blob: d6f93601712e49bc4571499cbfb18d5f064bdc03 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RDMA Transport Layer
*
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
#include <linux/module.h>
#include <linux/mempool.h>
#include "rtrs-srv.h"
#include "rtrs-log.h"
#include <rdma/ib_cm.h>
#include <rdma/ib_verbs.h>
MODULE_DESCRIPTION("RDMA Transport Server");
MODULE_LICENSE("GPL");
/* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
#define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
#define DEFAULT_SESS_QUEUE_DEPTH 512
#define MAX_HDR_SIZE PAGE_SIZE
/* We guarantee to serve 10 paths at least */
#define CHUNK_POOL_SZ 10
static struct rtrs_rdma_dev_pd dev_pd;
static mempool_t *chunk_pool;
struct class *rtrs_dev_class;
static struct rtrs_srv_ib_ctx ib_ctx;
static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
static bool always_invalidate = true;
module_param(always_invalidate, bool, 0444);
MODULE_PARM_DESC(always_invalidate,
"Invalidate memory registration for contiguous memory regions before accessing.");
module_param_named(max_chunk_size, max_chunk_size, int, 0444);
MODULE_PARM_DESC(max_chunk_size,
"Max size for each IO request, when change the unit is in byte (default: "
__stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
MODULE_PARM_DESC(sess_queue_depth,
"Number of buffers for pending I/O requests to allocate per session. Maximum: "
__stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
__stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
static struct workqueue_struct *rtrs_wq;
static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
{
return container_of(c, struct rtrs_srv_con, c);
}
static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
{
return container_of(s, struct rtrs_srv_sess, s);
}
static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
enum rtrs_srv_state new_state)
{
enum rtrs_srv_state old_state;
bool changed = false;
lockdep_assert_held(&sess->state_lock);
old_state = sess->state;
switch (new_state) {
case RTRS_SRV_CONNECTED:
switch (old_state) {
case RTRS_SRV_CONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_SRV_CLOSING:
switch (old_state) {
case RTRS_SRV_CONNECTING:
case RTRS_SRV_CONNECTED:
changed = true;
fallthrough;
default:
break;
}
break;
case RTRS_SRV_CLOSED:
switch (old_state) {
case RTRS_SRV_CLOSING:
changed = true;
fallthrough;
default:
break;
}
break;
default:
break;
}
if (changed)
sess->state = new_state;
return changed;
}
static bool rtrs_srv_change_state_get_old(struct rtrs_srv_sess *sess,
enum rtrs_srv_state new_state,
enum rtrs_srv_state *old_state)
{
bool changed;
spin_lock_irq(&sess->state_lock);
*old_state = sess->state;
changed = __rtrs_srv_change_state(sess, new_state);
spin_unlock_irq(&sess->state_lock);
return changed;
}
static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
enum rtrs_srv_state new_state)
{
enum rtrs_srv_state old_state;
return rtrs_srv_change_state_get_old(sess, new_state, &old_state);
}
static void free_id(struct rtrs_srv_op *id)
{
if (!id)
return;
kfree(id);
}
static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
int i;
WARN_ON(atomic_read(&sess->ids_inflight));
if (sess->ops_ids) {
for (i = 0; i < srv->queue_depth; i++)
free_id(sess->ops_ids[i]);
kfree(sess->ops_ids);
sess->ops_ids = NULL;
}
}
static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
static struct ib_cqe io_comp_cqe = {
.done = rtrs_srv_rdma_done
};
static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_op *id;
int i;
sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
GFP_KERNEL);
if (!sess->ops_ids)
goto err;
for (i = 0; i < srv->queue_depth; ++i) {
id = kzalloc(sizeof(*id), GFP_KERNEL);
if (!id)
goto err;
sess->ops_ids[i] = id;
}
init_waitqueue_head(&sess->ids_waitq);
atomic_set(&sess->ids_inflight, 0);
return 0;
err:
rtrs_srv_free_ops_ids(sess);
return -ENOMEM;
}
static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
{
atomic_inc(&sess->ids_inflight);
}
static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
{
if (atomic_dec_and_test(&sess->ids_inflight))
wake_up(&sess->ids_waitq);
}
static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
{
wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
}
static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_srv_con *con = cq->cq_context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
rtrs_err(s, "REG MR failed: %s\n",
ib_wc_status_msg(wc->status));
close_sess(sess);
return;
}
}
static struct ib_cqe local_reg_cqe = {
.done = rtrs_srv_reg_mr_done
};
static int rdma_write_sg(struct rtrs_srv_op *id)
{
struct rtrs_sess *s = id->con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
struct rtrs_srv_mr *srv_mr;
struct rtrs_srv *srv = sess->srv;
struct ib_send_wr inv_wr, imm_wr;
struct ib_rdma_wr *wr = NULL;
enum ib_send_flags flags;
size_t sg_cnt;
int err, offset;
bool need_inval;
u32 rkey = 0;
struct ib_reg_wr rwr;
struct ib_sge *plist;
struct ib_sge list;
sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
if (unlikely(sg_cnt != 1))
return -EINVAL;
offset = 0;
wr = &id->tx_wr;
plist = &id->tx_sg;
plist->addr = dma_addr + offset;
plist->length = le32_to_cpu(id->rd_msg->desc[0].len);
/* WR will fail with length error
* if this is 0
*/
if (unlikely(plist->length == 0)) {
rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
return -EINVAL;
}
plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
offset += plist->length;
wr->wr.sg_list = plist;
wr->wr.num_sge = 1;
wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key);
if (rkey == 0)
rkey = wr->rkey;
else
/* Only one key is actually used */
WARN_ON_ONCE(rkey != wr->rkey);
wr->wr.opcode = IB_WR_RDMA_WRITE;
wr->wr.ex.imm_data = 0;
wr->wr.send_flags = 0;
if (need_inval && always_invalidate) {
wr->wr.next = &rwr.wr;
rwr.wr.next = &inv_wr;
inv_wr.next = &imm_wr;
} else if (always_invalidate) {
wr->wr.next = &rwr.wr;
rwr.wr.next = &imm_wr;
} else if (need_inval) {
wr->wr.next = &inv_wr;
inv_wr.next = &imm_wr;
} else {
wr->wr.next = &imm_wr;
}
/*
* From time to time we have to post signaled sends,
* or send queue will fill up and only QP reset can help.
*/
flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
0 : IB_SEND_SIGNALED;
if (need_inval) {
inv_wr.sg_list = NULL;
inv_wr.num_sge = 0;
inv_wr.opcode = IB_WR_SEND_WITH_INV;
inv_wr.send_flags = 0;
inv_wr.ex.invalidate_rkey = rkey;
}
imm_wr.next = NULL;
if (always_invalidate) {
struct rtrs_msg_rkey_rsp *msg;
srv_mr = &sess->mrs[id->msg_id];
rwr.wr.opcode = IB_WR_REG_MR;
rwr.wr.num_sge = 0;
rwr.mr = srv_mr->mr;
rwr.wr.send_flags = 0;
rwr.key = srv_mr->mr->rkey;
rwr.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE);
msg = srv_mr->iu->buf;
msg->buf_id = cpu_to_le16(id->msg_id);
msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
list.addr = srv_mr->iu->dma_addr;
list.length = sizeof(*msg);
list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
imm_wr.sg_list = &list;
imm_wr.num_sge = 1;
imm_wr.opcode = IB_WR_SEND_WITH_IMM;
ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
srv_mr->iu->dma_addr,
srv_mr->iu->size, DMA_TO_DEVICE);
} else {
imm_wr.sg_list = NULL;
imm_wr.num_sge = 0;
imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
}
imm_wr.send_flags = flags;
imm_wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
0, need_inval));
imm_wr.wr_cqe = &io_comp_cqe;
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
offset, DMA_BIDIRECTIONAL);
err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
if (unlikely(err))
rtrs_err(s,
"Posting RDMA-Write-Request to QP failed, err: %d\n",
err);
return err;
}
/**
* send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
* requests or on successful WRITE request.
* @con: the connection to send back result
* @id: the id associated with the IO
* @errno: the error number of the IO.
*
* Return 0 on success, errno otherwise.
*/
static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
int errno)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct ib_send_wr inv_wr, imm_wr, *wr = NULL;
struct ib_reg_wr rwr;
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_mr *srv_mr;
bool need_inval = false;
enum ib_send_flags flags;
u32 imm;
int err;
if (id->dir == READ) {
struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
size_t sg_cnt;
need_inval = le16_to_cpu(rd_msg->flags) &
RTRS_MSG_NEED_INVAL_F;
sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
if (need_inval) {
if (likely(sg_cnt)) {
inv_wr.sg_list = NULL;
inv_wr.num_sge = 0;
inv_wr.opcode = IB_WR_SEND_WITH_INV;
inv_wr.send_flags = 0;
/* Only one key is actually used */
inv_wr.ex.invalidate_rkey =
le32_to_cpu(rd_msg->desc[0].key);
} else {
WARN_ON_ONCE(1);
need_inval = false;
}
}
}
if (need_inval && always_invalidate) {
wr = &inv_wr;
inv_wr.next = &rwr.wr;
rwr.wr.next = &imm_wr;
} else if (always_invalidate) {
wr = &rwr.wr;
rwr.wr.next = &imm_wr;
} else if (need_inval) {
wr = &inv_wr;
inv_wr.next = &imm_wr;
} else {
wr = &imm_wr;
}
/*
* From time to time we have to post signalled sends,
* or send queue will fill up and only QP reset can help.
*/
flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
0 : IB_SEND_SIGNALED;
imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
imm_wr.next = NULL;
if (always_invalidate) {
struct ib_sge list;
struct rtrs_msg_rkey_rsp *msg;
srv_mr = &sess->mrs[id->msg_id];
rwr.wr.next = &imm_wr;
rwr.wr.opcode = IB_WR_REG_MR;
rwr.wr.num_sge = 0;
rwr.wr.send_flags = 0;
rwr.mr = srv_mr->mr;
rwr.key = srv_mr->mr->rkey;
rwr.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE);
msg = srv_mr->iu->buf;
msg->buf_id = cpu_to_le16(id->msg_id);
msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
list.addr = srv_mr->iu->dma_addr;
list.length = sizeof(*msg);
list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
imm_wr.sg_list = &list;
imm_wr.num_sge = 1;
imm_wr.opcode = IB_WR_SEND_WITH_IMM;
ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
srv_mr->iu->dma_addr,
srv_mr->iu->size, DMA_TO_DEVICE);
} else {
imm_wr.sg_list = NULL;
imm_wr.num_sge = 0;
imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
}
imm_wr.send_flags = flags;
imm_wr.wr_cqe = &io_comp_cqe;
imm_wr.ex.imm_data = cpu_to_be32(imm);
err = ib_post_send(id->con->c.qp, wr, NULL);
if (unlikely(err))
rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
err);
return err;
}
void close_sess(struct rtrs_srv_sess *sess)
{
enum rtrs_srv_state old_state;
if (rtrs_srv_change_state_get_old(sess, RTRS_SRV_CLOSING,
&old_state))
queue_work(rtrs_wq, &sess->close_work);
WARN_ON(sess->state != RTRS_SRV_CLOSING);
}
static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
{
switch (state) {
case RTRS_SRV_CONNECTING:
return "RTRS_SRV_CONNECTING";
case RTRS_SRV_CONNECTED:
return "RTRS_SRV_CONNECTED";
case RTRS_SRV_CLOSING:
return "RTRS_SRV_CLOSING";
case RTRS_SRV_CLOSED:
return "RTRS_SRV_CLOSED";
default:
return "UNKNOWN";
}
}
/**
* rtrs_srv_resp_rdma() - Finish an RDMA request
*
* @id: Internal RTRS operation identifier
* @status: Response Code sent to the other side for this operation.
* 0 = success, <=0 error
* Context: any
*
* Finish a RDMA operation. A message is sent to the client and the
* corresponding memory areas will be released.
*/
bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
{
struct rtrs_srv_sess *sess;
struct rtrs_srv_con *con;
struct rtrs_sess *s;
int err;
if (WARN_ON(!id))
return true;
con = id->con;
s = con->c.sess;
sess = to_srv_sess(s);
id->status = status;
if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
rtrs_err_rl(s,
"Sending I/O response failed, session is disconnected, sess state %s\n",
rtrs_srv_state_str(sess->state));
goto out;
}
if (always_invalidate) {
struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
}
if (unlikely(atomic_sub_return(1,
&con->sq_wr_avail) < 0)) {
pr_err("IB send queue full\n");
atomic_add(1, &con->sq_wr_avail);
spin_lock(&con->rsp_wr_wait_lock);
list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
spin_unlock(&con->rsp_wr_wait_lock);
return false;
}
if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
err = send_io_resp_imm(con, id, status);
else
err = rdma_write_sg(id);
if (unlikely(err)) {
rtrs_err_rl(s, "IO response failed: %d\n", err);
close_sess(sess);
}
out:
rtrs_srv_put_ops_ids(sess);
return true;
}
EXPORT_SYMBOL(rtrs_srv_resp_rdma);
/**
* rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
* @srv: Session pointer
* @priv: The private pointer that is associated with the session.
*/
void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
{
srv->priv = priv;
}
EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
{
int i;
for (i = 0; i < sess->mrs_num; i++) {
struct rtrs_srv_mr *srv_mr;
srv_mr = &sess->mrs[i];
rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
sess->s.dev->ib_dev, 1);
ib_dereg_mr(srv_mr->mr);
ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
sg_free_table(&srv_mr->sgt);
}
kfree(sess->mrs);
}
static int map_cont_bufs(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_sess *ss = &sess->s;
int i, mri, err, mrs_num;
unsigned int chunk_bits;
int chunks_per_mr = 1;
/*
* Here we map queue_depth chunks to MR. Firstly we have to
* figure out how many chunks can we map per MR.
*/
if (always_invalidate) {
/*
* in order to do invalidate for each chunks of memory, we needs
* more memory regions.
*/
mrs_num = srv->queue_depth;
} else {
chunks_per_mr =
sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
}
sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
if (!sess->mrs)
return -ENOMEM;
sess->mrs_num = mrs_num;
for (mri = 0; mri < mrs_num; mri++) {
struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
struct sg_table *sgt = &srv_mr->sgt;
struct scatterlist *s;
struct ib_mr *mr;
int nr, chunks;
chunks = chunks_per_mr * mri;
if (!always_invalidate)
chunks_per_mr = min_t(int, chunks_per_mr,
srv->queue_depth - chunks);
err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
if (err)
goto err;
for_each_sg(sgt->sgl, s, chunks_per_mr, i)
sg_set_page(s, srv->chunks[chunks + i],
max_chunk_size, 0);
nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
sgt->nents, DMA_BIDIRECTIONAL);
if (nr < sgt->nents) {
err = nr < 0 ? nr : -EINVAL;
goto free_sg;
}
mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
sgt->nents);
if (IS_ERR(mr)) {
err = PTR_ERR(mr);
goto unmap_sg;
}
nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
NULL, max_chunk_size);
if (nr < 0 || nr < sgt->nents) {
err = nr < 0 ? nr : -EINVAL;
goto dereg_mr;
}
if (always_invalidate) {
srv_mr->iu = rtrs_iu_alloc(1,
sizeof(struct rtrs_msg_rkey_rsp),
GFP_KERNEL, sess->s.dev->ib_dev,
DMA_TO_DEVICE, rtrs_srv_rdma_done);
if (!srv_mr->iu) {
err = -ENOMEM;
rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
goto free_iu;
}
}
/* Eventually dma addr for each chunk can be cached */
for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
sess->dma_addr[chunks + i] = sg_dma_address(s);
ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
srv_mr->mr = mr;
continue;
err:
while (mri--) {
srv_mr = &sess->mrs[mri];
sgt = &srv_mr->sgt;
mr = srv_mr->mr;
free_iu:
rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
sess->s.dev->ib_dev, 1);
dereg_mr:
ib_dereg_mr(mr);
unmap_sg:
ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
sgt->nents, DMA_BIDIRECTIONAL);
free_sg:
sg_free_table(sgt);
}
kfree(sess->mrs);
return err;
}
chunk_bits = ilog2(srv->queue_depth - 1) + 1;
sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
return 0;
}
static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
{
close_sess(to_srv_sess(c->sess));
}
static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
{
rtrs_init_hb(&sess->s, &io_comp_cqe,
RTRS_HB_INTERVAL_MS,
RTRS_HB_MISSED_MAX,
rtrs_srv_hb_err_handler,
rtrs_wq);
}
static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
{
rtrs_start_hb(&sess->s);
}
static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
{
rtrs_stop_hb(&sess->s);
}
static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_srv_con *con = cq->cq_context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_iu *iu;
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
rtrs_err(s, "Sess info response send failed: %s\n",
ib_wc_status_msg(wc->status));
close_sess(sess);
return;
}
WARN_ON(wc->opcode != IB_WC_SEND);
}
static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_ctx *ctx = srv->ctx;
int up;
mutex_lock(&srv->paths_ev_mutex);
up = ++srv->paths_up;
if (up == 1)
ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
mutex_unlock(&srv->paths_ev_mutex);
/* Mark session as established */
sess->established = true;
}
static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_ctx *ctx = srv->ctx;
if (!sess->established)
return;
sess->established = false;
mutex_lock(&srv->paths_ev_mutex);
WARN_ON(!srv->paths_up);
if (--srv->paths_up == 0)
ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
mutex_unlock(&srv->paths_ev_mutex);
}
static int post_recv_sess(struct rtrs_srv_sess *sess);
static int process_info_req(struct rtrs_srv_con *con,
struct rtrs_msg_info_req *msg)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct ib_send_wr *reg_wr = NULL;
struct rtrs_msg_info_rsp *rsp;
struct rtrs_iu *tx_iu;
struct ib_reg_wr *rwr;
int mri, err;
size_t tx_sz;
err = post_recv_sess(sess);
if (unlikely(err)) {
rtrs_err(s, "post_recv_sess(), err: %d\n", err);
return err;
}
rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
if (unlikely(!rwr))
return -ENOMEM;
strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
tx_sz = sizeof(*rsp);
tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
if (unlikely(!tx_iu)) {
err = -ENOMEM;
goto rwr_free;
}
rsp = tx_iu->buf;
rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
for (mri = 0; mri < sess->mrs_num; mri++) {
struct ib_mr *mr = sess->mrs[mri].mr;
rsp->desc[mri].addr = cpu_to_le64(mr->iova);
rsp->desc[mri].key = cpu_to_le32(mr->rkey);
rsp->desc[mri].len = cpu_to_le32(mr->length);
/*
* Fill in reg MR request and chain them *backwards*
*/
rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
rwr[mri].wr.opcode = IB_WR_REG_MR;
rwr[mri].wr.wr_cqe = &local_reg_cqe;
rwr[mri].wr.num_sge = 0;
rwr[mri].wr.send_flags = mri ? 0 : IB_SEND_SIGNALED;
rwr[mri].mr = mr;
rwr[mri].key = mr->rkey;
rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE);
reg_wr = &rwr[mri].wr;
}
err = rtrs_srv_create_sess_files(sess);
if (unlikely(err))
goto iu_free;
kobject_get(&sess->kobj);
get_device(&sess->srv->dev);
rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
rtrs_srv_start_hb(sess);
/*
* We do not account number of established connections at the current
* moment, we rely on the client, which should send info request when
* all connections are successfully established. Thus, simply notify
* listener with a proper event if we are the first path.
*/
rtrs_srv_sess_up(sess);
ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
tx_iu->size, DMA_TO_DEVICE);
/* Send info response */
err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
if (unlikely(err)) {
rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
iu_free:
rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
}
rwr_free:
kfree(rwr);
return err;
}
static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_srv_con *con = cq->cq_context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_msg_info_req *msg;
struct rtrs_iu *iu;
int err;
WARN_ON(con->c.cid);
iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
rtrs_err(s, "Sess info request receive failed: %s\n",
ib_wc_status_msg(wc->status));
goto close;
}
WARN_ON(wc->opcode != IB_WC_RECV);
if (unlikely(wc->byte_len < sizeof(*msg))) {
rtrs_err(s, "Sess info request is malformed: size %d\n",
wc->byte_len);
goto close;
}
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
iu->size, DMA_FROM_DEVICE);
msg = iu->buf;
if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
rtrs_err(s, "Sess info request is malformed: type %d\n",
le16_to_cpu(msg->type));
goto close;
}
err = process_info_req(con, msg);
if (unlikely(err))
goto close;
out:
rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
return;
close:
close_sess(sess);
goto out;
}
static int post_recv_info_req(struct rtrs_srv_con *con)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_iu *rx_iu;
int err;
rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
GFP_KERNEL, sess->s.dev->ib_dev,
DMA_FROM_DEVICE, rtrs_srv_info_req_done);
if (unlikely(!rx_iu))
return -ENOMEM;
/* Prepare for getting info response */
err = rtrs_iu_post_recv(&con->c, rx_iu);
if (unlikely(err)) {
rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
return err;
}
return 0;
}
static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
{
int i, err;
for (i = 0; i < q_size; i++) {
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
if (unlikely(err))
return err;
}
return 0;
}
static int post_recv_sess(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_sess *s = &sess->s;
size_t q_size;
int err, cid;
for (cid = 0; cid < sess->s.con_num; cid++) {
if (cid == 0)
q_size = SERVICE_CON_QUEUE_DEPTH;
else
q_size = srv->queue_depth;
err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
if (unlikely(err)) {
rtrs_err(s, "post_recv_io(), err: %d\n", err);
return err;
}
}
return 0;
}
static void process_read(struct rtrs_srv_con *con,
struct rtrs_msg_rdma_read *msg,
u32 buf_id, u32 off)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_ctx *ctx = srv->ctx;
struct rtrs_srv_op *id;
size_t usr_len, data_len;
void *data;
int ret;
if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
rtrs_err_rl(s,
"Processing read request failed, session is disconnected, sess state %s\n",
rtrs_srv_state_str(sess->state));
return;
}
if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
rtrs_err_rl(s,
"Processing read request failed, invalid message\n");
return;
}
rtrs_srv_get_ops_ids(sess);
rtrs_srv_update_rdma_stats(sess->stats, off, READ);
id = sess->ops_ids[buf_id];
id->con = con;
id->dir = READ;
id->msg_id = buf_id;
id->rd_msg = msg;
usr_len = le16_to_cpu(msg->usr_len);
data_len = off - usr_len;
data = page_address(srv->chunks[buf_id]);
ret = ctx->ops.rdma_ev(srv, srv->priv, id, READ, data, data_len,
data + data_len, usr_len);
if (unlikely(ret)) {
rtrs_err_rl(s,
"Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
buf_id, ret);
goto send_err_msg;
}
return;
send_err_msg:
ret = send_io_resp_imm(con, id, ret);
if (ret < 0) {
rtrs_err_rl(s,
"Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
buf_id, ret);
close_sess(sess);
}
rtrs_srv_put_ops_ids(sess);
}
static void process_write(struct rtrs_srv_con *con,
struct rtrs_msg_rdma_write *req,
u32 buf_id, u32 off)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_srv *srv = sess->srv;
struct rtrs_srv_ctx *ctx = srv->ctx;
struct rtrs_srv_op *id;
size_t data_len, usr_len;
void *data;
int ret;
if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
rtrs_err_rl(s,
"Processing write request failed, session is disconnected, sess state %s\n",
rtrs_srv_state_str(sess->state));
return;
}
rtrs_srv_get_ops_ids(sess);
rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
id = sess->ops_ids[buf_id];
id->con = con;
id->dir = WRITE;
id->msg_id = buf_id;
usr_len = le16_to_cpu(req->usr_len);
data_len = off - usr_len;
data = page_address(srv->chunks[buf_id]);
ret = ctx->ops.rdma_ev(srv, srv->priv, id, WRITE, data, data_len,
data + data_len, usr_len);
if (unlikely(ret)) {
rtrs_err_rl(s,
"Processing write request failed, user module callback reports err: %d\n",
ret);
goto send_err_msg;
}
return;
send_err_msg:
ret = send_io_resp_imm(con, id, ret);
if (ret < 0) {
rtrs_err_rl(s,
"Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
buf_id, ret);
close_sess(sess);
}
rtrs_srv_put_ops_ids(sess);
}
static void process_io_req(struct rtrs_srv_con *con, void *msg,
u32 id, u32 off)
{
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_msg_rdma_hdr *hdr;
unsigned int type;
ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
max_chunk_size, DMA_BIDIRECTIONAL);
hdr = msg;
type = le16_to_cpu(hdr->type);
switch (type) {
case RTRS_MSG_WRITE:
process_write(con, msg, id, off);
break;
case RTRS_MSG_READ:
process_read(con, msg, id, off);
break;
default:
rtrs_err(s,
"Processing I/O request failed, unknown message type received: 0x%02x\n",
type);
goto err;
}
return;
err:
close_sess(sess);
}
static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_srv_mr *mr =
container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
struct rtrs_srv_con *con = cq->cq_context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_srv *srv = sess->srv;
u32 msg_id, off;
void *data;
if (unlikely(wc->status != IB_WC_SUCCESS)) {
rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
ib_wc_status_msg(wc->status));
close_sess(sess);
}
msg_id = mr->msg_id;
off = mr->msg_off;
data = page_address(srv->chunks[msg_id]) + off;
process_io_req(con, data, msg_id, off);
}
static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
struct rtrs_srv_mr *mr)
{
struct ib_send_wr wr = {
.opcode = IB_WR_LOCAL_INV,
.wr_cqe = &mr->inv_cqe,
.send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = mr->mr->rkey,
};
mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
return ib_post_send(con->c.qp, &wr, NULL);
}
static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
{
spin_lock(&con->rsp_wr_wait_lock);
while (!list_empty(&con->rsp_wr_wait_list)) {
struct rtrs_srv_op *id;
int ret;
id = list_entry(con->rsp_wr_wait_list.next,
struct rtrs_srv_op, wait_list);
list_del(&id->wait_list);
spin_unlock(&con->rsp_wr_wait_lock);
ret = rtrs_srv_resp_rdma(id, id->status);
spin_lock(&con->rsp_wr_wait_lock);
if (!ret) {
list_add(&id->wait_list, &con->rsp_wr_wait_list);
break;
}
}
spin_unlock(&con->rsp_wr_wait_lock);
}
static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct rtrs_srv_con *con = cq->cq_context;
struct rtrs_sess *s = con->c.sess;
struct rtrs_srv_sess *sess = to_srv_sess(s);
struct rtrs_srv *srv = sess->srv;
u32 imm_type, imm_payload;
int err;
if (unlikely(wc->status != IB_WC_SUCCESS)) {
if (wc->status != IB_WC_WR_FLUSH_ERR) {
rtrs_err(s,
"%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
ib_wc_status_msg(wc->status), wc->wr_cqe,
wc->opcode, wc->vendor_err, wc->byte_len);
close_sess(sess);
}
return;
}
switch (wc->opcode) {
case IB_WC_RECV_RDMA_WITH_IMM:
/*
* post_recv() RDMA write completions of IO reqs (read/write)
* and hb
*/
if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
return;
err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
if (unlikely(err)) {
rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
close_sess(sess);
break;
}
rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
&imm_type, &imm_payload);
if (likely(imm_type == RTRS_IO_REQ_IMM)) {
u32 msg_id, off;
void *data;
msg_id = imm_payload >> sess->mem_bits;
off = imm_payload & ((1 << sess->mem_bits) - 1);
if (unlikely(msg_id >= srv->queue_depth ||
off >= max_chunk_size)) {
rtrs_err(s, "Wrong msg_id %u, off %u\n",
msg_id, off);
close_sess(sess);
return;
}
if (always_invalidate) {
struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
mr->msg_off = off;
mr->msg_id = msg_id;
err = rtrs_srv_inv_rkey(con, mr);
if (unlikely(err)) {
rtrs_err(s, "rtrs_post_recv(), err: %d\n",
err);
close_sess(sess);
break;
}
} else {
data = page_address(srv->chunks[msg_id]) + off;
process_io_req(con, data, msg_id, off);
}
} else if (imm_type == RTRS_HB_MSG_IMM) {
WARN_ON(con->c.cid);
rtrs_send_hb_ack(&sess->s);
} else if (imm_type == RTRS_HB_ACK_IMM) {
WARN_ON(con->c.cid);
sess->s.hb_missed_cnt = 0;
} else {
rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
}
break;
case IB_WC_RDMA_WRITE:
case IB_WC_SEND:
/*
* post_send() RDMA write completions of IO reqs (read/write)
* and hb
*/
atomic_add(srv->queue_depth, &con->sq_wr_avail);
if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
rtrs_rdma_process_wr_wait_list(con);
break;
default:
rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
return;
}
}
/**
* rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
* @srv: Session
* @sessname: Sessname buffer
* @len: Length of sessname buffer
*/
int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
{
struct rtrs_srv_sess *sess;
int err = -ENOTCONN;
mutex_lock(&srv->paths_mutex);
list_for_each_entry(sess, &srv->paths_list, s.entry) {
if (sess->state != RTRS_SRV_CONNECTED)
continue;
strlcpy(sessname, sess->s.sessname,
min_t(size_t, sizeof(sess->s.sessname), len));
err = 0;
break;
}
mutex_unlock(&srv->paths_mutex);
return err;
}
EXPORT_SYMBOL(rtrs_srv_get_sess_name);
/**
* rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
* @srv: Session
*/
int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
{
return srv->queue_depth;
}
EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
static int find_next_bit_ring(struct rtrs_srv_sess *sess)
{
struct ib_device *ib_dev = sess->s.dev->ib_dev;
int v;
v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
v = cpumask_first(&cq_affinity_mask);
return v;
}
static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
{
sess->cur_cq_vector = find_next_bit_ring(sess);
return sess->cur_cq_vector;
}
static void rtrs_srv_dev_release(struct device *dev)
{
struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
kfree(srv);
}
static struct rtrs_srv *__alloc_srv(struct rtrs_srv_ctx *ctx,
const uuid_t *paths_uuid)
{
struct rtrs_srv *srv;
int i;
srv = kzalloc(sizeof(*srv), GFP_KERNEL);
if (!srv)
return NULL;
refcount_set(&srv->refcount, 1);
INIT_LIST_HEAD(&srv->paths_list);
mutex_init(&srv->paths_mutex);
mutex_init(&srv->paths_ev_mutex);
uuid_copy(&srv->paths_uuid, paths_uuid);
srv->queue_depth = sess_queue_depth;
srv->ctx = ctx;
device_initialize(&srv->dev);
srv->dev.release = rtrs_srv_dev_release;
srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
GFP_KERNEL);
if (!srv->chunks)
goto err_free_srv;
for (i = 0; i < srv->queue_depth; i++) {
srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
if (!srv->chunks[i])
goto err_free_chunks;
}
list_add(&srv->ctx_list, &ctx->srv_list);
return srv;
err_free_chunks:
while (i--)
mempool_free(srv->chunks[i], chunk_pool);
kfree(srv->chunks);
err_free_srv:
kfree(srv);
return NULL;
}
static void free_srv(struct rtrs_srv *srv)
{
int i;
WARN_ON(refcount_read(&srv->refcount));
for (i = 0; i < srv->queue_depth; i++)
mempool_free(srv->chunks[i], chunk_pool);
kfree(srv->chunks);
mutex_destroy(&srv->paths_mutex);
mutex_destroy(&srv->paths_ev_mutex);
/* last put to release the srv structure */
put_device(&srv->dev);
}
static inline struct rtrs_srv *__find_srv_and_get(struct rtrs_srv_ctx *ctx,
const uuid_t *paths_uuid)
{
struct rtrs_srv *srv;
list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
refcount_inc_not_zero(&srv->refcount))
return srv;
}
return NULL;
}
static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
const uuid_t *paths_uuid)
{
struct rtrs_srv *srv;
mutex_lock(&ctx->srv_mutex);
srv = __find_srv_and_get(ctx, paths_uuid);
if (!srv)
srv = __alloc_srv(ctx, paths_uuid);
mutex_unlock(&ctx->srv_mutex);
return srv;
}
static void put_srv(struct rtrs_srv *srv)
{
if (refcount_dec_and_test(&srv->refcount)) {
struct rtrs_srv_ctx *ctx = srv->ctx;
WARN_ON(srv->dev.kobj.state_in_sysfs);
mutex_lock(&ctx->srv_mutex);
list_del(&srv->ctx_list);
mutex_unlock(&ctx->srv_mutex);
free_srv(srv);
}
}
static void __add_path_to_srv(struct rtrs_srv *srv,
struct rtrs_srv_sess *sess)
{
list_add_tail(&sess->s.entry, &srv->paths_list);
srv->paths_num++;
WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
}
static void del_path_from_srv(struct rtrs_srv_sess *sess)
{
struct rtrs_srv *srv = sess->srv;
if (WARN_ON(!srv))
return;
mutex_lock(&srv->paths_mutex);
list_del(&sess->s.entry);
WARN_ON(!srv->paths_num);
srv->paths_num--;
mutex_unlock(&srv->paths_mutex);
}
/* return true if addresses are the same, error other wise */
static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
{
switch (a->sa_family) {
case AF_IB:
return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
&((struct sockaddr_ib *)b)->sib_addr,
sizeof(struct ib_addr)) &&
(b->sa_family == AF_IB);
case AF_INET:
return memcmp(&((struct sockaddr_in *)a)->sin_addr,
&((struct sockaddr_in *)b)->sin_addr,
sizeof(struct in_addr)) &&
(b->sa_family == AF_INET);
case AF_INET6:
return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
&((struct sockaddr_in6 *)b)->sin6_addr,
sizeof(struct in6_addr)) &&
(b->sa_family == AF_INET6);
default:
return -ENOENT;
}
}
static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
struct rdma_addr *addr)
{
struct rtrs_srv_sess *sess;
list_for_each_entry(sess, &srv->paths_list, s.entry)
if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
(struct sockaddr *)&addr->dst_addr) &&
!sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
(struct sockaddr *)&addr->src_addr))
return true;
return false;
}
static void free_sess(struct rtrs_srv_sess *sess)
{
if (sess->kobj.state_in_sysfs)
kobject_put(&sess->kobj);
else
kfree(sess);
}
static void rtrs_srv_close_work(struct work_struct *work)
{
struct rtrs_srv_sess *sess;
struct rtrs_srv_con *con;
int i;
sess = container_of(work, typeof(*sess), close_work);
rtrs_srv_destroy_sess_files(sess);
rtrs_srv_stop_hb(sess);
for (i = 0; i < sess->s.con_num; i++) {
if (!sess->s.con[i])
continue;
con = to_srv_con(sess->s.con[i]);
rdma_disconnect(con->c.cm_id);
ib_drain_qp(con->c.qp);
}
/* Wait for all inflights */
rtrs_srv_wait_ops_ids(sess);
/* Notify upper layer if we are the last path */
rtrs_srv_sess_down(sess);
unmap_cont_bufs(sess);
rtrs_srv_free_ops_ids(sess);
for (i = 0; i < sess->s.con_num; i++) {
if (!sess->s.con[i])
continue;
con = to_srv_con(sess->s.con[i]);
rtrs_cq_qp_destroy(&con->c);
rdma_destroy_id(con->c.cm_id);
kfree(con);
}
rtrs_ib_dev_put(sess->s.dev);
del_path_from_srv(sess);
put_srv(sess->srv);
sess->srv = NULL;
rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
kfree(sess->dma_addr);
kfree(sess->s.con);
free_sess(sess);
}
static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
struct rdma_cm_id *cm_id)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_msg_conn_rsp msg;
struct rdma_conn_param param;
int err;
param = (struct rdma_conn_param) {
.rnr_retry_count = 7,
.private_data = &msg,
.private_data_len = sizeof(msg),
};
msg = (struct rtrs_msg_conn_rsp) {
.magic = cpu_to_le16(RTRS_MAGIC),
.version = cpu_to_le16(RTRS_PROTO_VER),
.queue_depth = cpu_to_le16(srv->queue_depth),
.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
};
if (always_invalidate)
msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
err = rdma_accept(cm_id, &param);
if (err)
pr_err("rdma_accept(), err: %d\n", err);
return err;
}
static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
{
struct rtrs_msg_conn_rsp msg;
int err;
msg = (struct rtrs_msg_conn_rsp) {
.magic = cpu_to_le16(RTRS_MAGIC),
.version = cpu_to_le16(RTRS_PROTO_VER),
.errno = cpu_to_le16(errno),
};
err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
if (err)
pr_err("rdma_reject(), err: %d\n", err);
/* Bounce errno back */
return errno;
}
static struct rtrs_srv_sess *
__find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
{
struct rtrs_srv_sess *sess;
list_for_each_entry(sess, &srv->paths_list, s.entry) {
if (uuid_equal(&sess->s.uuid, sess_uuid))
return sess;
}
return NULL;
}
static int create_con(struct rtrs_srv_sess *sess,
struct rdma_cm_id *cm_id,
unsigned int cid)
{
struct rtrs_srv *srv = sess->srv;
struct rtrs_sess *s = &sess->s;
struct rtrs_srv_con *con;
u16 cq_size, wr_queue_size;
int err, cq_vector;
con = kzalloc(sizeof(*con), GFP_KERNEL);
if (!con) {
err = -ENOMEM;
goto err;
}
spin_lock_init(&con->rsp_wr_wait_lock);
INIT_LIST_HEAD(&con->rsp_wr_wait_list);
con->c.cm_id = cm_id;
con->c.sess = &sess->s;
con->c.cid = cid;
atomic_set(&con->wr_cnt, 0);
if (con->c.cid == 0) {
/*
* All receive and all send (each requiring invalidate)
* + 2 for drain and heartbeat
*/
wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
cq_size = wr_queue_size;
} else {
/*
* If we have all receive requests posted and
* all write requests posted and each read request
* requires an invalidate request + drain
* and qp gets into error state.
*/
cq_size = srv->queue_depth * 3 + 1;
/*
* In theory we might have queue_depth * 32
* outstanding requests if an unsafe global key is used
* and we have queue_depth read requests each consisting
* of 32 different addresses. div 3 for mlx5.
*/
wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
}
atomic_set(&con->sq_wr_avail, wr_queue_size);
cq_vector = rtrs_srv_get_next_cq_vector(sess);
/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
wr_queue_size, IB_POLL_WORKQUEUE);
if (err) {
rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
goto free_con;
}
if (con->c.cid == 0) {
err = post_recv_info_req(con);
if (err)
goto free_cqqp;
}
WARN_ON(sess->s.con[cid]);
sess->s.con[cid] = &con->c;
/*
* Change context from server to current connection. The other
* way is to use cm_id->qp->qp_context, which does not work on OFED.
*/
cm_id->context = &con->c;
return 0;
free_cqqp:
rtrs_cq_qp_destroy(&con->c);
free_con:
kfree(con);
err:
return err;
}
static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
struct rdma_cm_id *cm_id,
unsigned int con_num,
unsigned int recon_cnt,
const uuid_t *uuid)
{
struct rtrs_srv_sess *sess;
int err = -ENOMEM;
if (srv->paths_num >= MAX_PATHS_NUM) {
err = -ECONNRESET;
goto err;
}
if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
err = -EEXIST;
pr_err("Path with same addr exists\n");
goto err;
}
sess = kzalloc(sizeof(*sess), GFP_KERNEL);
if (!sess)
goto err;
sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
if (!sess->stats)
goto err_free_sess;
sess->stats->sess = sess;
sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
GFP_KERNEL);
if (!sess->dma_addr)
goto err_free_stats;
sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
if (!sess->s.con)
goto err_free_dma_addr;
sess->state = RTRS_SRV_CONNECTING;
sess->srv = srv;
sess->cur_cq_vector = -1;
sess->s.dst_addr = cm_id->route.addr.dst_addr;
sess->s.src_addr = cm_id->route.addr.src_addr;
sess->s.con_num = con_num;
sess->s.recon_cnt = recon_cnt;
uuid_copy(&sess->s.uuid, uuid);
spin_lock_init(&sess->state_lock);
INIT_WORK(&sess->close_work, rtrs_srv_close_work);
rtrs_srv_init_hb(sess);
sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
if (!sess->s.dev) {
err = -ENOMEM;
goto err_free_con;
}
err = map_cont_bufs(sess);
if (err)
goto err_put_dev;
err = rtrs_srv_alloc_ops_ids(sess);
if (err)
goto err_unmap_bufs;
__add_path_to_srv(srv, sess);
return sess;
err_unmap_bufs:
unmap_cont_bufs(sess);
err_put_dev:
rtrs_ib_dev_put(sess->s.dev);
err_free_con:
kfree(sess->s.con);
err_free_dma_addr:
kfree(sess->dma_addr);
err_free_stats:
kfree(sess->stats);
err_free_sess:
kfree(sess);
err:
return ERR_PTR(err);
}
static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
const struct rtrs_msg_conn_req *msg,
size_t len)
{
struct rtrs_srv_ctx *ctx = cm_id->context;
struct rtrs_srv_sess *sess;
struct rtrs_srv *srv;
u16 version, con_num, cid;
u16 recon_cnt;
int err;
if (len < sizeof(*msg)) {
pr_err("Invalid RTRS connection request\n");
goto reject_w_econnreset;
}
if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
pr_err("Invalid RTRS magic\n");
goto reject_w_econnreset;
}
version = le16_to_cpu(msg->version);
if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
pr_err("Unsupported major RTRS version: %d, expected %d\n",
version >> 8, RTRS_PROTO_VER_MAJOR);
goto reject_w_econnreset;
}
con_num = le16_to_cpu(msg->cid_num);
if (con_num > 4096) {
/* Sanity check */
pr_err("Too many connections requested: %d\n", con_num);
goto reject_w_econnreset;
}
cid = le16_to_cpu(msg->cid);
if (cid >= con_num) {
/* Sanity check */
pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
goto reject_w_econnreset;
}
recon_cnt = le16_to_cpu(msg->recon_cnt);
srv = get_or_create_srv(ctx, &msg->paths_uuid);
if (!srv) {
err = -ENOMEM;
goto reject_w_err;
}
mutex_lock(&srv->paths_mutex);
sess = __find_sess(srv, &msg->sess_uuid);
if (sess) {
struct rtrs_sess *s = &sess->s;
/* Session already holds a reference */
put_srv(srv);
if (sess->state != RTRS_SRV_CONNECTING) {
rtrs_err(s, "Session in wrong state: %s\n",
rtrs_srv_state_str(sess->state));
mutex_unlock(&srv->paths_mutex);
goto reject_w_econnreset;
}
/*
* Sanity checks
*/
if (con_num != s->con_num || cid >= s->con_num) {
rtrs_err(s, "Incorrect request: %d, %d\n",
cid, con_num);
mutex_unlock(&srv->paths_mutex);
goto reject_w_econnreset;
}
if (s->con[cid]) {
rtrs_err(s, "Connection already exists: %d\n",
cid);
mutex_unlock(&srv->paths_mutex);
goto reject_w_econnreset;
}
} else {
sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
&msg->sess_uuid);
if (IS_ERR(sess)) {
mutex_unlock(&srv->paths_mutex);
put_srv(srv);
err = PTR_ERR(sess);
goto reject_w_err;
}
}
err = create_con(sess, cm_id, cid);
if (err) {
(void)rtrs_rdma_do_reject(cm_id, err);
/*
* Since session has other connections we follow normal way
* through workqueue, but still return an error to tell cma.c
* to call rdma_destroy_id() for current connection.
*/
goto close_and_return_err;
}
err = rtrs_rdma_do_accept(sess, cm_id);
if (err) {
(void)rtrs_rdma_do_reject(cm_id, err);
/*
* Since current connection was successfully added to the
* session we follow normal way through workqueue to close the
* session, thus return 0 to tell cma.c we call
* rdma_destroy_id() ourselves.
*/
err = 0;
goto close_and_return_err;
}
mutex_unlock(&srv->paths_mutex);
return 0;
reject_w_err:
return rtrs_rdma_do_reject(cm_id, err);
reject_w_econnreset:
return rtrs_rdma_do_reject(cm_id, -ECONNRESET);
close_and_return_err:
close_sess(sess);
mutex_unlock(&srv->paths_mutex);
return err;
}
static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *ev)
{
struct rtrs_srv_sess *sess = NULL;
struct rtrs_sess *s = NULL;
if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
struct rtrs_con *c = cm_id->context;
s = c->sess;
sess = to_srv_sess(s);
}
switch (ev->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
/*
* In case of error cma.c will destroy cm_id,
* see cma_process_remove()
*/
return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
ev->param.conn.private_data_len);
case RDMA_CM_EVENT_ESTABLISHED:
/* Nothing here */
break;
case RDMA_CM_EVENT_REJECTED:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
rdma_event_msg(ev->event), ev->status);
close_sess(sess);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
close_sess(sess);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
close_sess(sess);
break;
default:
pr_err("Ignoring unexpected CM event %s, err %d\n",
rdma_event_msg(ev->event), ev->status);
break;
}
return 0;
}
static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
struct sockaddr *addr,
enum rdma_ucm_port_space ps)
{
struct rdma_cm_id *cm_id;
int ret;
cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
ctx, ps, IB_QPT_RC);
if (IS_ERR(cm_id)) {
ret = PTR_ERR(cm_id);
pr_err("Creating id for RDMA connection failed, err: %d\n",
ret);
goto err_out;
}
ret = rdma_bind_addr(cm_id, addr);
if (ret) {
pr_err("Binding RDMA address failed, err: %d\n", ret);
goto err_cm;
}
ret = rdma_listen(cm_id, 64);
if (ret) {
pr_err("Listening on RDMA connection failed, err: %d\n",
ret);
goto err_cm;
}
return cm_id;
err_cm:
rdma_destroy_id(cm_id);
err_out:
return ERR_PTR(ret);
}
static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
{
struct sockaddr_in6 sin = {
.sin6_family = AF_INET6,
.sin6_addr = IN6ADDR_ANY_INIT,
.sin6_port = htons(port),
};
struct sockaddr_ib sib = {
.sib_family = AF_IB,
.sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
.sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL),
.sib_pkey = cpu_to_be16(0xffff),
};
struct rdma_cm_id *cm_ip, *cm_ib;
int ret;
/*
* We accept both IPoIB and IB connections, so we need to keep
* two cm id's, one for each socket type and port space.
* If the cm initialization of one of the id's fails, we abort
* everything.
*/
cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
if (IS_ERR(cm_ip))
return PTR_ERR(cm_ip);
cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
if (IS_ERR(cm_ib)) {
ret = PTR_ERR(cm_ib);
goto free_cm_ip;
}
ctx->cm_id_ip = cm_ip;
ctx->cm_id_ib = cm_ib;
return 0;
free_cm_ip:
rdma_destroy_id(cm_ip);
return ret;
}
static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
{
struct rtrs_srv_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
ctx->ops = *ops;
mutex_init(&ctx->srv_mutex);
INIT_LIST_HEAD(&ctx->srv_list);
return ctx;
}
static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
{
WARN_ON(!list_empty(&ctx->srv_list));
mutex_destroy(&ctx->srv_mutex);
kfree(ctx);
}
static int rtrs_srv_add_one(struct ib_device *device)
{
struct rtrs_srv_ctx *ctx;
int ret = 0;
mutex_lock(&ib_ctx.ib_dev_mutex);
if (ib_ctx.ib_dev_count)
goto out;
/*
* Since our CM IDs are NOT bound to any ib device we will create them
* only once
*/
ctx = ib_ctx.srv_ctx;
ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
if (ret) {
/*
* We errored out here.
* According to the ib code, if we encounter an error here then the
* error code is ignored, and no more calls to our ops are made.
*/
pr_err("Failed to initialize RDMA connection");
goto err_out;
}
out:
/*
* Keep a track on the number of ib devices added
*/
ib_ctx.ib_dev_count++;
err_out:
mutex_unlock(&ib_ctx.ib_dev_mutex);
return ret;
}
static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
{
struct rtrs_srv_ctx *ctx;
mutex_lock(&ib_ctx.ib_dev_mutex);
ib_ctx.ib_dev_count--;
if (ib_ctx.ib_dev_count)
goto out;
/*
* Since our CM IDs are NOT bound to any ib device we will remove them
* only once, when the last device is removed
*/
ctx = ib_ctx.srv_ctx;
rdma_destroy_id(ctx->cm_id_ip);
rdma_destroy_id(ctx->cm_id_ib);
out:
mutex_unlock(&ib_ctx.ib_dev_mutex);
}
static struct ib_client rtrs_srv_client = {
.name = "rtrs_server",
.add = rtrs_srv_add_one,
.remove = rtrs_srv_remove_one
};
/**
* rtrs_srv_open() - open RTRS server context
* @ops: callback functions
* @port: port to listen on
*
* Creates server context with specified callbacks.
*
* Return a valid pointer on success otherwise PTR_ERR.
*/
struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
{
struct rtrs_srv_ctx *ctx;
int err;
ctx = alloc_srv_ctx(ops);
if (!ctx)
return ERR_PTR(-ENOMEM);
mutex_init(&ib_ctx.ib_dev_mutex);
ib_ctx.srv_ctx = ctx;
ib_ctx.port = port;
err = ib_register_client(&rtrs_srv_client);
if (err) {
free_srv_ctx(ctx);
return ERR_PTR(err);
}
return ctx;
}
EXPORT_SYMBOL(rtrs_srv_open);
static void close_sessions(struct rtrs_srv *srv)
{
struct rtrs_srv_sess *sess;
mutex_lock(&srv->paths_mutex);
list_for_each_entry(sess, &srv->paths_list, s.entry)
close_sess(sess);
mutex_unlock(&srv->paths_mutex);
}
static void close_ctx(struct rtrs_srv_ctx *ctx)
{
struct rtrs_srv *srv;
mutex_lock(&ctx->srv_mutex);
list_for_each_entry(srv, &ctx->srv_list, ctx_list)
close_sessions(srv);
mutex_unlock(&ctx->srv_mutex);
flush_workqueue(rtrs_wq);
}
/**
* rtrs_srv_close() - close RTRS server context
* @ctx: pointer to server context
*
* Closes RTRS server context with all client sessions.
*/
void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
{
ib_unregister_client(&rtrs_srv_client);
mutex_destroy(&ib_ctx.ib_dev_mutex);
close_ctx(ctx);
free_srv_ctx(ctx);
}
EXPORT_SYMBOL(rtrs_srv_close);
static int check_module_params(void)
{
if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
return -EINVAL;
}
if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
max_chunk_size, 4096);
return -EINVAL;
}
/*
* Check if IB immediate data size is enough to hold the mem_id and the
* offset inside the memory chunk
*/
if ((ilog2(sess_queue_depth - 1) + 1) +
(ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
return -EINVAL;
}
return 0;
}
static int __init rtrs_server_init(void)
{
int err;
pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
sess_queue_depth, always_invalidate);
rtrs_rdma_dev_pd_init(0, &dev_pd);
err = check_module_params();
if (err) {
pr_err("Failed to load module, invalid module parameters, err: %d\n",
err);
return err;
}
chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
get_order(max_chunk_size));
if (!chunk_pool)
return -ENOMEM;
rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
if (IS_ERR(rtrs_dev_class)) {
err = PTR_ERR(rtrs_dev_class);
goto out_chunk_pool;
}
rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
if (!rtrs_wq) {
err = -ENOMEM;
goto out_dev_class;
}
return 0;
out_dev_class:
class_destroy(rtrs_dev_class);
out_chunk_pool:
mempool_destroy(chunk_pool);
return err;
}
static void __exit rtrs_server_exit(void)
{
destroy_workqueue(rtrs_wq);
class_destroy(rtrs_dev_class);
mempool_destroy(chunk_pool);
rtrs_rdma_dev_pd_deinit(&dev_pd);
}
module_init(rtrs_server_init);
module_exit(rtrs_server_exit);