blob: 84a30ff3968a1eca7e35c7ef6c840d80ac71a057 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <inttypes.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/zalloc.h>
#include <api/fs/fs.h>
#include <byteswap.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <perf/cpumap.h>
#include "map_symbol.h"
#include "branch.h"
#include "debug.h"
#include "evlist.h"
#include "evsel.h"
#include "memswap.h"
#include "map.h"
#include "symbol.h"
#include "session.h"
#include "tool.h"
#include "perf_regs.h"
#include "asm/bug.h"
#include "auxtrace.h"
#include "thread.h"
#include "thread-stack.h"
#include "sample-raw.h"
#include "stat.h"
#include "util.h"
#include "ui/progress.h"
#include "../perf.h"
#include "arch/common.h"
#include <internal/lib.h>
#include <linux/err.h>
#ifdef HAVE_ZSTD_SUPPORT
static int perf_session__process_compressed_event(struct perf_session *session,
union perf_event *event, u64 file_offset)
{
void *src;
size_t decomp_size, src_size;
u64 decomp_last_rem = 0;
size_t mmap_len, decomp_len = session->header.env.comp_mmap_len;
struct decomp *decomp, *decomp_last = session->decomp_last;
if (decomp_last) {
decomp_last_rem = decomp_last->size - decomp_last->head;
decomp_len += decomp_last_rem;
}
mmap_len = sizeof(struct decomp) + decomp_len;
decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (decomp == MAP_FAILED) {
pr_err("Couldn't allocate memory for decompression\n");
return -1;
}
decomp->file_pos = file_offset;
decomp->mmap_len = mmap_len;
decomp->head = 0;
if (decomp_last_rem) {
memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem);
decomp->size = decomp_last_rem;
}
src = (void *)event + sizeof(struct perf_record_compressed);
src_size = event->pack.header.size - sizeof(struct perf_record_compressed);
decomp_size = zstd_decompress_stream(&(session->zstd_data), src, src_size,
&(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem);
if (!decomp_size) {
munmap(decomp, mmap_len);
pr_err("Couldn't decompress data\n");
return -1;
}
decomp->size += decomp_size;
if (session->decomp == NULL) {
session->decomp = decomp;
session->decomp_last = decomp;
} else {
session->decomp_last->next = decomp;
session->decomp_last = decomp;
}
pr_debug("decomp (B): %ld to %ld\n", src_size, decomp_size);
return 0;
}
#else /* !HAVE_ZSTD_SUPPORT */
#define perf_session__process_compressed_event perf_session__process_compressed_event_stub
#endif
static int perf_session__deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool,
u64 file_offset);
static int perf_session__open(struct perf_session *session)
{
struct perf_data *data = session->data;
if (perf_session__read_header(session) < 0) {
pr_err("incompatible file format (rerun with -v to learn more)\n");
return -1;
}
if (perf_data__is_pipe(data))
return 0;
if (perf_header__has_feat(&session->header, HEADER_STAT))
return 0;
if (!perf_evlist__valid_sample_type(session->evlist)) {
pr_err("non matching sample_type\n");
return -1;
}
if (!perf_evlist__valid_sample_id_all(session->evlist)) {
pr_err("non matching sample_id_all\n");
return -1;
}
if (!perf_evlist__valid_read_format(session->evlist)) {
pr_err("non matching read_format\n");
return -1;
}
return 0;
}
void perf_session__set_id_hdr_size(struct perf_session *session)
{
u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);
machines__set_id_hdr_size(&session->machines, id_hdr_size);
}
int perf_session__create_kernel_maps(struct perf_session *session)
{
int ret = machine__create_kernel_maps(&session->machines.host);
if (ret >= 0)
ret = machines__create_guest_kernel_maps(&session->machines);
return ret;
}
static void perf_session__destroy_kernel_maps(struct perf_session *session)
{
machines__destroy_kernel_maps(&session->machines);
}
static bool perf_session__has_comm_exec(struct perf_session *session)
{
struct evsel *evsel;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.comm_exec)
return true;
}
return false;
}
static void perf_session__set_comm_exec(struct perf_session *session)
{
bool comm_exec = perf_session__has_comm_exec(session);
machines__set_comm_exec(&session->machines, comm_exec);
}
static int ordered_events__deliver_event(struct ordered_events *oe,
struct ordered_event *event)
{
struct perf_session *session = container_of(oe, struct perf_session,
ordered_events);
return perf_session__deliver_event(session, event->event,
session->tool, event->file_offset);
}
struct perf_session *perf_session__new(struct perf_data *data,
bool repipe, struct perf_tool *tool)
{
int ret = -ENOMEM;
struct perf_session *session = zalloc(sizeof(*session));
if (!session)
goto out;
session->repipe = repipe;
session->tool = tool;
INIT_LIST_HEAD(&session->auxtrace_index);
machines__init(&session->machines);
ordered_events__init(&session->ordered_events,
ordered_events__deliver_event, NULL);
perf_env__init(&session->header.env);
if (data) {
ret = perf_data__open(data);
if (ret < 0)
goto out_delete;
session->data = data;
if (perf_data__is_read(data)) {
ret = perf_session__open(session);
if (ret < 0)
goto out_delete;
/*
* set session attributes that are present in perf.data
* but not in pipe-mode.
*/
if (!data->is_pipe) {
perf_session__set_id_hdr_size(session);
perf_session__set_comm_exec(session);
}
perf_evlist__init_trace_event_sample_raw(session->evlist);
/* Open the directory data. */
if (data->is_dir) {
ret = perf_data__open_dir(data);
if (ret)
goto out_delete;
}
}
} else {
session->machines.host.env = &perf_env;
}
session->machines.host.single_address_space =
perf_env__single_address_space(session->machines.host.env);
if (!data || perf_data__is_write(data)) {
/*
* In O_RDONLY mode this will be performed when reading the
* kernel MMAP event, in perf_event__process_mmap().
*/
if (perf_session__create_kernel_maps(session) < 0)
pr_warning("Cannot read kernel map\n");
}
/*
* In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is
* processed, so perf_evlist__sample_id_all is not meaningful here.
*/
if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps &&
tool->ordered_events && !perf_evlist__sample_id_all(session->evlist)) {
dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
tool->ordered_events = false;
}
return session;
out_delete:
perf_session__delete(session);
out:
return ERR_PTR(ret);
}
static void perf_session__delete_threads(struct perf_session *session)
{
machine__delete_threads(&session->machines.host);
}
static void perf_session__release_decomp_events(struct perf_session *session)
{
struct decomp *next, *decomp;
size_t mmap_len;
next = session->decomp;
do {
decomp = next;
if (decomp == NULL)
break;
next = decomp->next;
mmap_len = decomp->mmap_len;
munmap(decomp, mmap_len);
} while (1);
}
void perf_session__delete(struct perf_session *session)
{
if (session == NULL)
return;
auxtrace__free(session);
auxtrace_index__free(&session->auxtrace_index);
perf_session__destroy_kernel_maps(session);
perf_session__delete_threads(session);
perf_session__release_decomp_events(session);
perf_env__exit(&session->header.env);
machines__exit(&session->machines);
if (session->data)
perf_data__close(session->data);
free(session);
}
static int process_event_synth_tracing_data_stub(struct perf_session *session
__maybe_unused,
union perf_event *event
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct evlist **pevlist
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct evlist **pevlist
__maybe_unused)
{
if (dump_trace)
perf_event__fprintf_event_update(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct evsel *evsel __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct ordered_events *oe __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round(struct perf_tool *tool,
union perf_event *event,
struct ordered_events *oe);
static int skipn(int fd, off_t n)
{
char buf[4096];
ssize_t ret;
while (n > 0) {
ret = read(fd, buf, min(n, (off_t)sizeof(buf)));
if (ret <= 0)
return ret;
n -= ret;
}
return 0;
}
static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused,
union perf_event *event)
{
dump_printf(": unhandled!\n");
if (perf_data__is_pipe(session->data))
skipn(perf_data__fd(session->data), event->auxtrace.size);
return event->auxtrace.size;
}
static int process_event_op2_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_thread_map_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_thread_map(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_cpu_map_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_cpu_map(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_stat_config_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_stat_config(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_stat_stub(struct perf_session *perf_session __maybe_unused,
union perf_event *event)
{
if (dump_trace)
perf_event__fprintf_stat(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused,
union perf_event *event)
{
if (dump_trace)
perf_event__fprintf_stat_round(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused,
u64 file_offset __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
void perf_tool__fill_defaults(struct perf_tool *tool)
{
if (tool->sample == NULL)
tool->sample = process_event_sample_stub;
if (tool->mmap == NULL)
tool->mmap = process_event_stub;
if (tool->mmap2 == NULL)
tool->mmap2 = process_event_stub;
if (tool->comm == NULL)
tool->comm = process_event_stub;
if (tool->namespaces == NULL)
tool->namespaces = process_event_stub;
if (tool->fork == NULL)
tool->fork = process_event_stub;
if (tool->exit == NULL)
tool->exit = process_event_stub;
if (tool->lost == NULL)
tool->lost = perf_event__process_lost;
if (tool->lost_samples == NULL)
tool->lost_samples = perf_event__process_lost_samples;
if (tool->aux == NULL)
tool->aux = perf_event__process_aux;
if (tool->itrace_start == NULL)
tool->itrace_start = perf_event__process_itrace_start;
if (tool->context_switch == NULL)
tool->context_switch = perf_event__process_switch;
if (tool->ksymbol == NULL)
tool->ksymbol = perf_event__process_ksymbol;
if (tool->bpf == NULL)
tool->bpf = perf_event__process_bpf;
if (tool->read == NULL)
tool->read = process_event_sample_stub;
if (tool->throttle == NULL)
tool->throttle = process_event_stub;
if (tool->unthrottle == NULL)
tool->unthrottle = process_event_stub;
if (tool->attr == NULL)
tool->attr = process_event_synth_attr_stub;
if (tool->event_update == NULL)
tool->event_update = process_event_synth_event_update_stub;
if (tool->tracing_data == NULL)
tool->tracing_data = process_event_synth_tracing_data_stub;
if (tool->build_id == NULL)
tool->build_id = process_event_op2_stub;
if (tool->finished_round == NULL) {
if (tool->ordered_events)
tool->finished_round = process_finished_round;
else
tool->finished_round = process_finished_round_stub;
}
if (tool->id_index == NULL)
tool->id_index = process_event_op2_stub;
if (tool->auxtrace_info == NULL)
tool->auxtrace_info = process_event_op2_stub;
if (tool->auxtrace == NULL)
tool->auxtrace = process_event_auxtrace_stub;
if (tool->auxtrace_error == NULL)
tool->auxtrace_error = process_event_op2_stub;
if (tool->thread_map == NULL)
tool->thread_map = process_event_thread_map_stub;
if (tool->cpu_map == NULL)
tool->cpu_map = process_event_cpu_map_stub;
if (tool->stat_config == NULL)
tool->stat_config = process_event_stat_config_stub;
if (tool->stat == NULL)
tool->stat = process_stat_stub;
if (tool->stat_round == NULL)
tool->stat_round = process_stat_round_stub;
if (tool->time_conv == NULL)
tool->time_conv = process_event_op2_stub;
if (tool->feature == NULL)
tool->feature = process_event_op2_stub;
if (tool->compressed == NULL)
tool->compressed = perf_session__process_compressed_event;
}
static void swap_sample_id_all(union perf_event *event, void *data)
{
void *end = (void *) event + event->header.size;
int size = end - data;
BUG_ON(size % sizeof(u64));
mem_bswap_64(data, size);
}
static void perf_event__all64_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
struct perf_event_header *hdr = &event->header;
mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
}
static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
{
event->comm.pid = bswap_32(event->comm.pid);
event->comm.tid = bswap_32(event->comm.tid);
if (sample_id_all) {
void *data = &event->comm.comm;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap.pid = bswap_32(event->mmap.pid);
event->mmap.tid = bswap_32(event->mmap.tid);
event->mmap.start = bswap_64(event->mmap.start);
event->mmap.len = bswap_64(event->mmap.len);
event->mmap.pgoff = bswap_64(event->mmap.pgoff);
if (sample_id_all) {
void *data = &event->mmap.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap2_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap2.pid = bswap_32(event->mmap2.pid);
event->mmap2.tid = bswap_32(event->mmap2.tid);
event->mmap2.start = bswap_64(event->mmap2.start);
event->mmap2.len = bswap_64(event->mmap2.len);
event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
event->mmap2.maj = bswap_32(event->mmap2.maj);
event->mmap2.min = bswap_32(event->mmap2.min);
event->mmap2.ino = bswap_64(event->mmap2.ino);
if (sample_id_all) {
void *data = &event->mmap2.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
{
event->fork.pid = bswap_32(event->fork.pid);
event->fork.tid = bswap_32(event->fork.tid);
event->fork.ppid = bswap_32(event->fork.ppid);
event->fork.ptid = bswap_32(event->fork.ptid);
event->fork.time = bswap_64(event->fork.time);
if (sample_id_all)
swap_sample_id_all(event, &event->fork + 1);
}
static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
{
event->read.pid = bswap_32(event->read.pid);
event->read.tid = bswap_32(event->read.tid);
event->read.value = bswap_64(event->read.value);
event->read.time_enabled = bswap_64(event->read.time_enabled);
event->read.time_running = bswap_64(event->read.time_running);
event->read.id = bswap_64(event->read.id);
if (sample_id_all)
swap_sample_id_all(event, &event->read + 1);
}
static void perf_event__aux_swap(union perf_event *event, bool sample_id_all)
{
event->aux.aux_offset = bswap_64(event->aux.aux_offset);
event->aux.aux_size = bswap_64(event->aux.aux_size);
event->aux.flags = bswap_64(event->aux.flags);
if (sample_id_all)
swap_sample_id_all(event, &event->aux + 1);
}
static void perf_event__itrace_start_swap(union perf_event *event,
bool sample_id_all)
{
event->itrace_start.pid = bswap_32(event->itrace_start.pid);
event->itrace_start.tid = bswap_32(event->itrace_start.tid);
if (sample_id_all)
swap_sample_id_all(event, &event->itrace_start + 1);
}
static void perf_event__switch_swap(union perf_event *event, bool sample_id_all)
{
if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) {
event->context_switch.next_prev_pid =
bswap_32(event->context_switch.next_prev_pid);
event->context_switch.next_prev_tid =
bswap_32(event->context_switch.next_prev_tid);
}
if (sample_id_all)
swap_sample_id_all(event, &event->context_switch + 1);
}
static void perf_event__throttle_swap(union perf_event *event,
bool sample_id_all)
{
event->throttle.time = bswap_64(event->throttle.time);
event->throttle.id = bswap_64(event->throttle.id);
event->throttle.stream_id = bswap_64(event->throttle.stream_id);
if (sample_id_all)
swap_sample_id_all(event, &event->throttle + 1);
}
static void perf_event__namespaces_swap(union perf_event *event,
bool sample_id_all)
{
u64 i;
event->namespaces.pid = bswap_32(event->namespaces.pid);
event->namespaces.tid = bswap_32(event->namespaces.tid);
event->namespaces.nr_namespaces = bswap_64(event->namespaces.nr_namespaces);
for (i = 0; i < event->namespaces.nr_namespaces; i++) {
struct perf_ns_link_info *ns = &event->namespaces.link_info[i];
ns->dev = bswap_64(ns->dev);
ns->ino = bswap_64(ns->ino);
}
if (sample_id_all)
swap_sample_id_all(event, &event->namespaces.link_info[i]);
}
static u8 revbyte(u8 b)
{
int rev = (b >> 4) | ((b & 0xf) << 4);
rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
return (u8) rev;
}
/*
* XXX this is hack in attempt to carry flags bitfield
* through endian village. ABI says:
*
* Bit-fields are allocated from right to left (least to most significant)
* on little-endian implementations and from left to right (most to least
* significant) on big-endian implementations.
*
* The above seems to be byte specific, so we need to reverse each
* byte of the bitfield. 'Internet' also says this might be implementation
* specific and we probably need proper fix and carry perf_event_attr
* bitfield flags in separate data file FEAT_ section. Thought this seems
* to work for now.
*/
static void swap_bitfield(u8 *p, unsigned len)
{
unsigned i;
for (i = 0; i < len; i++) {
*p = revbyte(*p);
p++;
}
}
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
attr->type = bswap_32(attr->type);
attr->size = bswap_32(attr->size);
#define bswap_safe(f, n) \
(attr->size > (offsetof(struct perf_event_attr, f) + \
sizeof(attr->f) * (n)))
#define bswap_field(f, sz) \
do { \
if (bswap_safe(f, 0)) \
attr->f = bswap_##sz(attr->f); \
} while(0)
#define bswap_field_16(f) bswap_field(f, 16)
#define bswap_field_32(f) bswap_field(f, 32)
#define bswap_field_64(f) bswap_field(f, 64)
bswap_field_64(config);
bswap_field_64(sample_period);
bswap_field_64(sample_type);
bswap_field_64(read_format);
bswap_field_32(wakeup_events);
bswap_field_32(bp_type);
bswap_field_64(bp_addr);
bswap_field_64(bp_len);
bswap_field_64(branch_sample_type);
bswap_field_64(sample_regs_user);
bswap_field_32(sample_stack_user);
bswap_field_32(aux_watermark);
bswap_field_16(sample_max_stack);
/*
* After read_format are bitfields. Check read_format because
* we are unable to use offsetof on bitfield.
*/
if (bswap_safe(read_format, 1))
swap_bitfield((u8 *) (&attr->read_format + 1),
sizeof(u64));
#undef bswap_field_64
#undef bswap_field_32
#undef bswap_field
#undef bswap_safe
}
static void perf_event__hdr_attr_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
size_t size;
perf_event__attr_swap(&event->attr.attr);
size = event->header.size;
size -= (void *)&event->attr.id - (void *)event;
mem_bswap_64(event->attr.id, size);
}
static void perf_event__event_update_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->event_update.type = bswap_64(event->event_update.type);
event->event_update.id = bswap_64(event->event_update.id);
}
static void perf_event__event_type_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->event_type.event_type.event_id =
bswap_64(event->event_type.event_type.event_id);
}
static void perf_event__tracing_data_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->tracing_data.size = bswap_32(event->tracing_data.size);
}
static void perf_event__auxtrace_info_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
size_t size;
event->auxtrace_info.type = bswap_32(event->auxtrace_info.type);
size = event->header.size;
size -= (void *)&event->auxtrace_info.priv - (void *)event;
mem_bswap_64(event->auxtrace_info.priv, size);
}
static void perf_event__auxtrace_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->auxtrace.size = bswap_64(event->auxtrace.size);
event->auxtrace.offset = bswap_64(event->auxtrace.offset);
event->auxtrace.reference = bswap_64(event->auxtrace.reference);
event->auxtrace.idx = bswap_32(event->auxtrace.idx);
event->auxtrace.tid = bswap_32(event->auxtrace.tid);
event->auxtrace.cpu = bswap_32(event->auxtrace.cpu);
}
static void perf_event__auxtrace_error_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->auxtrace_error.type = bswap_32(event->auxtrace_error.type);
event->auxtrace_error.code = bswap_32(event->auxtrace_error.code);
event->auxtrace_error.cpu = bswap_32(event->auxtrace_error.cpu);
event->auxtrace_error.pid = bswap_32(event->auxtrace_error.pid);
event->auxtrace_error.tid = bswap_32(event->auxtrace_error.tid);
event->auxtrace_error.fmt = bswap_32(event->auxtrace_error.fmt);
event->auxtrace_error.ip = bswap_64(event->auxtrace_error.ip);
if (event->auxtrace_error.fmt)
event->auxtrace_error.time = bswap_64(event->auxtrace_error.time);
}
static void perf_event__thread_map_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
unsigned i;
event->thread_map.nr = bswap_64(event->thread_map.nr);
for (i = 0; i < event->thread_map.nr; i++)
event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid);
}
static void perf_event__cpu_map_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
struct perf_record_cpu_map_data *data = &event->cpu_map.data;
struct cpu_map_entries *cpus;
struct perf_record_record_cpu_map *mask;
unsigned i;
data->type = bswap_64(data->type);
switch (data->type) {
case PERF_CPU_MAP__CPUS:
cpus = (struct cpu_map_entries *)data->data;
cpus->nr = bswap_16(cpus->nr);
for (i = 0; i < cpus->nr; i++)
cpus->cpu[i] = bswap_16(cpus->cpu[i]);
break;
case PERF_CPU_MAP__MASK:
mask = (struct perf_record_record_cpu_map *)data->data;
mask->nr = bswap_16(mask->nr);
mask->long_size = bswap_16(mask->long_size);
switch (mask->long_size) {
case 4: mem_bswap_32(&mask->mask, mask->nr); break;
case 8: mem_bswap_64(&mask->mask, mask->nr); break;
default:
pr_err("cpu_map swap: unsupported long size\n");
}
default:
break;
}
}
static void perf_event__stat_config_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
u64 size;
size = event->stat_config.nr * sizeof(event->stat_config.data[0]);
size += 1; /* nr item itself */
mem_bswap_64(&event->stat_config.nr, size);
}
static void perf_event__stat_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->stat.id = bswap_64(event->stat.id);
event->stat.thread = bswap_32(event->stat.thread);
event->stat.cpu = bswap_32(event->stat.cpu);
event->stat.val = bswap_64(event->stat.val);
event->stat.ena = bswap_64(event->stat.ena);
event->stat.run = bswap_64(event->stat.run);
}
static void perf_event__stat_round_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->stat_round.type = bswap_64(event->stat_round.type);
event->stat_round.time = bswap_64(event->stat_round.time);
}
typedef void (*perf_event__swap_op)(union perf_event *event,
bool sample_id_all);
static perf_event__swap_op perf_event__swap_ops[] = {
[PERF_RECORD_MMAP] = perf_event__mmap_swap,
[PERF_RECORD_MMAP2] = perf_event__mmap2_swap,
[PERF_RECORD_COMM] = perf_event__comm_swap,
[PERF_RECORD_FORK] = perf_event__task_swap,
[PERF_RECORD_EXIT] = perf_event__task_swap,
[PERF_RECORD_LOST] = perf_event__all64_swap,
[PERF_RECORD_READ] = perf_event__read_swap,
[PERF_RECORD_THROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_SAMPLE] = perf_event__all64_swap,
[PERF_RECORD_AUX] = perf_event__aux_swap,
[PERF_RECORD_ITRACE_START] = perf_event__itrace_start_swap,
[PERF_RECORD_LOST_SAMPLES] = perf_event__all64_swap,
[PERF_RECORD_SWITCH] = perf_event__switch_swap,
[PERF_RECORD_SWITCH_CPU_WIDE] = perf_event__switch_swap,
[PERF_RECORD_NAMESPACES] = perf_event__namespaces_swap,
[PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap,
[PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap,
[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
[PERF_RECORD_HEADER_BUILD_ID] = NULL,
[PERF_RECORD_ID_INDEX] = perf_event__all64_swap,
[PERF_RECORD_AUXTRACE_INFO] = perf_event__auxtrace_info_swap,
[PERF_RECORD_AUXTRACE] = perf_event__auxtrace_swap,
[PERF_RECORD_AUXTRACE_ERROR] = perf_event__auxtrace_error_swap,
[PERF_RECORD_THREAD_MAP] = perf_event__thread_map_swap,
[PERF_RECORD_CPU_MAP] = perf_event__cpu_map_swap,
[PERF_RECORD_STAT_CONFIG] = perf_event__stat_config_swap,
[PERF_RECORD_STAT] = perf_event__stat_swap,
[PERF_RECORD_STAT_ROUND] = perf_event__stat_round_swap,
[PERF_RECORD_EVENT_UPDATE] = perf_event__event_update_swap,
[PERF_RECORD_TIME_CONV] = perf_event__all64_swap,
[PERF_RECORD_HEADER_MAX] = NULL,
};
/*
* When perf record finishes a pass on every buffers, it records this pseudo
* event.
* We record the max timestamp t found in the pass n.
* Assuming these timestamps are monotonic across cpus, we know that if
* a buffer still has events with timestamps below t, they will be all
* available and then read in the pass n + 1.
* Hence when we start to read the pass n + 2, we can safely flush every
* events with timestamps below t.
*
* ============ PASS n =================
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 1 | 2
* 2 | 3
* - | 4 <--- max recorded
*
* ============ PASS n + 1 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 3 | 5
* 4 | 6
* 5 | 7 <---- max recorded
*
* Flush every events below timestamp 4
*
* ============ PASS n + 2 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 6 | 8
* 7 | 9
* - | 10
*
* Flush every events below timestamp 7
* etc...
*/
static int process_finished_round(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct ordered_events *oe)
{
if (dump_trace)
fprintf(stdout, "\n");
return ordered_events__flush(oe, OE_FLUSH__ROUND);
}
int perf_session__queue_event(struct perf_session *s, union perf_event *event,
u64 timestamp, u64 file_offset)
{
return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset);
}
static void callchain__lbr_callstack_printf(struct perf_sample *sample)
{
struct ip_callchain *callchain = sample->callchain;
struct branch_stack *lbr_stack = sample->branch_stack;
u64 kernel_callchain_nr = callchain->nr;
unsigned int i;
for (i = 0; i < kernel_callchain_nr; i++) {
if (callchain->ips[i] == PERF_CONTEXT_USER)
break;
}
if ((i != kernel_callchain_nr) && lbr_stack->nr) {
u64 total_nr;
/*
* LBR callstack can only get user call chain,
* i is kernel call chain number,
* 1 is PERF_CONTEXT_USER.
*
* The user call chain is stored in LBR registers.
* LBR are pair registers. The caller is stored
* in "from" register, while the callee is stored
* in "to" register.
* For example, there is a call stack
* "A"->"B"->"C"->"D".
* The LBR registers will recorde like
* "C"->"D", "B"->"C", "A"->"B".
* So only the first "to" register and all "from"
* registers are needed to construct the whole stack.
*/
total_nr = i + 1 + lbr_stack->nr + 1;
kernel_callchain_nr = i + 1;
printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr);
for (i = 0; i < kernel_callchain_nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
i, callchain->ips[i]);
printf("..... %2d: %016" PRIx64 "\n",
(int)(kernel_callchain_nr), lbr_stack->entries[0].to);
for (i = 0; i < lbr_stack->nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
(int)(i + kernel_callchain_nr + 1), lbr_stack->entries[i].from);
}
}
static void callchain__printf(struct evsel *evsel,
struct perf_sample *sample)
{
unsigned int i;
struct ip_callchain *callchain = sample->callchain;
if (perf_evsel__has_branch_callstack(evsel))
callchain__lbr_callstack_printf(sample);
printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr);
for (i = 0; i < callchain->nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
i, callchain->ips[i]);
}
static void branch_stack__printf(struct perf_sample *sample, bool callstack)
{
uint64_t i;
printf("%s: nr:%" PRIu64 "\n",
!callstack ? "... branch stack" : "... branch callstack",
sample->branch_stack->nr);
for (i = 0; i < sample->branch_stack->nr; i++) {
struct branch_entry *e = &sample->branch_stack->entries[i];
if (!callstack) {
printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x\n",
i, e->from, e->to,
(unsigned short)e->flags.cycles,
e->flags.mispred ? "M" : " ",
e->flags.predicted ? "P" : " ",
e->flags.abort ? "A" : " ",
e->flags.in_tx ? "T" : " ",
(unsigned)e->flags.reserved);
} else {
printf("..... %2"PRIu64": %016" PRIx64 "\n",
i, i > 0 ? e->from : e->to);
}
}
}
static void regs_dump__printf(u64 mask, u64 *regs)
{
unsigned rid, i = 0;
for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
u64 val = regs[i++];
printf(".... %-5s 0x%" PRIx64 "\n",
perf_reg_name(rid), val);
}
}
static const char *regs_abi[] = {
[PERF_SAMPLE_REGS_ABI_NONE] = "none",
[PERF_SAMPLE_REGS_ABI_32] = "32-bit",
[PERF_SAMPLE_REGS_ABI_64] = "64-bit",
};
static inline const char *regs_dump_abi(struct regs_dump *d)
{
if (d->abi > PERF_SAMPLE_REGS_ABI_64)
return "unknown";
return regs_abi[d->abi];
}
static void regs__printf(const char *type, struct regs_dump *regs)
{
u64 mask = regs->mask;
printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n",
type,
mask,
regs_dump_abi(regs));
regs_dump__printf(mask, regs->regs);
}
static void regs_user__printf(struct perf_sample *sample)
{
struct regs_dump *user_regs = &sample->user_regs;
if (user_regs->regs)
regs__printf("user", user_regs);
}
static void regs_intr__printf(struct perf_sample *sample)
{
struct regs_dump *intr_regs = &sample->intr_regs;
if (intr_regs->regs)
regs__printf("intr", intr_regs);
}
static void stack_user__printf(struct stack_dump *dump)
{
printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
dump->size, dump->offset);
}
static void perf_evlist__print_tstamp(struct evlist *evlist,
union perf_event *event,
struct perf_sample *sample)
{
u64 sample_type = __perf_evlist__combined_sample_type(evlist);
if (event->header.type != PERF_RECORD_SAMPLE &&
!perf_evlist__sample_id_all(evlist)) {
fputs("-1 -1 ", stdout);
return;
}
if ((sample_type & PERF_SAMPLE_CPU))
printf("%u ", sample->cpu);
if (sample_type & PERF_SAMPLE_TIME)
printf("%" PRIu64 " ", sample->time);
}
static void sample_read__printf(struct perf_sample *sample, u64 read_format)
{
printf("... sample_read:\n");
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
printf("...... time enabled %016" PRIx64 "\n",
sample->read.time_enabled);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
printf("...... time running %016" PRIx64 "\n",
sample->read.time_running);
if (read_format & PERF_FORMAT_GROUP) {
u64 i;
printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
for (i = 0; i < sample->read.group.nr; i++) {
struct sample_read_value *value;
value = &sample->read.group.values[i];
printf("..... id %016" PRIx64
", value %016" PRIx64 "\n",
value->id, value->value);
}
} else
printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n",
sample->read.one.id, sample->read.one.value);
}
static void dump_event(struct evlist *evlist, union perf_event *event,
u64 file_offset, struct perf_sample *sample)
{
if (!dump_trace)
return;
printf("\n%#" PRIx64 " [%#x]: event: %d\n",
file_offset, event->header.size, event->header.type);
trace_event(event);
if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw)
evlist->trace_event_sample_raw(evlist, event, sample);
if (sample)
perf_evlist__print_tstamp(evlist, event, sample);
printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
event->header.size, perf_event__name(event->header.type));
}
static void dump_sample(struct evsel *evsel, union perf_event *event,
struct perf_sample *sample)
{
u64 sample_type;
if (!dump_trace)
return;
printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
event->header.misc, sample->pid, sample->tid, sample->ip,
sample->period, sample->addr);
sample_type = evsel->core.attr.sample_type;
if (evsel__has_callchain(evsel))
callchain__printf(evsel, sample);
if (sample_type & PERF_SAMPLE_BRANCH_STACK)
branch_stack__printf(sample, perf_evsel__has_branch_callstack(evsel));
if (sample_type & PERF_SAMPLE_REGS_USER)
regs_user__printf(sample);
if (sample_type & PERF_SAMPLE_REGS_INTR)
regs_intr__printf(sample);
if (sample_type & PERF_SAMPLE_STACK_USER)
stack_user__printf(&sample->user_stack);
if (sample_type & PERF_SAMPLE_WEIGHT)
printf("... weight: %" PRIu64 "\n", sample->weight);
if (sample_type & PERF_SAMPLE_DATA_SRC)
printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
if (sample_type & PERF_SAMPLE_PHYS_ADDR)
printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr);
if (sample_type & PERF_SAMPLE_TRANSACTION)
printf("... transaction: %" PRIx64 "\n", sample->transaction);
if (sample_type & PERF_SAMPLE_READ)
sample_read__printf(sample, evsel->core.attr.read_format);
}
static void dump_read(struct evsel *evsel, union perf_event *event)
{
struct perf_record_read *read_event = &event->read;
u64 read_format;
if (!dump_trace)
return;
printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid,
perf_evsel__name(evsel),
event->read.value);
if (!evsel)
return;
read_format = evsel->core.attr.read_format;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
printf("... time running : %" PRI_lu64 "\n", read_event->time_running);
if (read_format & PERF_FORMAT_ID)
printf("... id : %" PRI_lu64 "\n", read_event->id);
}
static struct machine *machines__find_for_cpumode(struct machines *machines,
union perf_event *event,
struct perf_sample *sample)
{
struct machine *machine;
if (perf_guest &&
((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
(sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) {
u32 pid;
if (event->header.type == PERF_RECORD_MMAP
|| event->header.type == PERF_RECORD_MMAP2)
pid = event->mmap.pid;
else
pid = sample->pid;
machine = machines__find(machines, pid);
if (!machine)
machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
return machine;
}
return &machines->host;
}
static int deliver_sample_value(struct evlist *evlist,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct sample_read_value *v,
struct machine *machine)
{
struct perf_sample_id *sid = perf_evlist__id2sid(evlist, v->id);
struct evsel *evsel;
if (sid) {
sample->id = v->id;
sample->period = v->value - sid->period;
sid->period = v->value;
}
if (!sid || sid->evsel == NULL) {
++evlist->stats.nr_unknown_id;
return 0;
}
/*
* There's no reason to deliver sample
* for zero period, bail out.
*/
if (!sample->period)
return 0;
evsel = container_of(sid->evsel, struct evsel, core);
return tool->sample(tool, event, sample, evsel, machine);
}
static int deliver_sample_group(struct evlist *evlist,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct machine *machine)
{
int ret = -EINVAL;
u64 i;
for (i = 0; i < sample->read.group.nr; i++) {
ret = deliver_sample_value(evlist, tool, event, sample,
&sample->read.group.values[i],
machine);
if (ret)
break;
}
return ret;
}
static int
perf_evlist__deliver_sample(struct evlist *evlist,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct evsel *evsel,
struct machine *machine)
{
/* We know evsel != NULL. */
u64 sample_type = evsel->core.attr.sample_type;
u64 read_format = evsel->core.attr.read_format;
/* Standard sample delivery. */
if (!(sample_type & PERF_SAMPLE_READ))
return tool->sample(tool, event, sample, evsel, machine);
/* For PERF_SAMPLE_READ we have either single or group mode. */
if (read_format & PERF_FORMAT_GROUP)
return deliver_sample_group(evlist, tool, event, sample,
machine);
else
return deliver_sample_value(evlist, tool, event, sample,
&sample->read.one, machine);
}
static int machines__deliver_event(struct machines *machines,
struct evlist *evlist,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool, u64 file_offset)
{
struct evsel *evsel;
struct machine *machine;
dump_event(evlist, event, file_offset, sample);
evsel = perf_evlist__id2evsel(evlist, sample->id);
machine = machines__find_for_cpumode(machines, event, sample);
switch (event->header.type) {
case PERF_RECORD_SAMPLE:
if (evsel == NULL) {
++evlist->stats.nr_unknown_id;
return 0;
}
dump_sample(evsel, event, sample);
if (machine == NULL) {
++evlist->stats.nr_unprocessable_samples;
return 0;
}
return perf_evlist__deliver_sample(evlist, tool, event, sample, evsel, machine);
case PERF_RECORD_MMAP:
return tool->mmap(tool, event, sample, machine);
case PERF_RECORD_MMAP2:
if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT)
++evlist->stats.nr_proc_map_timeout;
return tool->mmap2(tool, event, sample, machine);
case PERF_RECORD_COMM:
return tool->comm(tool, event, sample, machine);
case PERF_RECORD_NAMESPACES:
return tool->namespaces(tool, event, sample, machine);
case PERF_RECORD_FORK:
return tool->fork(tool, event, sample, machine);
case PERF_RECORD_EXIT:
return tool->exit(tool, event, sample, machine);
case PERF_RECORD_LOST:
if (tool->lost == perf_event__process_lost)
evlist->stats.total_lost += event->lost.lost;
return tool->lost(tool, event, sample, machine);
case PERF_RECORD_LOST_SAMPLES:
if (tool->lost_samples == perf_event__process_lost_samples)
evlist->stats.total_lost_samples += event->lost_samples.lost;
return tool->lost_samples(tool, event, sample, machine);
case PERF_RECORD_READ:
dump_read(evsel, event);
return tool->read(tool, event, sample, evsel, machine);
case PERF_RECORD_THROTTLE:
return tool->throttle(tool, event, sample, machine);
case PERF_RECORD_UNTHROTTLE:
return tool->unthrottle(tool, event, sample, machine);
case PERF_RECORD_AUX:
if (tool->aux == perf_event__process_aux) {
if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
evlist->stats.total_aux_lost += 1;
if (event->aux.flags & PERF_AUX_FLAG_PARTIAL)
evlist->stats.total_aux_partial += 1;
}
return tool->aux(tool, event, sample, machine);
case PERF_RECORD_ITRACE_START:
return tool->itrace_start(tool, event, sample, machine);
case PERF_RECORD_SWITCH:
case PERF_RECORD_SWITCH_CPU_WIDE:
return tool->context_switch(tool, event, sample, machine);
case PERF_RECORD_KSYMBOL:
return tool->ksymbol(tool, event, sample, machine);
case PERF_RECORD_BPF_EVENT:
return tool->bpf(tool, event, sample, machine);
default:
++evlist->stats.nr_unknown_events;
return -1;
}
}
static int perf_session__deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool,
u64 file_offset)
{
struct perf_sample sample;
int ret;
ret = perf_evlist__parse_sample(session->evlist, event, &sample);
if (ret) {
pr_err("Can't parse sample, err = %d\n", ret);
return ret;
}
ret = auxtrace__process_event(session, event, &sample, tool);
if (ret < 0)
return ret;
if (ret > 0)
return 0;
return machines__deliver_event(&session->machines, session->evlist,
event, &sample, tool, file_offset);
}
static s64 perf_session__process_user_event(struct perf_session *session,
union perf_event *event,
u64 file_offset)
{
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
struct perf_sample sample = { .time = 0, };
int fd = perf_data__fd(session->data);
int err;
if (event->header.type != PERF_RECORD_COMPRESSED ||
tool->compressed == perf_session__process_compressed_event_stub)
dump_event(session->evlist, event, file_offset, &sample);
/* These events are processed right away */
switch (event->header.type) {
case PERF_RECORD_HEADER_ATTR:
err = tool->attr(tool, event, &session->evlist);
if (err == 0) {
perf_session__set_id_hdr_size(session);
perf_session__set_comm_exec(session);
}
return err;
case PERF_RECORD_EVENT_UPDATE:
return tool->event_update(tool, event, &session->evlist);
case PERF_RECORD_HEADER_EVENT_TYPE:
/*
* Depreceated, but we need to handle it for sake
* of old data files create in pipe mode.
*/
return 0;
case PERF_RECORD_HEADER_TRACING_DATA:
/* setup for reading amidst mmap */
lseek(fd, file_offset, SEEK_SET);
return tool->tracing_data(session, event);
case PERF_RECORD_HEADER_BUILD_ID:
return tool->build_id(session, event);
case PERF_RECORD_FINISHED_ROUND:
return tool->finished_round(tool, event, oe);
case PERF_RECORD_ID_INDEX:
return tool->id_index(session, event);
case PERF_RECORD_AUXTRACE_INFO:
return tool->auxtrace_info(session, event);
case PERF_RECORD_AUXTRACE:
/* setup for reading amidst mmap */
lseek(fd, file_offset + event->header.size, SEEK_SET);
return tool->auxtrace(session, event);
case PERF_RECORD_AUXTRACE_ERROR:
perf_session__auxtrace_error_inc(session, event);
return tool->auxtrace_error(session, event);
case PERF_RECORD_THREAD_MAP:
return tool->thread_map(session, event);
case PERF_RECORD_CPU_MAP:
return tool->cpu_map(session, event);
case PERF_RECORD_STAT_CONFIG:
return tool->stat_config(session, event);
case PERF_RECORD_STAT:
return tool->stat(session, event);
case PERF_RECORD_STAT_ROUND:
return tool->stat_round(session, event);
case PERF_RECORD_TIME_CONV:
session->time_conv = event->time_conv;
return tool->time_conv(session, event);
case PERF_RECORD_HEADER_FEATURE:
return tool->feature(session, event);
case PERF_RECORD_COMPRESSED:
err = tool->compressed(session, event, file_offset);
if (err)
dump_event(session->evlist, event, file_offset, &sample);
return err;
default:
return -EINVAL;
}
}
int perf_session__deliver_synth_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample)
{
struct evlist *evlist = session->evlist;
struct perf_tool *tool = session->tool;
events_stats__inc(&evlist->stats, event->header.type);
if (event->header.type >= PERF_RECORD_USER_TYPE_START)
return perf_session__process_user_event(session, event, 0);
return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0);
}
static void event_swap(union perf_event *event, bool sample_id_all)
{
perf_event__swap_op swap;
swap = perf_event__swap_ops[event->header.type];
if (swap)
swap(event, sample_id_all);
}
int perf_session__peek_event(struct perf_session *session, off_t file_offset,
void *buf, size_t buf_sz,
union perf_event **event_ptr,
struct perf_sample *sample)
{
union perf_event *event;
size_t hdr_sz, rest;
int fd;
if (session->one_mmap && !session->header.needs_swap) {
event = file_offset - session->one_mmap_offset +
session->one_mmap_addr;
goto out_parse_sample;
}
if (perf_data__is_pipe(session->data))
return -1;
fd = perf_data__fd(session->data);
hdr_sz = sizeof(struct perf_event_header);
if (buf_sz < hdr_sz)
return -1;
if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 ||
readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz)
return -1;
event = (union perf_event *)buf;
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
if (event->header.size < hdr_sz || event->header.size > buf_sz)
return -1;
rest = event->header.size - hdr_sz;
if (readn(fd, buf, rest) != (ssize_t)rest)
return -1;
if (session->header.needs_swap)
event_swap(event, perf_evlist__sample_id_all(session->evlist));
out_parse_sample:
if (sample && event->header.type < PERF_RECORD_USER_TYPE_START &&
perf_evlist__parse_sample(session->evlist, event, sample))
return -1;
*event_ptr = event;
return 0;
}
static s64 perf_session__process_event(struct perf_session *session,
union perf_event *event, u64 file_offset)
{
struct evlist *evlist = session->evlist;
struct perf_tool *tool = session->tool;
int ret;
if (session->header.needs_swap)
event_swap(event, perf_evlist__sample_id_all(evlist));
if (event->header.type >= PERF_RECORD_HEADER_MAX)
return -EINVAL;
events_stats__inc(&evlist->stats, event->header.type);
if (event->header.type >= PERF_RECORD_USER_TYPE_START)
return perf_session__process_user_event(session, event, file_offset);
if (tool->ordered_events) {
u64 timestamp = -1ULL;
ret = perf_evlist__parse_sample_timestamp(evlist, event, &timestamp);
if (ret && ret != -1)
return ret;
ret = perf_session__queue_event(session, event, timestamp, file_offset);
if (ret != -ETIME)
return ret;
}
return perf_session__deliver_event(session, event, tool, file_offset);
}
void perf_event_header__bswap(struct perf_event_header *hdr)
{
hdr->type = bswap_32(hdr->type);
hdr->misc = bswap_16(hdr->misc);
hdr->size = bswap_16(hdr->size);
}
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
return machine__findnew_thread(&session->machines.host, -1, pid);
}
/*
* Threads are identified by pid and tid, and the idle task has pid == tid == 0.
* So here a single thread is created for that, but actually there is a separate
* idle task per cpu, so there should be one 'struct thread' per cpu, but there
* is only 1. That causes problems for some tools, requiring workarounds. For
* example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
*/
int perf_session__register_idle_thread(struct perf_session *session)
{
struct thread *thread;
int err = 0;
thread = machine__findnew_thread(&session->machines.host, 0, 0);
if (thread == NULL || thread__set_comm(thread, "swapper", 0)) {
pr_err("problem inserting idle task.\n");
err = -1;
}
if (thread == NULL || thread__set_namespaces(thread, 0, NULL)) {
pr_err("problem inserting idle task.\n");
err = -1;
}
/* machine__findnew_thread() got the thread, so put it */
thread__put(thread);
return err;
}
static void
perf_session__warn_order(const struct perf_session *session)
{
const struct ordered_events *oe = &session->ordered_events;
struct evsel *evsel;
bool should_warn = true;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.write_backward)
should_warn = false;
}
if (!should_warn)
return;
if (oe->nr_unordered_events != 0)
ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events);
}
static void perf_session__warn_about_errors(const struct perf_session *session)
{
const struct events_stats *stats = &session->evlist->stats;
if (session->tool->lost == perf_event__process_lost &&
stats->nr_events[PERF_RECORD_LOST] != 0) {
ui__warning("Processed %d events and lost %d chunks!\n\n"
"Check IO/CPU overload!\n\n",
stats->nr_events[0],
stats->nr_events[PERF_RECORD_LOST]);
}
if (session->tool->lost_samples == perf_event__process_lost_samples) {
double drop_rate;
drop_rate = (double)stats->total_lost_samples /
(double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples);
if (drop_rate > 0.05) {
ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n",
stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples,
drop_rate * 100.0);
}
}
if (session->tool->aux == perf_event__process_aux &&
stats->total_aux_lost != 0) {
ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n",
stats->total_aux_lost,
stats->nr_events[PERF_RECORD_AUX]);
}
if (session->tool->aux == perf_event__process_aux &&
stats->total_aux_partial != 0) {
bool vmm_exclusive = false;
(void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive",
&vmm_exclusive);
ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n"
"Are you running a KVM guest in the background?%s\n\n",
stats->total_aux_partial,
stats->nr_events[PERF_RECORD_AUX],
vmm_exclusive ?
"\nReloading kvm_intel module with vmm_exclusive=0\n"
"will reduce the gaps to only guest's timeslices." :
"");
}
if (stats->nr_unknown_events != 0) {
ui__warning("Found %u unknown events!\n\n"
"Is this an older tool processing a perf.data "
"file generated by a more recent tool?\n\n"
"If that is not the case, consider "
"reporting to linux-kernel@vger.kernel.org.\n\n",
stats->nr_unknown_events);
}
if (stats->nr_unknown_id != 0) {
ui__warning("%u samples with id not present in the header\n",
stats->nr_unknown_id);
}
if (stats->nr_invalid_chains != 0) {
ui__warning("Found invalid callchains!\n\n"
"%u out of %u events were discarded for this reason.\n\n"
"Consider reporting to linux-kernel@vger.kernel.org.\n\n",
stats->nr_invalid_chains,
stats->nr_events[PERF_RECORD_SAMPLE]);
}
if (stats->nr_unprocessable_samples != 0) {
ui__warning("%u unprocessable samples recorded.\n"
"Do you have a KVM guest running and not using 'perf kvm'?\n",
stats->nr_unprocessable_samples);
}
perf_session__warn_order(session);
events_stats__auxtrace_error_warn(stats);
if (stats->nr_proc_map_timeout != 0) {
ui__warning("%d map information files for pre-existing threads were\n"
"not processed, if there are samples for addresses they\n"
"will not be resolved, you may find out which are these\n"
"threads by running with -v and redirecting the output\n"
"to a file.\n"
"The time limit to process proc map is too short?\n"
"Increase it by --proc-map-timeout\n",
stats->nr_proc_map_timeout);
}
}
static int perf_session__flush_thread_stack(struct thread *thread,
void *p __maybe_unused)
{
return thread_stack__flush(thread);
}
static int perf_session__flush_thread_stacks(struct perf_session *session)
{
return machines__for_each_thread(&session->machines,
perf_session__flush_thread_stack,
NULL);
}
volatile int session_done;
static int __perf_session__process_decomp_events(struct perf_session *session);
static int __perf_session__process_pipe_events(struct perf_session *session)
{
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
int fd = perf_data__fd(session->data);
union perf_event *event;
uint32_t size, cur_size = 0;
void *buf = NULL;
s64 skip = 0;
u64 head;
ssize_t err;
void *p;
perf_tool__fill_defaults(tool);
head = 0;
cur_size = sizeof(union perf_event);
buf = malloc(cur_size);
if (!buf)
return -errno;
ordered_events__set_copy_on_queue(oe, true);
more:
event = buf;
err = readn(fd, event, sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0)
goto done;
pr_err("failed to read event header\n");
goto out_err;
}
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
size = event->header.size;
if (size < sizeof(struct perf_event_header)) {
pr_err("bad event header size\n");
goto out_err;
}
if (size > cur_size) {
void *new = realloc(buf, size);
if (!new) {
pr_err("failed to allocate memory to read event\n");
goto out_err;
}
buf = new;
cur_size = size;
event = buf;
}
p = event;
p += sizeof(struct perf_event_header);
if (size - sizeof(struct perf_event_header)) {
err = readn(fd, p, size - sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0) {
pr_err("unexpected end of event stream\n");
goto done;
}
pr_err("failed to read event data\n");
goto out_err;
}
}
if ((skip = perf_session__process_event(session, event, head)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
head, event->header.size, event->header.type);
err = -EINVAL;
goto out_err;
}
head += size;
if (skip > 0)
head += skip;
err = __perf_session__process_decomp_events(session);
if (err)
goto out_err;
if (!session_done())
goto more;
done:
/* do the final flush for ordered samples */
err = ordered_events__flush(oe, OE_FLUSH__FINAL);
if (err)
goto out_err;
err = auxtrace__flush_events(session, tool);
if (err)
goto out_err;
err = perf_session__flush_thread_stacks(session);
out_err:
free(buf);
if (!tool->no_warn)
perf_session__warn_about_errors(session);
ordered_events__free(&session->ordered_events);
auxtrace__free_events(session);
return err;
}
static union perf_event *
fetch_mmaped_event(struct perf_session *session,
u64 head, size_t mmap_size, char *buf)
{
union perf_event *event;
/*
* Ensure we have enough space remaining to read
* the size of the event in the headers.
*/
if (head + sizeof(event->header) > mmap_size)
return NULL;
event = (union perf_event *)(buf + head);
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
if (head + event->header.size > mmap_size) {
/* We're not fetching the event so swap back again */
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
pr_debug("%s: head=%#" PRIx64 " event->header_size=%#x, mmap_size=%#zx: fuzzed perf.data?\n",
__func__, head, event->header.size, mmap_size);
return ERR_PTR(-EINVAL);
}
return event;
}
static int __perf_session__process_decomp_events(struct perf_session *session)
{
s64 skip;
u64 size, file_pos = 0;
struct decomp *decomp = session->decomp_last;
if (!decomp)
return 0;
while (decomp->head < decomp->size && !session_done()) {
union perf_event *event = fetch_mmaped_event(session, decomp->head, decomp->size, decomp->data);
if (IS_ERR(event))
return PTR_ERR(event);
if (!event)
break;
size = event->header.size;
if (size < sizeof(struct perf_event_header) ||
(skip = perf_session__process_event(session, event, file_pos)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
decomp->file_pos + decomp->head, event->header.size, event->header.type);
return -EINVAL;
}
if (skip)
size += skip;
decomp->head += size;
}
return 0;
}
/*
* On 64bit we can mmap the data file in one go. No need for tiny mmap
* slices. On 32bit we use 32MB.
*/
#if BITS_PER_LONG == 64
#define MMAP_SIZE ULLONG_MAX
#define NUM_MMAPS 1
#else
#define MMAP_SIZE (32 * 1024 * 1024ULL)
#define NUM_MMAPS 128
#endif
struct reader;
typedef s64 (*reader_cb_t)(struct perf_session *session,
union perf_event *event,
u64 file_offset);
struct reader {
int fd;
u64 data_size;
u64 data_offset;
reader_cb_t process;
};
static int
reader__process_events(struct reader *rd, struct perf_session *session,
struct ui_progress *prog)
{
u64 data_size = rd->data_size;
u64 head, page_offset, file_offset, file_pos, size;
int err = 0, mmap_prot, mmap_flags, map_idx = 0;
size_t mmap_size;
char *buf, *mmaps[NUM_MMAPS];
union perf_event *event;
s64 skip;
page_offset = page_size * (rd->data_offset / page_size);
file_offset = page_offset;
head = rd->data_offset - page_offset;
ui_progress__init_size(prog, data_size, "Processing events...");
data_size += rd->data_offset;
mmap_size = MMAP_SIZE;
if (mmap_size > data_size) {
mmap_size = data_size;
session->one_mmap = true;
}
memset(mmaps, 0, sizeof(mmaps));
mmap_prot = PROT_READ;
mmap_flags = MAP_SHARED;
if (session->header.needs_swap) {
mmap_prot |= PROT_WRITE;
mmap_flags = MAP_PRIVATE;
}
remap:
buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, rd->fd,
file_offset);
if (buf == MAP_FAILED) {
pr_err("failed to mmap file\n");
err = -errno;
goto out;
}
mmaps[map_idx] = buf;
map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
file_pos = file_offset + head;
if (session->one_mmap) {
session->one_mmap_addr = buf;
session->one_mmap_offset = file_offset;
}
more:
event = fetch_mmaped_event(session, head, mmap_size, buf);
if (IS_ERR(event))
return PTR_ERR(event);
if (!event) {
if (mmaps[map_idx]) {
munmap(mmaps[map_idx], mmap_size);
mmaps[map_idx] = NULL;
}
page_offset = page_size * (head / page_size);
file_offset += page_offset;
head -= page_offset;
goto remap;
}
size = event->header.size;
skip = -EINVAL;
if (size < sizeof(struct perf_event_header) ||
(skip = rd->process(session, event, file_pos)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n",
file_offset + head, event->header.size,
event->header.type, strerror(-skip));
err = skip;
goto out;
}
if (skip)
size += skip;
head += size;
file_pos += size;
err = __perf_session__process_decomp_events(session);
if (err)
goto out;
ui_progress__update(prog, size);
if (session_done())
goto out;
if (file_pos < data_size)
goto more;
out:
return err;
}
static s64 process_simple(struct perf_session *session,
union perf_event *event,
u64 file_offset)
{
return perf_session__process_event(session, event, file_offset);
}
static int __perf_session__process_events(struct perf_session *session)
{
struct reader rd = {
.fd = perf_data__fd(session->data),
.data_size = session->header.data_size,
.data_offset = session->header.data_offset,
.process = process_simple,
};
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
struct ui_progress prog;
int err;
perf_tool__fill_defaults(tool);
if (rd.data_size == 0)
return -1;
ui_progress__init_size(&prog, rd.data_size, "Processing events...");
err = reader__process_events(&rd, session, &prog);
if (err)
goto out_err;
/* do the final flush for ordered samples */
err = ordered_events__flush(oe, OE_FLUSH__FINAL);
if (err)
goto out_err;
err = auxtrace__flush_events(session, tool);
if (err)
goto out_err;
err = perf_session__flush_thread_stacks(session);
out_err:
ui_progress__finish();
if (!tool->no_warn)
perf_session__warn_about_errors(session);
/*
* We may switching perf.data output, make ordered_events
* reusable.
*/
ordered_events__reinit(&session->ordered_events);
auxtrace__free_events(session);
session->one_mmap = false;
return err;
}
int perf_session__process_events(struct perf_session *session)
{
if (perf_session__register_idle_thread(session) < 0)
return -ENOMEM;
if (perf_data__is_pipe(session->data))
return __perf_session__process_pipe_events(session);
return __perf_session__process_events(session);
}
bool perf_session__has_traces(struct perf_session *session, const char *msg)
{
struct evsel *evsel;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT)
return true;
}
pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
return false;
}
int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr)
{
char *bracket;
struct ref_reloc_sym *ref;
struct kmap *kmap;
ref = zalloc(sizeof(struct ref_reloc_sym));
if (ref == NULL)
return -ENOMEM;
ref->name = strdup(symbol_name);
if (ref->name == NULL) {
free(ref);
return -ENOMEM;
}
bracket = strchr(ref->name, ']');
if (bracket)
*bracket = '\0';
ref->addr = addr;
kmap = map__kmap(map);
if (kmap)
kmap->ref_reloc_sym = ref;
return 0;
}
size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
{
return machines__fprintf_dsos(&session->machines, fp);
}
size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
bool (skip)(struct dso *dso, int parm), int parm)
{
return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
}
size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
{
size_t ret;
const char *msg = "";
if (perf_header__has_feat(&session->header, HEADER_AUXTRACE))
msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)";
ret = fprintf(fp, "\nAggregated stats:%s\n", msg);
ret += events_stats__fprintf(&session->evlist->stats, fp);
return ret;
}
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
/*
* FIXME: Here we have to actually print all the machines in this
* session, not just the host...
*/
return machine__fprintf(&session->machines.host, fp);
}
struct evsel *perf_session__find_first_evtype(struct perf_session *session,
unsigned int type)
{
struct evsel *pos;
evlist__for_each_entry(session->evlist, pos) {
if (pos->core.attr.type == type)
return pos;
}
return NULL;
}
int perf_session__cpu_bitmap(struct perf_session *session,
const char *cpu_list, unsigned long *cpu_bitmap)
{
int i, err = -1;
struct perf_cpu_map *map;
int nr_cpus = min(session->header.env.nr_cpus_online, MAX_NR_CPUS);
for (i = 0; i < PERF_TYPE_MAX; ++i) {
struct evsel *evsel;
evsel = perf_session__find_first_evtype(session, i);
if (!evsel)
continue;
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) {
pr_err("File does not contain CPU events. "
"Remove -C option to proceed.\n");
return -1;
}
}
map = perf_cpu_map__new(cpu_list);
if (map == NULL) {
pr_err("Invalid cpu_list\n");
return -1;
}
for (i = 0; i < map->nr; i++) {
int cpu = map->map[i];
if (cpu >= nr_cpus) {
pr_err("Requested CPU %d too large. "
"Consider raising MAX_NR_CPUS\n", cpu);
goto out_delete_map;
}
set_bit(cpu, cpu_bitmap);
}
err = 0;
out_delete_map:
perf_cpu_map__put(map);
return err;
}
void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
bool full)
{
if (session == NULL || fp == NULL)
return;
fprintf(fp, "# ========\n");
perf_header__fprintf_info(session, fp, full);
fprintf(fp, "# ========\n#\n");
}
int __perf_session__set_tracepoints_handlers(struct perf_session *session,
const struct evsel_str_handler *assocs,
size_t nr_assocs)
{
struct evsel *evsel;
size_t i;
int err;
for (i = 0; i < nr_assocs; i++) {
/*
* Adding a handler for an event not in the session,
* just ignore it.
*/
evsel = perf_evlist__find_tracepoint_by_name(session->evlist, assocs[i].name);
if (evsel == NULL)
continue;
err = -EEXIST;
if (evsel->handler != NULL)
goto out;
evsel->handler = assocs[i].handler;
}
err = 0;
out:
return err;
}
int perf_event__process_id_index(struct perf_session *session,
union perf_event *event)
{
struct evlist *evlist = session->evlist;
struct perf_record_id_index *ie = &event->id_index;
size_t i, nr, max_nr;
max_nr = (ie->header.size - sizeof(struct perf_record_id_index)) /
sizeof(struct id_index_entry);
nr = ie->nr;
if (nr > max_nr)
return -EINVAL;
if (dump_trace)
fprintf(stdout, " nr: %zu\n", nr);
for (i = 0; i < nr; i++) {
struct id_index_entry *e = &ie->entries[i];
struct perf_sample_id *sid;
if (dump_trace) {
fprintf(stdout, " ... id: %"PRI_lu64, e->id);
fprintf(stdout, " idx: %"PRI_lu64, e->idx);
fprintf(stdout, " cpu: %"PRI_ld64, e->cpu);
fprintf(stdout, " tid: %"PRI_ld64"\n", e->tid);
}
sid = perf_evlist__id2sid(evlist, e->id);
if (!sid)
return -ENOENT;
sid->idx = e->idx;
sid->cpu = e->cpu;
sid->tid = e->tid;
}
return 0;
}