blob: 24f21c726dfad7474da03d6a4a80f329843ff8e4 [file] [log] [blame]
/* pci_sun4v.c: SUN4V specific PCI controller support.
*
* Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/export.h>
#include <linux/log2.h>
#include <linux/of_device.h>
#include <linux/iommu-common.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include "pci_impl.h"
#include "iommu_common.h"
#include "kernel.h"
#include "pci_sun4v.h"
#define DRIVER_NAME "pci_sun4v"
#define PFX DRIVER_NAME ": "
static unsigned long vpci_major;
static unsigned long vpci_minor;
struct vpci_version {
unsigned long major;
unsigned long minor;
};
/* Ordered from largest major to lowest */
static struct vpci_version vpci_versions[] = {
{ .major = 2, .minor = 0 },
{ .major = 1, .minor = 1 },
};
static unsigned long vatu_major = 1;
static unsigned long vatu_minor = 1;
#define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
struct iommu_batch {
struct device *dev; /* Device mapping is for. */
unsigned long prot; /* IOMMU page protections */
unsigned long entry; /* Index into IOTSB. */
u64 *pglist; /* List of physical pages */
unsigned long npages; /* Number of pages in list. */
};
static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
static int iommu_batch_initialized;
/* Interrupts must be disabled. */
static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
{
struct iommu_batch *p = this_cpu_ptr(&iommu_batch);
p->dev = dev;
p->prot = prot;
p->entry = entry;
p->npages = 0;
}
/* Interrupts must be disabled. */
static long iommu_batch_flush(struct iommu_batch *p, u64 mask)
{
struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
u64 *pglist = p->pglist;
u64 index_count;
unsigned long devhandle = pbm->devhandle;
unsigned long prot = p->prot;
unsigned long entry = p->entry;
unsigned long npages = p->npages;
unsigned long iotsb_num;
unsigned long ret;
long num;
/* VPCI maj=1, min=[0,1] only supports read and write */
if (vpci_major < 2)
prot &= (HV_PCI_MAP_ATTR_READ | HV_PCI_MAP_ATTR_WRITE);
while (npages != 0) {
if (mask <= DMA_BIT_MASK(32)) {
num = pci_sun4v_iommu_map(devhandle,
HV_PCI_TSBID(0, entry),
npages,
prot,
__pa(pglist));
if (unlikely(num < 0)) {
pr_err_ratelimited("%s: IOMMU map of [%08lx:%08llx:%lx:%lx:%lx] failed with status %ld\n",
__func__,
devhandle,
HV_PCI_TSBID(0, entry),
npages, prot, __pa(pglist),
num);
return -1;
}
} else {
index_count = HV_PCI_IOTSB_INDEX_COUNT(npages, entry),
iotsb_num = pbm->iommu->atu->iotsb->iotsb_num;
ret = pci_sun4v_iotsb_map(devhandle,
iotsb_num,
index_count,
prot,
__pa(pglist),
&num);
if (unlikely(ret != HV_EOK)) {
pr_err_ratelimited("%s: ATU map of [%08lx:%lx:%llx:%lx:%lx] failed with status %ld\n",
__func__,
devhandle, iotsb_num,
index_count, prot,
__pa(pglist), ret);
return -1;
}
}
entry += num;
npages -= num;
pglist += num;
}
p->entry = entry;
p->npages = 0;
return 0;
}
static inline void iommu_batch_new_entry(unsigned long entry, u64 mask)
{
struct iommu_batch *p = this_cpu_ptr(&iommu_batch);
if (p->entry + p->npages == entry)
return;
if (p->entry != ~0UL)
iommu_batch_flush(p, mask);
p->entry = entry;
}
/* Interrupts must be disabled. */
static inline long iommu_batch_add(u64 phys_page, u64 mask)
{
struct iommu_batch *p = this_cpu_ptr(&iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
p->pglist[p->npages++] = phys_page;
if (p->npages == PGLIST_NENTS)
return iommu_batch_flush(p, mask);
return 0;
}
/* Interrupts must be disabled. */
static inline long iommu_batch_end(u64 mask)
{
struct iommu_batch *p = this_cpu_ptr(&iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
return iommu_batch_flush(p, mask);
}
static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addrp, gfp_t gfp,
unsigned long attrs)
{
u64 mask;
unsigned long flags, order, first_page, npages, n;
unsigned long prot = 0;
struct iommu *iommu;
struct atu *atu;
struct iommu_map_table *tbl;
struct page *page;
void *ret;
long entry;
int nid;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (unlikely(order >= MAX_ORDER))
return NULL;
npages = size >> IO_PAGE_SHIFT;
if (attrs & DMA_ATTR_WEAK_ORDERING)
prot = HV_PCI_MAP_ATTR_RELAXED_ORDER;
nid = dev->archdata.numa_node;
page = alloc_pages_node(nid, gfp, order);
if (unlikely(!page))
return NULL;
first_page = (unsigned long) page_address(page);
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = dev->archdata.iommu;
atu = iommu->atu;
mask = dev->coherent_dma_mask;
if (mask <= DMA_BIT_MASK(32))
tbl = &iommu->tbl;
else
tbl = &atu->tbl;
entry = iommu_tbl_range_alloc(dev, tbl, npages, NULL,
(unsigned long)(-1), 0);
if (unlikely(entry == IOMMU_ERROR_CODE))
goto range_alloc_fail;
*dma_addrp = (tbl->table_map_base + (entry << IO_PAGE_SHIFT));
ret = (void *) first_page;
first_page = __pa(first_page);
local_irq_save(flags);
iommu_batch_start(dev,
(HV_PCI_MAP_ATTR_READ | prot |
HV_PCI_MAP_ATTR_WRITE),
entry);
for (n = 0; n < npages; n++) {
long err = iommu_batch_add(first_page + (n * PAGE_SIZE), mask);
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(iommu_batch_end(mask) < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
iommu_map_fail:
local_irq_restore(flags);
iommu_tbl_range_free(tbl, *dma_addrp, npages, IOMMU_ERROR_CODE);
range_alloc_fail:
free_pages(first_page, order);
return NULL;
}
unsigned long dma_4v_iotsb_bind(unsigned long devhandle,
unsigned long iotsb_num,
struct pci_bus *bus_dev)
{
struct pci_dev *pdev;
unsigned long err;
unsigned int bus;
unsigned int device;
unsigned int fun;
list_for_each_entry(pdev, &bus_dev->devices, bus_list) {
if (pdev->subordinate) {
/* No need to bind pci bridge */
dma_4v_iotsb_bind(devhandle, iotsb_num,
pdev->subordinate);
} else {
bus = bus_dev->number;
device = PCI_SLOT(pdev->devfn);
fun = PCI_FUNC(pdev->devfn);
err = pci_sun4v_iotsb_bind(devhandle, iotsb_num,
HV_PCI_DEVICE_BUILD(bus,
device,
fun));
/* If bind fails for one device it is going to fail
* for rest of the devices because we are sharing
* IOTSB. So in case of failure simply return with
* error.
*/
if (err)
return err;
}
}
return 0;
}
static void dma_4v_iommu_demap(struct device *dev, unsigned long devhandle,
dma_addr_t dvma, unsigned long iotsb_num,
unsigned long entry, unsigned long npages)
{
unsigned long num, flags;
unsigned long ret;
local_irq_save(flags);
do {
if (dvma <= DMA_BIT_MASK(32)) {
num = pci_sun4v_iommu_demap(devhandle,
HV_PCI_TSBID(0, entry),
npages);
} else {
ret = pci_sun4v_iotsb_demap(devhandle, iotsb_num,
entry, npages, &num);
if (unlikely(ret != HV_EOK)) {
pr_err_ratelimited("pci_iotsb_demap() failed with error: %ld\n",
ret);
}
}
entry += num;
npages -= num;
} while (npages != 0);
local_irq_restore(flags);
}
static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
dma_addr_t dvma, unsigned long attrs)
{
struct pci_pbm_info *pbm;
struct iommu *iommu;
struct atu *atu;
struct iommu_map_table *tbl;
unsigned long order, npages, entry;
unsigned long iotsb_num;
u32 devhandle;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
atu = iommu->atu;
devhandle = pbm->devhandle;
if (dvma <= DMA_BIT_MASK(32)) {
tbl = &iommu->tbl;
iotsb_num = 0; /* we don't care for legacy iommu */
} else {
tbl = &atu->tbl;
iotsb_num = atu->iotsb->iotsb_num;
}
entry = ((dvma - tbl->table_map_base) >> IO_PAGE_SHIFT);
dma_4v_iommu_demap(dev, devhandle, dvma, iotsb_num, entry, npages);
iommu_tbl_range_free(tbl, dvma, npages, IOMMU_ERROR_CODE);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t sz,
enum dma_data_direction direction,
unsigned long attrs)
{
struct iommu *iommu;
struct atu *atu;
struct iommu_map_table *tbl;
u64 mask;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr;
unsigned long prot;
dma_addr_t bus_addr, ret;
long entry;
iommu = dev->archdata.iommu;
atu = iommu->atu;
if (unlikely(direction == DMA_NONE))
goto bad;
oaddr = (unsigned long)(page_address(page) + offset);
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
mask = *dev->dma_mask;
if (mask <= DMA_BIT_MASK(32))
tbl = &iommu->tbl;
else
tbl = &atu->tbl;
entry = iommu_tbl_range_alloc(dev, tbl, npages, NULL,
(unsigned long)(-1), 0);
if (unlikely(entry == IOMMU_ERROR_CODE))
goto bad;
bus_addr = (tbl->table_map_base + (entry << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
prot = HV_PCI_MAP_ATTR_READ;
if (direction != DMA_TO_DEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
if (attrs & DMA_ATTR_WEAK_ORDERING)
prot |= HV_PCI_MAP_ATTR_RELAXED_ORDER;
local_irq_save(flags);
iommu_batch_start(dev, prot, entry);
for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
long err = iommu_batch_add(base_paddr, mask);
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(iommu_batch_end(mask) < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
bad:
if (printk_ratelimit())
WARN_ON(1);
return SPARC_MAPPING_ERROR;
iommu_map_fail:
local_irq_restore(flags);
iommu_tbl_range_free(tbl, bus_addr, npages, IOMMU_ERROR_CODE);
return SPARC_MAPPING_ERROR;
}
static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction,
unsigned long attrs)
{
struct pci_pbm_info *pbm;
struct iommu *iommu;
struct atu *atu;
struct iommu_map_table *tbl;
unsigned long npages;
unsigned long iotsb_num;
long entry;
u32 devhandle;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
atu = iommu->atu;
devhandle = pbm->devhandle;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
if (bus_addr <= DMA_BIT_MASK(32)) {
iotsb_num = 0; /* we don't care for legacy iommu */
tbl = &iommu->tbl;
} else {
iotsb_num = atu->iotsb->iotsb_num;
tbl = &atu->tbl;
}
entry = (bus_addr - tbl->table_map_base) >> IO_PAGE_SHIFT;
dma_4v_iommu_demap(dev, devhandle, bus_addr, iotsb_num, entry, npages);
iommu_tbl_range_free(tbl, bus_addr, npages, IOMMU_ERROR_CODE);
}
static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
unsigned long attrs)
{
struct scatterlist *s, *outs, *segstart;
unsigned long flags, handle, prot;
dma_addr_t dma_next = 0, dma_addr;
unsigned int max_seg_size;
unsigned long seg_boundary_size;
int outcount, incount, i;
struct iommu *iommu;
struct atu *atu;
struct iommu_map_table *tbl;
u64 mask;
unsigned long base_shift;
long err;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
if (nelems == 0 || !iommu)
return 0;
atu = iommu->atu;
prot = HV_PCI_MAP_ATTR_READ;
if (direction != DMA_TO_DEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
if (attrs & DMA_ATTR_WEAK_ORDERING)
prot |= HV_PCI_MAP_ATTR_RELAXED_ORDER;
outs = s = segstart = &sglist[0];
outcount = 1;
incount = nelems;
handle = 0;
/* Init first segment length for backout at failure */
outs->dma_length = 0;
local_irq_save(flags);
iommu_batch_start(dev, prot, ~0UL);
max_seg_size = dma_get_max_seg_size(dev);
seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
mask = *dev->dma_mask;
if (mask <= DMA_BIT_MASK(32))
tbl = &iommu->tbl;
else
tbl = &atu->tbl;
base_shift = tbl->table_map_base >> IO_PAGE_SHIFT;
for_each_sg(sglist, s, nelems, i) {
unsigned long paddr, npages, entry, out_entry = 0, slen;
slen = s->length;
/* Sanity check */
if (slen == 0) {
dma_next = 0;
continue;
}
/* Allocate iommu entries for that segment */
paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
entry = iommu_tbl_range_alloc(dev, tbl, npages,
&handle, (unsigned long)(-1), 0);
/* Handle failure */
if (unlikely(entry == IOMMU_ERROR_CODE)) {
pr_err_ratelimited("iommu_alloc failed, iommu %p paddr %lx npages %lx\n",
tbl, paddr, npages);
goto iommu_map_failed;
}
iommu_batch_new_entry(entry, mask);
/* Convert entry to a dma_addr_t */
dma_addr = tbl->table_map_base + (entry << IO_PAGE_SHIFT);
dma_addr |= (s->offset & ~IO_PAGE_MASK);
/* Insert into HW table */
paddr &= IO_PAGE_MASK;
while (npages--) {
err = iommu_batch_add(paddr, mask);
if (unlikely(err < 0L))
goto iommu_map_failed;
paddr += IO_PAGE_SIZE;
}
/* If we are in an open segment, try merging */
if (segstart != s) {
/* We cannot merge if:
* - allocated dma_addr isn't contiguous to previous allocation
*/
if ((dma_addr != dma_next) ||
(outs->dma_length + s->length > max_seg_size) ||
(is_span_boundary(out_entry, base_shift,
seg_boundary_size, outs, s))) {
/* Can't merge: create a new segment */
segstart = s;
outcount++;
outs = sg_next(outs);
} else {
outs->dma_length += s->length;
}
}
if (segstart == s) {
/* This is a new segment, fill entries */
outs->dma_address = dma_addr;
outs->dma_length = slen;
out_entry = entry;
}
/* Calculate next page pointer for contiguous check */
dma_next = dma_addr + slen;
}
err = iommu_batch_end(mask);
if (unlikely(err < 0L))
goto iommu_map_failed;
local_irq_restore(flags);
if (outcount < incount) {
outs = sg_next(outs);
outs->dma_address = SPARC_MAPPING_ERROR;
outs->dma_length = 0;
}
return outcount;
iommu_map_failed:
for_each_sg(sglist, s, nelems, i) {
if (s->dma_length != 0) {
unsigned long vaddr, npages;
vaddr = s->dma_address & IO_PAGE_MASK;
npages = iommu_num_pages(s->dma_address, s->dma_length,
IO_PAGE_SIZE);
iommu_tbl_range_free(tbl, vaddr, npages,
IOMMU_ERROR_CODE);
/* XXX demap? XXX */
s->dma_address = SPARC_MAPPING_ERROR;
s->dma_length = 0;
}
if (s == outs)
break;
}
local_irq_restore(flags);
return 0;
}
static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
unsigned long attrs)
{
struct pci_pbm_info *pbm;
struct scatterlist *sg;
struct iommu *iommu;
struct atu *atu;
unsigned long flags, entry;
unsigned long iotsb_num;
u32 devhandle;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
atu = iommu->atu;
devhandle = pbm->devhandle;
local_irq_save(flags);
sg = sglist;
while (nelems--) {
dma_addr_t dma_handle = sg->dma_address;
unsigned int len = sg->dma_length;
unsigned long npages;
struct iommu_map_table *tbl;
unsigned long shift = IO_PAGE_SHIFT;
if (!len)
break;
npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
if (dma_handle <= DMA_BIT_MASK(32)) {
iotsb_num = 0; /* we don't care for legacy iommu */
tbl = &iommu->tbl;
} else {
iotsb_num = atu->iotsb->iotsb_num;
tbl = &atu->tbl;
}
entry = ((dma_handle - tbl->table_map_base) >> shift);
dma_4v_iommu_demap(dev, devhandle, dma_handle, iotsb_num,
entry, npages);
iommu_tbl_range_free(tbl, dma_handle, npages,
IOMMU_ERROR_CODE);
sg = sg_next(sg);
}
local_irq_restore(flags);
}
static int dma_4v_supported(struct device *dev, u64 device_mask)
{
struct iommu *iommu = dev->archdata.iommu;
u64 dma_addr_mask;
if (device_mask > DMA_BIT_MASK(32) && iommu->atu)
dma_addr_mask = iommu->atu->dma_addr_mask;
else
dma_addr_mask = iommu->dma_addr_mask;
if ((device_mask & dma_addr_mask) == dma_addr_mask)
return 1;
return pci64_dma_supported(to_pci_dev(dev), device_mask);
}
static int dma_4v_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dma_addr == SPARC_MAPPING_ERROR;
}
static const struct dma_map_ops sun4v_dma_ops = {
.alloc = dma_4v_alloc_coherent,
.free = dma_4v_free_coherent,
.map_page = dma_4v_map_page,
.unmap_page = dma_4v_unmap_page,
.map_sg = dma_4v_map_sg,
.unmap_sg = dma_4v_unmap_sg,
.dma_supported = dma_4v_supported,
.mapping_error = dma_4v_mapping_error,
};
static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm, struct device *parent)
{
struct property *prop;
struct device_node *dp;
dp = pbm->op->dev.of_node;
prop = of_find_property(dp, "66mhz-capable", NULL);
pbm->is_66mhz_capable = (prop != NULL);
pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
/* XXX register error interrupt handlers XXX */
}
static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
struct iommu_map_table *iommu)
{
struct iommu_pool *pool;
unsigned long i, pool_nr, cnt = 0;
u32 devhandle;
devhandle = pbm->devhandle;
for (pool_nr = 0; pool_nr < iommu->nr_pools; pool_nr++) {
pool = &(iommu->pools[pool_nr]);
for (i = pool->start; i <= pool->end; i++) {
unsigned long ret, io_attrs, ra;
ret = pci_sun4v_iommu_getmap(devhandle,
HV_PCI_TSBID(0, i),
&io_attrs, &ra);
if (ret == HV_EOK) {
if (page_in_phys_avail(ra)) {
pci_sun4v_iommu_demap(devhandle,
HV_PCI_TSBID(0,
i), 1);
} else {
cnt++;
__set_bit(i, iommu->map);
}
}
}
}
return cnt;
}
static int pci_sun4v_atu_alloc_iotsb(struct pci_pbm_info *pbm)
{
struct atu *atu = pbm->iommu->atu;
struct atu_iotsb *iotsb;
void *table;
u64 table_size;
u64 iotsb_num;
unsigned long order;
unsigned long err;
iotsb = kzalloc(sizeof(*iotsb), GFP_KERNEL);
if (!iotsb) {
err = -ENOMEM;
goto out_err;
}
atu->iotsb = iotsb;
/* calculate size of IOTSB */
table_size = (atu->size / IO_PAGE_SIZE) * 8;
order = get_order(table_size);
table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!table) {
err = -ENOMEM;
goto table_failed;
}
iotsb->table = table;
iotsb->ra = __pa(table);
iotsb->dvma_size = atu->size;
iotsb->dvma_base = atu->base;
iotsb->table_size = table_size;
iotsb->page_size = IO_PAGE_SIZE;
/* configure and register IOTSB with HV */
err = pci_sun4v_iotsb_conf(pbm->devhandle,
iotsb->ra,
iotsb->table_size,
iotsb->page_size,
iotsb->dvma_base,
&iotsb_num);
if (err) {
pr_err(PFX "pci_iotsb_conf failed error: %ld\n", err);
goto iotsb_conf_failed;
}
iotsb->iotsb_num = iotsb_num;
err = dma_4v_iotsb_bind(pbm->devhandle, iotsb_num, pbm->pci_bus);
if (err) {
pr_err(PFX "pci_iotsb_bind failed error: %ld\n", err);
goto iotsb_conf_failed;
}
return 0;
iotsb_conf_failed:
free_pages((unsigned long)table, order);
table_failed:
kfree(iotsb);
out_err:
return err;
}
static int pci_sun4v_atu_init(struct pci_pbm_info *pbm)
{
struct atu *atu = pbm->iommu->atu;
unsigned long err;
const u64 *ranges;
u64 map_size, num_iotte;
u64 dma_mask;
const u32 *page_size;
int len;
ranges = of_get_property(pbm->op->dev.of_node, "iommu-address-ranges",
&len);
if (!ranges) {
pr_err(PFX "No iommu-address-ranges\n");
return -EINVAL;
}
page_size = of_get_property(pbm->op->dev.of_node, "iommu-pagesizes",
NULL);
if (!page_size) {
pr_err(PFX "No iommu-pagesizes\n");
return -EINVAL;
}
/* There are 4 iommu-address-ranges supported. Each range is pair of
* {base, size}. The ranges[0] and ranges[1] are 32bit address space
* while ranges[2] and ranges[3] are 64bit space. We want to use 64bit
* address ranges to support 64bit addressing. Because 'size' for
* address ranges[2] and ranges[3] are same we can select either of
* ranges[2] or ranges[3] for mapping. However due to 'size' is too
* large for OS to allocate IOTSB we are using fix size 32G
* (ATU_64_SPACE_SIZE) which is more than enough for all PCIe devices
* to share.
*/
atu->ranges = (struct atu_ranges *)ranges;
atu->base = atu->ranges[3].base;
atu->size = ATU_64_SPACE_SIZE;
/* Create IOTSB */
err = pci_sun4v_atu_alloc_iotsb(pbm);
if (err) {
pr_err(PFX "Error creating ATU IOTSB\n");
return err;
}
/* Create ATU iommu map.
* One bit represents one iotte in IOTSB table.
*/
dma_mask = (roundup_pow_of_two(atu->size) - 1UL);
num_iotte = atu->size / IO_PAGE_SIZE;
map_size = num_iotte / 8;
atu->tbl.table_map_base = atu->base;
atu->dma_addr_mask = dma_mask;
atu->tbl.map = kzalloc(map_size, GFP_KERNEL);
if (!atu->tbl.map)
return -ENOMEM;
iommu_tbl_pool_init(&atu->tbl, num_iotte, IO_PAGE_SHIFT,
NULL, false /* no large_pool */,
0 /* default npools */,
false /* want span boundary checking */);
return 0;
}
static int pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
{
static const u32 vdma_default[] = { 0x80000000, 0x80000000 };
struct iommu *iommu = pbm->iommu;
unsigned long num_tsb_entries, sz;
u32 dma_mask, dma_offset;
const u32 *vdma;
vdma = of_get_property(pbm->op->dev.of_node, "virtual-dma", NULL);
if (!vdma)
vdma = vdma_default;
if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n",
vdma[0], vdma[1]);
return -EINVAL;
}
dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
dma_offset = vdma[0];
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->tbl.table_map_base = dma_offset;
iommu->dma_addr_mask = dma_mask;
/* Allocate and initialize the free area map. */
sz = (num_tsb_entries + 7) / 8;
sz = (sz + 7UL) & ~7UL;
iommu->tbl.map = kzalloc(sz, GFP_KERNEL);
if (!iommu->tbl.map) {
printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n");
return -ENOMEM;
}
iommu_tbl_pool_init(&iommu->tbl, num_tsb_entries, IO_PAGE_SHIFT,
NULL, false /* no large_pool */,
0 /* default npools */,
false /* want span boundary checking */);
sz = probe_existing_entries(pbm, &iommu->tbl);
if (sz)
printk("%s: Imported %lu TSB entries from OBP\n",
pbm->name, sz);
return 0;
}
#ifdef CONFIG_PCI_MSI
struct pci_sun4v_msiq_entry {
u64 version_type;
#define MSIQ_VERSION_MASK 0xffffffff00000000UL
#define MSIQ_VERSION_SHIFT 32
#define MSIQ_TYPE_MASK 0x00000000000000ffUL
#define MSIQ_TYPE_SHIFT 0
#define MSIQ_TYPE_NONE 0x00
#define MSIQ_TYPE_MSG 0x01
#define MSIQ_TYPE_MSI32 0x02
#define MSIQ_TYPE_MSI64 0x03
#define MSIQ_TYPE_INTX 0x08
#define MSIQ_TYPE_NONE2 0xff
u64 intx_sysino;
u64 reserved1;
u64 stick;
u64 req_id; /* bus/device/func */
#define MSIQ_REQID_BUS_MASK 0xff00UL
#define MSIQ_REQID_BUS_SHIFT 8
#define MSIQ_REQID_DEVICE_MASK 0x00f8UL
#define MSIQ_REQID_DEVICE_SHIFT 3
#define MSIQ_REQID_FUNC_MASK 0x0007UL
#define MSIQ_REQID_FUNC_SHIFT 0
u64 msi_address;
/* The format of this value is message type dependent.
* For MSI bits 15:0 are the data from the MSI packet.
* For MSI-X bits 31:0 are the data from the MSI packet.
* For MSG, the message code and message routing code where:
* bits 39:32 is the bus/device/fn of the msg target-id
* bits 18:16 is the message routing code
* bits 7:0 is the message code
* For INTx the low order 2-bits are:
* 00 - INTA
* 01 - INTB
* 10 - INTC
* 11 - INTD
*/
u64 msi_data;
u64 reserved2;
};
static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long *head)
{
unsigned long err, limit;
err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
if (unlikely(err))
return -ENXIO;
limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
if (unlikely(*head >= limit))
return -EFBIG;
return 0;
}
static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
unsigned long msiqid, unsigned long *head,
unsigned long *msi)
{
struct pci_sun4v_msiq_entry *ep;
unsigned long err, type;
/* Note: void pointer arithmetic, 'head' is a byte offset */
ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
(pbm->msiq_ent_count *
sizeof(struct pci_sun4v_msiq_entry))) +
*head);
if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
return 0;
type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
if (unlikely(type != MSIQ_TYPE_MSI32 &&
type != MSIQ_TYPE_MSI64))
return -EINVAL;
*msi = ep->msi_data;
err = pci_sun4v_msi_setstate(pbm->devhandle,
ep->msi_data /* msi_num */,
HV_MSISTATE_IDLE);
if (unlikely(err))
return -ENXIO;
/* Clear the entry. */
ep->version_type &= ~MSIQ_TYPE_MASK;
(*head) += sizeof(struct pci_sun4v_msiq_entry);
if (*head >=
(pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
*head = 0;
return 1;
}
static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long head)
{
unsigned long err;
err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
if (unlikely(err))
return -EINVAL;
return 0;
}
static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long msi, int is_msi64)
{
if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
(is_msi64 ?
HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
return -ENXIO;
if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
return -ENXIO;
if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
return -ENXIO;
return 0;
}
static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
{
unsigned long err, msiqid;
err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
if (err)
return -ENXIO;
pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
return 0;
}
static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
{
unsigned long q_size, alloc_size, pages, order;
int i;
q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
alloc_size = (pbm->msiq_num * q_size);
order = get_order(alloc_size);
pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
if (pages == 0UL) {
printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
order);
return -ENOMEM;
}
memset((char *)pages, 0, PAGE_SIZE << order);
pbm->msi_queues = (void *) pages;
for (i = 0; i < pbm->msiq_num; i++) {
unsigned long err, base = __pa(pages + (i * q_size));
unsigned long ret1, ret2;
err = pci_sun4v_msiq_conf(pbm->devhandle,
pbm->msiq_first + i,
base, pbm->msiq_ent_count);
if (err) {
printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
err);
goto h_error;
}
err = pci_sun4v_msiq_info(pbm->devhandle,
pbm->msiq_first + i,
&ret1, &ret2);
if (err) {
printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
err);
goto h_error;
}
if (ret1 != base || ret2 != pbm->msiq_ent_count) {
printk(KERN_ERR "MSI: Bogus qconf "
"expected[%lx:%x] got[%lx:%lx]\n",
base, pbm->msiq_ent_count,
ret1, ret2);
goto h_error;
}
}
return 0;
h_error:
free_pages(pages, order);
return -EINVAL;
}
static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
{
unsigned long q_size, alloc_size, pages, order;
int i;
for (i = 0; i < pbm->msiq_num; i++) {
unsigned long msiqid = pbm->msiq_first + i;
(void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
}
q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
alloc_size = (pbm->msiq_num * q_size);
order = get_order(alloc_size);
pages = (unsigned long) pbm->msi_queues;
free_pages(pages, order);
pbm->msi_queues = NULL;
}
static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
unsigned long msiqid,
unsigned long devino)
{
unsigned int irq = sun4v_build_irq(pbm->devhandle, devino);
if (!irq)
return -ENOMEM;
if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
return -EINVAL;
if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
return -EINVAL;
return irq;
}
static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
.get_head = pci_sun4v_get_head,
.dequeue_msi = pci_sun4v_dequeue_msi,
.set_head = pci_sun4v_set_head,
.msi_setup = pci_sun4v_msi_setup,
.msi_teardown = pci_sun4v_msi_teardown,
.msiq_alloc = pci_sun4v_msiq_alloc,
.msiq_free = pci_sun4v_msiq_free,
.msiq_build_irq = pci_sun4v_msiq_build_irq,
};
static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
{
sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
}
#else /* CONFIG_PCI_MSI */
static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
{
}
#endif /* !(CONFIG_PCI_MSI) */
static int pci_sun4v_pbm_init(struct pci_pbm_info *pbm,
struct platform_device *op, u32 devhandle)
{
struct device_node *dp = op->dev.of_node;
int err;
pbm->numa_node = of_node_to_nid(dp);
pbm->pci_ops = &sun4v_pci_ops;
pbm->config_space_reg_bits = 12;
pbm->index = pci_num_pbms++;
pbm->op = op;
pbm->devhandle = devhandle;
pbm->name = dp->full_name;
printk("%s: SUN4V PCI Bus Module\n", pbm->name);
printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node);
pci_determine_mem_io_space(pbm);
pci_get_pbm_props(pbm);
err = pci_sun4v_iommu_init(pbm);
if (err)
return err;
pci_sun4v_msi_init(pbm);
pci_sun4v_scan_bus(pbm, &op->dev);
/* if atu_init fails its not complete failure.
* we can still continue using legacy iommu.
*/
if (pbm->iommu->atu) {
err = pci_sun4v_atu_init(pbm);
if (err) {
kfree(pbm->iommu->atu);
pbm->iommu->atu = NULL;
pr_err(PFX "ATU init failed, err=%d\n", err);
}
}
pbm->next = pci_pbm_root;
pci_pbm_root = pbm;
return 0;
}
static int pci_sun4v_probe(struct platform_device *op)
{
const struct linux_prom64_registers *regs;
static int hvapi_negotiated = 0;
struct pci_pbm_info *pbm;
struct device_node *dp;
struct iommu *iommu;
struct atu *atu;
u32 devhandle;
int i, err = -ENODEV;
static bool hv_atu = true;
dp = op->dev.of_node;
if (!hvapi_negotiated++) {
for (i = 0; i < ARRAY_SIZE(vpci_versions); i++) {
vpci_major = vpci_versions[i].major;
vpci_minor = vpci_versions[i].minor;
err = sun4v_hvapi_register(HV_GRP_PCI, vpci_major,
&vpci_minor);
if (!err)
break;
}
if (err) {
pr_err(PFX "Could not register hvapi, err=%d\n", err);
return err;
}
pr_info(PFX "Registered hvapi major[%lu] minor[%lu]\n",
vpci_major, vpci_minor);
err = sun4v_hvapi_register(HV_GRP_ATU, vatu_major, &vatu_minor);
if (err) {
/* don't return an error if we fail to register the
* ATU group, but ATU hcalls won't be available.
*/
hv_atu = false;
pr_err(PFX "Could not register hvapi ATU err=%d\n",
err);
} else {
pr_info(PFX "Registered hvapi ATU major[%lu] minor[%lu]\n",
vatu_major, vatu_minor);
}
dma_ops = &sun4v_dma_ops;
}
regs = of_get_property(dp, "reg", NULL);
err = -ENODEV;
if (!regs) {
printk(KERN_ERR PFX "Could not find config registers\n");
goto out_err;
}
devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
err = -ENOMEM;
if (!iommu_batch_initialized) {
for_each_possible_cpu(i) {
unsigned long page = get_zeroed_page(GFP_KERNEL);
if (!page)
goto out_err;
per_cpu(iommu_batch, i).pglist = (u64 *) page;
}
iommu_batch_initialized = 1;
}
pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
if (!pbm) {
printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n");
goto out_err;
}
iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL);
if (!iommu) {
printk(KERN_ERR PFX "Could not allocate pbm iommu\n");
goto out_free_controller;
}
pbm->iommu = iommu;
iommu->atu = NULL;
if (hv_atu) {
atu = kzalloc(sizeof(*atu), GFP_KERNEL);
if (!atu)
pr_err(PFX "Could not allocate atu\n");
else
iommu->atu = atu;
}
err = pci_sun4v_pbm_init(pbm, op, devhandle);
if (err)
goto out_free_iommu;
dev_set_drvdata(&op->dev, pbm);
return 0;
out_free_iommu:
kfree(iommu->atu);
kfree(pbm->iommu);
out_free_controller:
kfree(pbm);
out_err:
return err;
}
static const struct of_device_id pci_sun4v_match[] = {
{
.name = "pci",
.compatible = "SUNW,sun4v-pci",
},
{},
};
static struct platform_driver pci_sun4v_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = pci_sun4v_match,
},
.probe = pci_sun4v_probe,
};
static int __init pci_sun4v_init(void)
{
return platform_driver_register(&pci_sun4v_driver);
}
subsys_initcall(pci_sun4v_init);