_vddc_throttle_release_limit_perc; |
| smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
| |
| return 0; |
| } |
| |
| static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
| uint32_t temp; |
| |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| fuse_table_offset + |
| offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), |
| (uint32_t *)&temp, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to read PmFuses.DW6 " |
| "(SviLoadLineEn) from SMC Failed !", |
| return -EINVAL); |
| else |
| smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
| |
| return 0; |
| } |
| |
| static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
| |
| return 0; |
| } |
| |
| static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| if ((hwmgr->thermal_controller.advanceFanControlParameters. |
| usFanOutputSensitivity & (1 << 15)) || |
| (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) |
| hwmgr->thermal_controller.advanceFanControlParameters. |
| usFanOutputSensitivity = hwmgr->thermal_controller. |
| advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| |
| smu_data->power_tune_table.FuzzyFan_PwmSetDelta = |
| PP_HOST_TO_SMC_US(hwmgr->thermal_controller. |
| advanceFanControlParameters.usFanOutputSensitivity); |
| return 0; |
| } |
| |
| static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.GnbLPML[i] = 0; |
| |
| return 0; |
| } |
| |
| static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
| uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
| |
| hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| |
| smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); |
| smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); |
| |
| return 0; |
| } |
| |
| static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t pm_fuse_table_offset; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment)) { |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, PmFuseTable), |
| &pm_fuse_table_offset, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to get pm_fuse_table_offset Failed !", |
| return -EINVAL); |
| |
| /* DW6 */ |
| if (tonga_populate_svi_load_line(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate SviLoadLine Failed !", |
| return -EINVAL); |
| /* DW7 */ |
| if (tonga_populate_tdc_limit(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TDCLimit Failed !", |
| return -EINVAL); |
| /* DW8 */ |
| if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TdcWaterfallCtl Failed !", |
| return -EINVAL); |
| |
| /* DW9-DW12 */ |
| if (tonga_populate_temperature_scaler(hwmgr) != 0) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate LPMLTemperatureScaler Failed !", |
| return -EINVAL); |
| |
| /* DW13-DW14 */ |
| if (tonga_populate_fuzzy_fan(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate Fuzzy Fan " |
| "Control parameters Failed !", |
| return -EINVAL); |
| |
| /* DW15-DW18 */ |
| if (tonga_populate_gnb_lpml(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Failed !", |
| return -EINVAL); |
| |
| /* DW19 */ |
| if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML " |
| "Min and Max Vid Failed !", |
| return -EINVAL); |
| |
| /* DW20 */ |
| if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| PP_ASSERT_WITH_CODE( |
| false, |
| "Attempt to populate BapmVddCBaseLeakage " |
| "Hi and Lo Sidd Failed !", |
| return -EINVAL); |
| |
| if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, |
| (uint8_t *)&smu_data->power_tune_table, |
| sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to download PmFuseTable Failed !", |
| return -EINVAL); |
| } |
| return 0; |
| } |
| |
| static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr, |
| SMU72_Discrete_MCRegisters *mc_reg_table) |
| { |
| const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend; |
| |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
| if (smu_data->mc_reg_table.validflag & 1<<j) { |
| PP_ASSERT_WITH_CODE( |
| i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
| "Index of mc_reg_table->address[] array " |
| "out of boundary", |
| return -EINVAL); |
| mc_reg_table->address[i].s0 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); |
| mc_reg_table->address[i].s1 = |
| PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); |
| i++; |
| } |
| } |
| |
| mc_reg_table->last = (uint8_t)i; |
| |
| return 0; |
| } |
| |
| /*convert register values from driver to SMC format */ |
| static void tonga_convert_mc_registers( |
| const struct tonga_mc_reg_entry *entry, |
| SMU72_Discrete_MCRegisterSet *data, |
| uint32_t num_entries, uint32_t valid_flag) |
| { |
| uint32_t i, j; |
| |
| for (i = 0, j = 0; j < num_entries; j++) { |
| if (valid_flag & 1<<j) { |
| data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); |
| i++; |
| } |
| } |
| } |
| |
| static int tonga_convert_mc_reg_table_entry_to_smc( |
| struct pp_smumgr *smumgr, |
| const uint32_t memory_clock, |
| SMU72_Discrete_MCRegisterSet *mc_reg_table_data |
| ) |
| { |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); |
| uint32_t i = 0; |
| |
| for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
| if (memory_clock <= |
| smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| break; |
| } |
| } |
| |
| if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
| --i; |
| |
| tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
| mc_reg_table_data, smu_data->mc_reg_table.last, |
| smu_data->mc_reg_table.validflag); |
| |
| return 0; |
| } |
| |
| static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| SMU72_Discrete_MCRegisters *mc_regs) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int res; |
| uint32_t i; |
| |
| for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| res = tonga_convert_mc_reg_table_entry_to_smc( |
| hwmgr->smumgr, |
| data->dpm_table.mclk_table.dpm_levels[i].value, |
| &mc_regs->data[i] |
| ); |
| |
| if (0 != res) |
| result = res; |
| } |
| |
| return result; |
| } |
| |
| static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| struct pp_smumgr *smumgr = hwmgr->smumgr; |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t address; |
| int32_t result; |
| |
| if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
| return 0; |
| |
| |
| memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); |
| |
| result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
| |
| if (result != 0) |
| return result; |
| |
| |
| address = smu_data->smu7_data.mc_reg_table_start + |
| (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); |
| |
| return smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, address, |
| (uint8_t *)&smu_data->mc_regs.data[0], |
| sizeof(SMU72_Discrete_MCRegisterSet) * |
| data->dpm_table.mclk_table.count, |
| SMC_RAM_END); |
| } |
| |
| static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct pp_smumgr *smumgr = hwmgr->smumgr; |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); |
| |
| memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); |
| result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs)); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize MCRegTable for the MC register addresses !", |
| return result;); |
| |
| result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize MCRegTable for driver state !", |
| return result;); |
| |
| return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start, |
| (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); |
| } |
| |
| static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (table_info && |
| table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
| table_info->cac_dtp_table->usPowerTuneDataSetID) |
| smu_data->power_tune_defaults = |
| &tonga_power_tune_data_set_array |
| [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
| else |
| smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| int tonga_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| uint8_t i; |
| pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
| |
| |
| memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); |
| |
| tonga_initialize_power_tune_defaults(hwmgr); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) |
| tonga_populate_smc_voltage_tables(hwmgr, table); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); |
| |
| if (i == 1 || i == 0) |
| table->SystemFlags |= 0x40; |
| |
| if (data->ulv_supported && table_info->us_ulv_voltage_offset) { |
| result = tonga_populate_ulv_state(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ULV state !", |
| return result;); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, 0x40035); |
| } |
| |
| result = tonga_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Link Level !", return result); |
| |
| result = tonga_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Graphics Level !", return result); |
| |
| result = tonga_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Memory Level !", return result); |
| |
| result = tonga_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ACPI Level !", return result); |
| |
| result = tonga_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize VCE Level !", return result); |
| |
| result = tonga_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ACP Level !", return result); |
| |
| result = tonga_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize SAMU Level !", return result); |
| |
| /* Since only the initial state is completely set up at this |
| * point (the other states are just copies of the boot state) we only |
| * need to populate the ARB settings for the initial state. |
| */ |
| result = tonga_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to Write ARB settings for the initial state.", |
| return result;); |
| |
| result = tonga_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize UVD Level !", return result); |
| |
| result = tonga_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Boot Level !", return result); |
| |
| tonga_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate BAPM Parameters !", return result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = tonga_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate Clock Stretcher Data Table !", |
| return result;); |
| } |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| table_info->cac_dtp_table->usTargetOperatingTemp * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| |
| /* |
| * Cail reads current link status and reports it as cap (we cannot |
| * change this due to some previous issues we had) |
| * SMC drops the link status to lowest level after enabling |
| * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again |
| * but this time Cail reads current link status which was set to low by |
| * SMC and reports it as cap to powerplay |
| * To avoid it, we set PCIeBootLinkLevel to highest dpm level |
| */ |
| PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| |
| table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); |
| |
| table->PCIeGenInterval = 1; |
| |
| result = tonga_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate VRConfig setting !", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, |
| &gpio_pin_assignment)) { |
| table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } else { |
| table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
| &gpio_pin_assignment)) { |
| table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } else { |
| table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition); |
| |
| if (0) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, |
| THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
| |
| table->ThermOutPolarity = |
| (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
| (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; |
| |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO*/ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot) && |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CombinePCCWithThermalSignal)){ |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } |
| } else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), |
| SMC_RAM_END); |
| |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload dpm data to SMC memory !", return result;); |
| |
| result = tonga_init_arb_table_index(hwmgr->smumgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload arb data to SMC memory !", return result); |
| |
| tonga_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE((!result), |
| "Failed to populate initialize pm fuses !", return result); |
| |
| result = tonga_populate_initial_mc_reg_table(hwmgr); |
| PP_ASSERT_WITH_CODE((!result), |
| "Failed to populate initialize MC Reg table !", return result); |
| |
| return 0; |
| } |
| |
| /** |
| * Set up the fan table to control the fan using the SMC. |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data |
| * @param pOutput the pointer to output data |
| * @param pStorage the pointer to temporary storage |
| * @param Result the last failure code |
| * @return result from set temperature range routine |
| */ |
| int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
| uint32_t duty100; |
| uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| uint16_t fdo_min, slope1, slope2; |
| uint32_t reference_clock; |
| int res; |
| uint64_t tmp64; |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl)) |
| return 0; |
| |
| if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| if (0 == smu_data->smu7_data.fan_table_start) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, |
| CG_FDO_CTRL1, FMAX_DUTY100); |
| |
| if (0 == duty100) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
| do_div(tmp64, 10000); |
| fdo_min = (uint16_t)tmp64; |
| |
| t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| |
| pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| |
| slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| |
| fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); |
| fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); |
| fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); |
| |
| fan_table.Slope1 = cpu_to_be16(slope1); |
| fan_table.Slope2 = cpu_to_be16(slope2); |
| |
| fan_table.FdoMin = cpu_to_be16(fdo_min); |
| |
| fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); |
| |
| fan_table.HystUp = cpu_to_be16(1); |
| |
| fan_table.HystSlope = cpu_to_be16(1); |
| |
| fan_table.TempRespLim = cpu_to_be16(5); |
| |
| reference_clock = smu7_get_xclk(hwmgr); |
| |
| fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); |
| |
| fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
| |
| fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); |
| |
| fan_table.FanControl_GL_Flag = 1; |
| |
| res = smu7_copy_bytes_to_smc(hwmgr->smumgr, |
| smu_data->smu7_data.fan_table_start, |
| (uint8_t *)&fan_table, |
| (uint32_t)sizeof(fan_table), |
| SMC_RAM_END); |
| |
| return 0; |
| } |
| |
| |
| static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return tonga_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != |
| data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = |
| hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| SMC_RAM_END); |
| } |
| |
| result = tonga_update_and_upload_mc_reg_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((!result), |
| "Failed to upload MC reg table !", |
| return result); |
| |
| result = tonga_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to program memory timing parameters !", |
| ); |
| |
| return result; |
| } |
| |
| uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) |
| { |
| switch (type) { |
| case SMU_SoftRegisters: |
| switch (member) { |
| case HandshakeDisables: |
| return offsetof(SMU72_SoftRegisters, HandshakeDisables); |
| case VoltageChangeTimeout: |
| return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); |
| case AverageGraphicsActivity: |
| return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); |
| case PreVBlankGap: |
| return offsetof(SMU72_SoftRegisters, PreVBlankGap); |
| case VBlankTimeout: |
| return offsetof(SMU72_SoftRegisters, VBlankTimeout); |
| case UcodeLoadStatus: |
| return offsetof(SMU72_SoftRegisters, UcodeLoadStatus); |
| } |
| case SMU_Discrete_DpmTable: |
| switch (member) { |
| case UvdBootLevel: |
| return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
| case VceBootLevel: |
| return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
| case SamuBootLevel: |
| return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); |
| case LowSclkInterruptThreshold: |
| return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); |
| } |
| } |
| printk(KERN_WARNING "can't get the offset of type %x member %x\n", type, member); |
| return 0; |
| } |
| |
| uint32_t tonga_get_mac_definition(uint32_t value) |
| { |
| switch (value) { |
| case SMU_MAX_LEVELS_GRAPHICS: |
| return SMU72_MAX_LEVELS_GRAPHICS; |
| case SMU_MAX_LEVELS_MEMORY: |
| return SMU72_MAX_LEVELS_MEMORY; |
| case SMU_MAX_LEVELS_LINK: |
| return SMU72_MAX_LEVELS_LINK; |
| case SMU_MAX_ENTRIES_SMIO: |
| return SMU72_MAX_ENTRIES_SMIO; |
| case SMU_MAX_LEVELS_VDDC: |
| return SMU72_MAX_LEVELS_VDDC; |
| case SMU_MAX_LEVELS_VDDGFX: |
| return SMU72_MAX_LEVELS_VDDGFX; |
| case SMU_MAX_LEVELS_VDDCI: |
| return SMU72_MAX_LEVELS_VDDCI; |
| case SMU_MAX_LEVELS_MVDD: |
| return SMU72_MAX_LEVELS_MVDD; |
| } |
| printk(KERN_WARNING "can't get the mac value %x\n", value); |
| |
| return 0; |
| } |
| |
| |
| static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| smu_data->smc_state_table.UvdBootLevel = 0; |
| if (table_info->mm_dep_table->count > 0) |
| smu_data->smc_state_table.UvdBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, |
| mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); |
| return 0; |
| } |
| |
| static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = |
| (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| |
| smu_data->smc_state_table.VceBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); |
| return 0; |
| } |
| |
| static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| |
| smu_data->smc_state_table.SamuBootLevel = 0; |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); |
| |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFFFFFF00; |
| mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SAMUDPM_SetEnabledMask, |
| (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel)); |
| return 0; |
| } |
| |
| int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| { |
| switch (type) { |
| case SMU_UVD_TABLE: |
| tonga_update_uvd_smc_table(hwmgr); |
| break; |
| case SMU_VCE_TABLE: |
| tonga_update_vce_smc_table(hwmgr); |
| break; |
| case SMU_SAMU_TABLE: |
| tonga_update_samu_smc_table(hwmgr); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, DpmTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.dpm_table_start = tmp; |
| |
| error |= (result != 0); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, SoftRegisters), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) { |
| data->soft_regs_start = tmp; |
| smu_data->smu7_data.soft_regs_start = tmp; |
| } |
| |
| error |= (result != 0); |
| |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, mcRegisterTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.mc_reg_table_start = tmp; |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, FanTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.fan_table_start = tmp; |
| |
| error |= (result != 0); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.arb_table_start = tmp; |
| |
| error |= (result != 0); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU72_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU72_Firmware_Header, Version), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (result != 0); |
| |
| return error ? 1 : 0; |
| } |
| |
| /*---------------------------MC----------------------------*/ |
| |
| static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| { |
| return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); |
| } |
| |
| static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
| { |
| bool result = true; |
| |
| switch (in_reg) { |
| case mmMC_SEQ_RAS_TIMING: |
| *out_reg = mmMC_SEQ_RAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_DLL_STBY: |
| *out_reg = mmMC_SEQ_DLL_STBY_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD0: |
| *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CMD1: |
| *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; |
| break; |
| |
| case mmMC_SEQ_G5PDX_CTRL: |
| *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; |
| break; |
| |
| case mmMC_SEQ_CAS_TIMING: |
| *out_reg = mmMC_SEQ_CAS_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING: |
| *out_reg = mmMC_SEQ_MISC_TIMING_LP; |
| break; |
| |
| case mmMC_SEQ_MISC_TIMING2: |
| *out_reg = mmMC_SEQ_MISC_TIMING2_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CMD: |
| *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_DVS_CTL: |
| *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D0: |
| *out_reg = mmMC_SEQ_RD_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_RD_CTL_D1: |
| *out_reg = mmMC_SEQ_RD_CTL_D1_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D0: |
| *out_reg = mmMC_SEQ_WR_CTL_D0_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_D1: |
| *out_reg = mmMC_SEQ_WR_CTL_D1_LP; |
| break; |
| |
| case mmMC_PMG_CMD_EMRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS1: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| break; |
| |
| case mmMC_SEQ_PMG_TIMING: |
| *out_reg = mmMC_SEQ_PMG_TIMING_LP; |
| break; |
| |
| case mmMC_PMG_CMD_MRS2: |
| *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; |
| break; |
| |
| case mmMC_SEQ_WR_CTL_2: |
| *out_reg = mmMC_SEQ_WR_CTL_2_LP; |
| break; |
| |
| default: |
| result = false; |
| break; |
| } |
| |
| return result; |
| } |
| |
| static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) |
| { |
| uint32_t i; |
| uint16_t address; |
| |
| for (i = 0; i < table->last; i++) { |
| table->mc_reg_address[i].s0 = |
| tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, |
| &address) ? |
| address : |
| table->mc_reg_address[i].s1; |
| } |
| return 0; |
| } |
| |
| static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
| struct tonga_mc_reg_table *ni_table) |
| { |
| uint8_t i, j; |
| |
| PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| for (i = 0; i < table->last; i++) |
| ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| |
| ni_table->last = table->last; |
| |
| for (i = 0; i < table->num_entries; i++) { |
| ni_table->mc_reg_table_entry[i].mclk_max = |
| table->mc_reg_table_entry[i].mclk_max; |
| for (j = 0; j < table->last; j++) { |
| ni_table->mc_reg_table_entry[i].mc_data[j] = |
| table->mc_reg_table_entry[i].mc_data[j]; |
| } |
| } |
| |
| ni_table->num_entries = table->num_entries; |
| |
| return 0; |
| } |
| |
| /** |
| * VBIOS omits some information to reduce size, we need to recover them here. |
| * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to |
| * mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update |
| * mmMC_PMG_CMD_MRS/_LP[15:0] |
| * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to |
| * mmMC_PMG_CMD_MRS1/_LP[15:0]. |
| * 3. need to set these data for each clock range |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param table the address of MCRegTable |
| * @return always 0 |
| */ |
| static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
| struct tonga_mc_reg_table *table) |
| { |
| uint8_t i, j, k; |
| uint32_t temp_reg; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| for (i = 0, j = table->last; i < table->last; i++) { |
| PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| switch (table->mc_reg_address[i].s1) { |
| |
| case mmMC_SEQ_MISC1: |
| temp_reg = cgs_read_register(hwmgr->device, |
| mmMC_PMG_CMD_EMRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| ((temp_reg & 0xffff0000)) | |
| ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| |
| if (!data->is_memory_gddr5) |
| table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| |
| if (!data->is_memory_gddr5) { |
| table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; |
| table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; |
| for (k = 0; k < table->num_entries; k++) |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| } |
| |
| break; |
| |
| case mmMC_SEQ_RESERVE_M: |
| temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); |
| table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; |
| table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; |
| for (k = 0; k < table->num_entries; k++) { |
| table->mc_reg_table_entry[k].mc_data[j] = |
| (temp_reg & 0xffff0000) | |
| (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| } |
| j++; |
| PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -EINVAL); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| table->last = j; |
| |
| return 0; |
| } |
| |
| static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) |
| { |
| uint8_t i, j; |
| |
| for (i = 0; i < table->last; i++) { |
| for (j = 1; j < table->num_entries; j++) { |
| if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| table->mc_reg_table_entry[j].mc_data[i]) { |
| table->validflag |= (1<<i); |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); |
| pp_atomctrl_mc_reg_table *table; |
| struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
| uint8_t module_index = tonga_get_memory_modile_index(hwmgr); |
| |
| table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); |
| |
| if (table == NULL) |
| return -ENOMEM; |
| |
| /* Program additional LP registers that are no longer programmed by VBIOS */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, |
| cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, |
| cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, |
| cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, |
| cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); |
| |
| memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); |
| |
| result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| |
| if (!result) |
| result = tonga_copy_vbios_smc_reg_table(table, ni_table); |
| |
| if (!result) { |
| tonga_set_s0_mc_reg_index(ni_table); |
| result = tonga_set_mc_special_registers(hwmgr, ni_table); |
| } |
| |
| if (!result) |
| tonga_set_valid_flag(ni_table); |
| |
| kfree(table); |
| |
| return result; |
| } |
| |
| bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |