| /* |
| * cxd2099.c: Driver for the CXD2099AR Common Interface Controller |
| * |
| * Copyright (C) 2010-2013 Digital Devices GmbH |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 only, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/regmap.h> |
| #include <linux/wait.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/io.h> |
| |
| #include "cxd2099.h" |
| |
| static int buffermode; |
| module_param(buffermode, int, 0444); |
| MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)"); |
| |
| static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount); |
| |
| struct cxd { |
| struct dvb_ca_en50221 en; |
| |
| struct cxd2099_cfg cfg; |
| struct i2c_client *client; |
| struct regmap *regmap; |
| |
| u8 regs[0x23]; |
| u8 lastaddress; |
| u8 clk_reg_f; |
| u8 clk_reg_b; |
| int mode; |
| int ready; |
| int dr; |
| int write_busy; |
| int slot_stat; |
| |
| u8 amem[1024]; |
| int amem_read; |
| |
| int cammode; |
| struct mutex lock; /* device access lock */ |
| |
| u8 rbuf[1028]; |
| u8 wbuf[1028]; |
| }; |
| |
| static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n) |
| { |
| int status = 0; |
| |
| if (ci->lastaddress != adr) |
| status = regmap_write(ci->regmap, 0, adr); |
| if (!status) { |
| ci->lastaddress = adr; |
| |
| while (n) { |
| int len = n; |
| |
| if (ci->cfg.max_i2c && len > ci->cfg.max_i2c) |
| len = ci->cfg.max_i2c; |
| status = regmap_raw_read(ci->regmap, 1, data, len); |
| if (status) |
| return status; |
| data += len; |
| n -= len; |
| } |
| } |
| return status; |
| } |
| |
| static int read_reg(struct cxd *ci, u8 reg, u8 *val) |
| { |
| return read_block(ci, reg, val, 1); |
| } |
| |
| static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[2] = {address & 0xff, address >> 8}; |
| |
| status = regmap_raw_write(ci->regmap, 2, addr, 2); |
| if (!status) |
| status = regmap_raw_read(ci->regmap, 3, data, n); |
| return status; |
| } |
| |
| static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) |
| { |
| int status; |
| u8 addr[2] = {address & 0xff, address >> 8}; |
| |
| status = regmap_raw_write(ci->regmap, 2, addr, 2); |
| if (!status) { |
| u8 buf[256]; |
| |
| memcpy(buf, data, n); |
| status = regmap_raw_write(ci->regmap, 3, buf, n); |
| } |
| return status; |
| } |
| |
| static int read_io(struct cxd *ci, u16 address, unsigned int *val) |
| { |
| int status; |
| u8 addr[2] = {address & 0xff, address >> 8}; |
| |
| status = regmap_raw_write(ci->regmap, 2, addr, 2); |
| if (!status) |
| status = regmap_read(ci->regmap, 3, val); |
| return status; |
| } |
| |
| static int write_io(struct cxd *ci, u16 address, u8 val) |
| { |
| int status; |
| u8 addr[2] = {address & 0xff, address >> 8}; |
| |
| status = regmap_raw_write(ci->regmap, 2, addr, 2); |
| if (!status) |
| status = regmap_write(ci->regmap, 3, val); |
| return status; |
| } |
| |
| static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) |
| { |
| int status = 0; |
| unsigned int regval; |
| |
| if (ci->lastaddress != reg) |
| status = regmap_write(ci->regmap, 0, reg); |
| if (!status && reg >= 6 && reg <= 8 && mask != 0xff) { |
| status = regmap_read(ci->regmap, 1, ®val); |
| ci->regs[reg] = regval; |
| } |
| ci->lastaddress = reg; |
| ci->regs[reg] = (ci->regs[reg] & (~mask)) | val; |
| if (!status) |
| status = regmap_write(ci->regmap, 1, ci->regs[reg]); |
| if (reg == 0x20) |
| ci->regs[reg] &= 0x7f; |
| return status; |
| } |
| |
| static int write_reg(struct cxd *ci, u8 reg, u8 val) |
| { |
| return write_regm(ci, reg, val, 0xff); |
| } |
| |
| static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n) |
| { |
| int status = 0; |
| u8 *buf = ci->wbuf; |
| |
| if (ci->lastaddress != adr) |
| status = regmap_write(ci->regmap, 0, adr); |
| if (status) |
| return status; |
| |
| ci->lastaddress = adr; |
| while (n) { |
| int len = n; |
| |
| if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c)) |
| len = ci->cfg.max_i2c - 1; |
| memcpy(buf, data, len); |
| status = regmap_raw_write(ci->regmap, 1, buf, len); |
| if (status) |
| return status; |
| n -= len; |
| data += len; |
| } |
| return status; |
| } |
| |
| static void set_mode(struct cxd *ci, int mode) |
| { |
| if (mode == ci->mode) |
| return; |
| |
| switch (mode) { |
| case 0x00: /* IO mem */ |
| write_regm(ci, 0x06, 0x00, 0x07); |
| break; |
| case 0x01: /* ATT mem */ |
| write_regm(ci, 0x06, 0x02, 0x07); |
| break; |
| default: |
| break; |
| } |
| ci->mode = mode; |
| } |
| |
| static void cam_mode(struct cxd *ci, int mode) |
| { |
| u8 dummy; |
| |
| if (mode == ci->cammode) |
| return; |
| |
| switch (mode) { |
| case 0x00: |
| write_regm(ci, 0x20, 0x80, 0x80); |
| break; |
| case 0x01: |
| if (!ci->en.read_data) |
| return; |
| ci->write_busy = 0; |
| dev_info(&ci->client->dev, "enable cam buffer mode\n"); |
| write_reg(ci, 0x0d, 0x00); |
| write_reg(ci, 0x0e, 0x01); |
| write_regm(ci, 0x08, 0x40, 0x40); |
| read_reg(ci, 0x12, &dummy); |
| write_regm(ci, 0x08, 0x80, 0x80); |
| break; |
| default: |
| break; |
| } |
| ci->cammode = mode; |
| } |
| |
| static int init(struct cxd *ci) |
| { |
| int status; |
| |
| mutex_lock(&ci->lock); |
| ci->mode = -1; |
| do { |
| status = write_reg(ci, 0x00, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x01, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x02, 0x10); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x03, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x05, 0xFF); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x06, 0x1F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x07, 0x1F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x08, 0x28); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x14, 0x20); |
| if (status < 0) |
| break; |
| |
| /* TOSTRT = 8, Mode B (gated clock), falling Edge, |
| * Serial, POL=HIGH, MSB |
| */ |
| status = write_reg(ci, 0x0A, 0xA7); |
| if (status < 0) |
| break; |
| |
| status = write_reg(ci, 0x0B, 0x33); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x0C, 0x33); |
| if (status < 0) |
| break; |
| |
| status = write_regm(ci, 0x14, 0x00, 0x0F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x15, ci->clk_reg_b); |
| if (status < 0) |
| break; |
| status = write_regm(ci, 0x16, 0x00, 0x0F); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x17, ci->clk_reg_f); |
| if (status < 0) |
| break; |
| |
| if (ci->cfg.clock_mode == 2) { |
| /* bitrate*2^13/ 72000 */ |
| u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000; |
| |
| if (ci->cfg.polarity) { |
| status = write_reg(ci, 0x09, 0x6f); |
| if (status < 0) |
| break; |
| } else { |
| status = write_reg(ci, 0x09, 0x6d); |
| if (status < 0) |
| break; |
| } |
| status = write_reg(ci, 0x20, 0x08); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x21, (reg >> 8) & 0xff); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x22, reg & 0xff); |
| if (status < 0) |
| break; |
| } else if (ci->cfg.clock_mode == 1) { |
| if (ci->cfg.polarity) { |
| status = write_reg(ci, 0x09, 0x6f); /* D */ |
| if (status < 0) |
| break; |
| } else { |
| status = write_reg(ci, 0x09, 0x6d); |
| if (status < 0) |
| break; |
| } |
| status = write_reg(ci, 0x20, 0x68); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x21, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x22, 0x02); |
| if (status < 0) |
| break; |
| } else { |
| if (ci->cfg.polarity) { |
| status = write_reg(ci, 0x09, 0x4f); /* C */ |
| if (status < 0) |
| break; |
| } else { |
| status = write_reg(ci, 0x09, 0x4d); |
| if (status < 0) |
| break; |
| } |
| status = write_reg(ci, 0x20, 0x28); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x21, 0x00); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x22, 0x07); |
| if (status < 0) |
| break; |
| } |
| |
| status = write_regm(ci, 0x20, 0x80, 0x80); |
| if (status < 0) |
| break; |
| status = write_regm(ci, 0x03, 0x02, 0x02); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x01, 0x04); |
| if (status < 0) |
| break; |
| status = write_reg(ci, 0x00, 0x31); |
| if (status < 0) |
| break; |
| |
| /* Put TS in bypass */ |
| status = write_regm(ci, 0x09, 0x08, 0x08); |
| if (status < 0) |
| break; |
| ci->cammode = -1; |
| cam_mode(ci, 0); |
| } while (0); |
| mutex_unlock(&ci->lock); |
| |
| return 0; |
| } |
| |
| static int read_attribute_mem(struct dvb_ca_en50221 *ca, |
| int slot, int address) |
| { |
| struct cxd *ci = ca->data; |
| u8 val; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 1); |
| read_pccard(ci, address, &val, 1); |
| mutex_unlock(&ci->lock); |
| return val; |
| } |
| |
| static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, |
| int address, u8 value) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 1); |
| write_pccard(ci, address, &value, 1); |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int read_cam_control(struct dvb_ca_en50221 *ca, |
| int slot, u8 address) |
| { |
| struct cxd *ci = ca->data; |
| unsigned int val; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 0); |
| read_io(ci, address, &val); |
| mutex_unlock(&ci->lock); |
| return val; |
| } |
| |
| static int write_cam_control(struct dvb_ca_en50221 *ca, int slot, |
| u8 address, u8 value) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| set_mode(ci, 0); |
| write_io(ci, address, value); |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int slot_reset(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| if (ci->cammode) |
| read_data(ca, slot, ci->rbuf, 0); |
| |
| mutex_lock(&ci->lock); |
| cam_mode(ci, 0); |
| write_reg(ci, 0x00, 0x21); |
| write_reg(ci, 0x06, 0x1F); |
| write_reg(ci, 0x00, 0x31); |
| write_regm(ci, 0x20, 0x80, 0x80); |
| write_reg(ci, 0x03, 0x02); |
| ci->ready = 0; |
| ci->mode = -1; |
| { |
| int i; |
| |
| for (i = 0; i < 100; i++) { |
| usleep_range(10000, 11000); |
| if (ci->ready) |
| break; |
| } |
| } |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| dev_dbg(&ci->client->dev, "%s\n", __func__); |
| if (ci->cammode) |
| read_data(ca, slot, ci->rbuf, 0); |
| mutex_lock(&ci->lock); |
| write_reg(ci, 0x00, 0x21); |
| write_reg(ci, 0x06, 0x1F); |
| msleep(300); |
| |
| write_regm(ci, 0x09, 0x08, 0x08); |
| write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */ |
| write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */ |
| |
| ci->mode = -1; |
| ci->write_busy = 0; |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) |
| { |
| struct cxd *ci = ca->data; |
| |
| mutex_lock(&ci->lock); |
| write_regm(ci, 0x09, 0x00, 0x08); |
| set_mode(ci, 0); |
| cam_mode(ci, 1); |
| mutex_unlock(&ci->lock); |
| return 0; |
| } |
| |
| static int campoll(struct cxd *ci) |
| { |
| u8 istat; |
| |
| read_reg(ci, 0x04, &istat); |
| if (!istat) |
| return 0; |
| write_reg(ci, 0x05, istat); |
| |
| if (istat & 0x40) |
| ci->dr = 1; |
| if (istat & 0x20) |
| ci->write_busy = 0; |
| |
| if (istat & 2) { |
| u8 slotstat; |
| |
| read_reg(ci, 0x01, &slotstat); |
| if (!(2 & slotstat)) { |
| if (!ci->slot_stat) { |
| ci->slot_stat |= |
| DVB_CA_EN50221_POLL_CAM_PRESENT; |
| write_regm(ci, 0x03, 0x08, 0x08); |
| } |
| |
| } else { |
| if (ci->slot_stat) { |
| ci->slot_stat = 0; |
| write_regm(ci, 0x03, 0x00, 0x08); |
| dev_info(&ci->client->dev, "NO CAM\n"); |
| ci->ready = 0; |
| } |
| } |
| if ((istat & 8) && |
| ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { |
| ci->ready = 1; |
| ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; |
| } |
| } |
| return 0; |
| } |
| |
| static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open) |
| { |
| struct cxd *ci = ca->data; |
| u8 slotstat; |
| |
| mutex_lock(&ci->lock); |
| campoll(ci); |
| read_reg(ci, 0x01, &slotstat); |
| mutex_unlock(&ci->lock); |
| |
| return ci->slot_stat; |
| } |
| |
| static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) |
| { |
| struct cxd *ci = ca->data; |
| u8 msb, lsb; |
| u16 len; |
| |
| mutex_lock(&ci->lock); |
| campoll(ci); |
| mutex_unlock(&ci->lock); |
| |
| if (!ci->dr) |
| return 0; |
| |
| mutex_lock(&ci->lock); |
| read_reg(ci, 0x0f, &msb); |
| read_reg(ci, 0x10, &lsb); |
| len = ((u16)msb << 8) | lsb; |
| if (len > ecount || len < 2) { |
| /* read it anyway or cxd may hang */ |
| read_block(ci, 0x12, ci->rbuf, len); |
| mutex_unlock(&ci->lock); |
| return -EIO; |
| } |
| read_block(ci, 0x12, ebuf, len); |
| ci->dr = 0; |
| mutex_unlock(&ci->lock); |
| return len; |
| } |
| |
| static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) |
| { |
| struct cxd *ci = ca->data; |
| |
| if (ci->write_busy) |
| return -EAGAIN; |
| mutex_lock(&ci->lock); |
| write_reg(ci, 0x0d, ecount >> 8); |
| write_reg(ci, 0x0e, ecount & 0xff); |
| write_block(ci, 0x11, ebuf, ecount); |
| ci->write_busy = 1; |
| mutex_unlock(&ci->lock); |
| return ecount; |
| } |
| |
| static struct dvb_ca_en50221 en_templ = { |
| .read_attribute_mem = read_attribute_mem, |
| .write_attribute_mem = write_attribute_mem, |
| .read_cam_control = read_cam_control, |
| .write_cam_control = write_cam_control, |
| .slot_reset = slot_reset, |
| .slot_shutdown = slot_shutdown, |
| .slot_ts_enable = slot_ts_enable, |
| .poll_slot_status = poll_slot_status, |
| .read_data = read_data, |
| .write_data = write_data, |
| }; |
| |
| static int cxd2099_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct cxd *ci; |
| struct cxd2099_cfg *cfg = client->dev.platform_data; |
| static const struct regmap_config rm_cfg = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| }; |
| unsigned int val; |
| int ret; |
| |
| ci = kzalloc(sizeof(*ci), GFP_KERNEL); |
| if (!ci) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ci->client = client; |
| memcpy(&ci->cfg, cfg, sizeof(ci->cfg)); |
| |
| ci->regmap = regmap_init_i2c(client, &rm_cfg); |
| if (IS_ERR(ci->regmap)) { |
| ret = PTR_ERR(ci->regmap); |
| goto err_kfree; |
| } |
| |
| ret = regmap_read(ci->regmap, 0x00, &val); |
| if (ret < 0) { |
| dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n", |
| client->addr); |
| goto err_rmexit; |
| } |
| |
| mutex_init(&ci->lock); |
| ci->lastaddress = 0xff; |
| ci->clk_reg_b = 0x4a; |
| ci->clk_reg_f = 0x1b; |
| |
| ci->en = en_templ; |
| ci->en.data = ci; |
| init(ci); |
| dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr); |
| |
| *cfg->en = &ci->en; |
| |
| if (!buffermode) { |
| ci->en.read_data = NULL; |
| ci->en.write_data = NULL; |
| } else { |
| dev_info(&client->dev, "Using CXD2099AR buffer mode"); |
| } |
| |
| i2c_set_clientdata(client, ci); |
| |
| return 0; |
| |
| err_rmexit: |
| regmap_exit(ci->regmap); |
| err_kfree: |
| kfree(ci); |
| err: |
| |
| return ret; |
| } |
| |
| static int cxd2099_remove(struct i2c_client *client) |
| { |
| struct cxd *ci = i2c_get_clientdata(client); |
| |
| regmap_exit(ci->regmap); |
| kfree(ci); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id cxd2099_id[] = { |
| {"cxd2099", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(i2c, cxd2099_id); |
| |
| static struct i2c_driver cxd2099_driver = { |
| .driver = { |
| .name = "cxd2099", |
| }, |
| .probe = cxd2099_probe, |
| .remove = cxd2099_remove, |
| .id_table = cxd2099_id, |
| }; |
| |
| module_i2c_driver(cxd2099_driver); |
| |
| MODULE_DESCRIPTION("CXD2099AR Common Interface controller driver"); |
| MODULE_AUTHOR("Ralph Metzler"); |
| MODULE_LICENSE("GPL"); |