| #include <asm/types.h> |
| #include <linux/types.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <string.h> |
| #include <stddef.h> |
| #include <stdbool.h> |
| |
| #include <sys/resource.h> |
| |
| #include <linux/unistd.h> |
| #include <linux/filter.h> |
| #include <linux/bpf_perf_event.h> |
| #include <linux/bpf.h> |
| |
| #include <bpf/bpf.h> |
| |
| #include "../../../include/linux/filter.h" |
| |
| #ifndef ARRAY_SIZE |
| # define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) |
| #endif |
| |
| #define MAX_INSNS 512 |
| #define MAX_MATCHES 16 |
| |
| struct bpf_align_test { |
| const char *descr; |
| struct bpf_insn insns[MAX_INSNS]; |
| enum { |
| UNDEF, |
| ACCEPT, |
| REJECT |
| } result; |
| enum bpf_prog_type prog_type; |
| const char *matches[MAX_MATCHES]; |
| }; |
| |
| static struct bpf_align_test tests[] = { |
| { |
| .descr = "mov", |
| .insns = { |
| BPF_MOV64_IMM(BPF_REG_3, 2), |
| BPF_MOV64_IMM(BPF_REG_3, 4), |
| BPF_MOV64_IMM(BPF_REG_3, 8), |
| BPF_MOV64_IMM(BPF_REG_3, 16), |
| BPF_MOV64_IMM(BPF_REG_3, 32), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "1: R1=ctx R3=imm2,min_value=2,max_value=2,min_align=2 R10=fp", |
| "2: R1=ctx R3=imm4,min_value=4,max_value=4,min_align=4 R10=fp", |
| "3: R1=ctx R3=imm8,min_value=8,max_value=8,min_align=8 R10=fp", |
| "4: R1=ctx R3=imm16,min_value=16,max_value=16,min_align=16 R10=fp", |
| "5: R1=ctx R3=imm32,min_value=32,max_value=32,min_align=32 R10=fp", |
| }, |
| }, |
| { |
| .descr = "shift", |
| .insns = { |
| BPF_MOV64_IMM(BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4), |
| BPF_MOV64_IMM(BPF_REG_4, 32), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "1: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R10=fp", |
| "2: R1=ctx R3=imm2,min_value=2,max_value=2,min_align=2 R10=fp", |
| "3: R1=ctx R3=imm4,min_value=4,max_value=4,min_align=4 R10=fp", |
| "4: R1=ctx R3=imm8,min_value=8,max_value=8,min_align=8 R10=fp", |
| "5: R1=ctx R3=imm16,min_value=16,max_value=16,min_align=16 R10=fp", |
| "6: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R10=fp", |
| "7: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R4=imm32,min_value=32,max_value=32,min_align=32 R10=fp", |
| "8: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R4=imm16,min_value=16,max_value=16,min_align=16 R10=fp", |
| "9: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R4=imm8,min_value=8,max_value=8,min_align=8 R10=fp", |
| "10: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R4=imm4,min_value=4,max_value=4,min_align=4 R10=fp", |
| "11: R1=ctx R3=imm1,min_value=1,max_value=1,min_align=1 R4=imm2,min_value=2,max_value=2,min_align=2 R10=fp", |
| }, |
| }, |
| { |
| .descr = "addsub", |
| .insns = { |
| BPF_MOV64_IMM(BPF_REG_3, 4), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2), |
| BPF_MOV64_IMM(BPF_REG_4, 8), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "1: R1=ctx R3=imm4,min_value=4,max_value=4,min_align=4 R10=fp", |
| "2: R1=ctx R3=imm8,min_value=8,max_value=8,min_align=4 R10=fp", |
| "3: R1=ctx R3=imm10,min_value=10,max_value=10,min_align=2 R10=fp", |
| "4: R1=ctx R3=imm10,min_value=10,max_value=10,min_align=2 R4=imm8,min_value=8,max_value=8,min_align=8 R10=fp", |
| "5: R1=ctx R3=imm10,min_value=10,max_value=10,min_align=2 R4=imm12,min_value=12,max_value=12,min_align=4 R10=fp", |
| "6: R1=ctx R3=imm10,min_value=10,max_value=10,min_align=2 R4=imm14,min_value=14,max_value=14,min_align=2 R10=fp", |
| }, |
| }, |
| { |
| .descr = "mul", |
| .insns = { |
| BPF_MOV64_IMM(BPF_REG_3, 7), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "1: R1=ctx R3=imm7,min_value=7,max_value=7,min_align=1 R10=fp", |
| "2: R1=ctx R3=imm7,min_value=7,max_value=7,min_align=1 R10=fp", |
| "3: R1=ctx R3=imm14,min_value=14,max_value=14,min_align=2 R10=fp", |
| "4: R1=ctx R3=imm56,min_value=56,max_value=56,min_align=4 R10=fp", |
| }, |
| }, |
| |
| #define PREP_PKT_POINTERS \ |
| BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ |
| offsetof(struct __sk_buff, data)), \ |
| BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ |
| offsetof(struct __sk_buff, data_end)) |
| |
| #define LOAD_UNKNOWN(DST_REG) \ |
| PREP_PKT_POINTERS, \ |
| BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \ |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \ |
| BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \ |
| BPF_EXIT_INSN(), \ |
| BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0) |
| |
| { |
| .descr = "unknown shift", |
| .insns = { |
| LOAD_UNKNOWN(BPF_REG_3), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), |
| LOAD_UNKNOWN(BPF_REG_4), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "7: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R10=fp", |
| "8: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv55,min_align=2 R10=fp", |
| "9: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv54,min_align=4 R10=fp", |
| "10: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv53,min_align=8 R10=fp", |
| "11: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv52,min_align=16 R10=fp", |
| "18: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv56 R10=fp", |
| "19: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv51,min_align=32 R10=fp", |
| "20: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv52,min_align=16 R10=fp", |
| "21: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv53,min_align=8 R10=fp", |
| "22: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv54,min_align=4 R10=fp", |
| "23: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv55,min_align=2 R10=fp", |
| }, |
| }, |
| { |
| .descr = "unknown mul", |
| .insns = { |
| LOAD_UNKNOWN(BPF_REG_3), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8), |
| BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "7: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R10=fp", |
| "8: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv56 R10=fp", |
| "9: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv55,min_align=1 R10=fp", |
| "10: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv56 R10=fp", |
| "11: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv54,min_align=2 R10=fp", |
| "12: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv56 R10=fp", |
| "13: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv53,min_align=4 R10=fp", |
| "14: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv56 R10=fp", |
| "15: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv52,min_align=8 R10=fp", |
| "16: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=inv56 R4=inv50,min_align=8 R10=fp" |
| }, |
| }, |
| { |
| .descr = "packet const offset", |
| .insns = { |
| PREP_PKT_POINTERS, |
| BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), |
| |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| |
| /* Skip over ethernet header. */ |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), |
| BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), |
| BPF_EXIT_INSN(), |
| |
| BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0), |
| BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1), |
| BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2), |
| BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3), |
| BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0), |
| BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2), |
| BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), |
| |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| "4: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R5=pkt(id=0,off=0,r=0) R10=fp", |
| "5: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R5=pkt(id=0,off=14,r=0) R10=fp", |
| "6: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=0) R3=pkt_end R4=pkt(id=0,off=14,r=0) R5=pkt(id=0,off=14,r=0) R10=fp", |
| "10: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=18) R3=pkt_end R4=inv56 R5=pkt(id=0,off=14,r=18) R10=fp", |
| "14: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=18) R3=pkt_end R4=inv48 R5=pkt(id=0,off=14,r=18) R10=fp", |
| "15: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx R2=pkt(id=0,off=0,r=18) R3=pkt_end R4=inv48 R5=pkt(id=0,off=14,r=18) R10=fp", |
| }, |
| }, |
| { |
| .descr = "packet variable offset", |
| .insns = { |
| LOAD_UNKNOWN(BPF_REG_6), |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), |
| |
| /* First, add a constant to the R5 packet pointer, |
| * then a variable with a known alignment. |
| */ |
| BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), |
| BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), |
| BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), |
| BPF_EXIT_INSN(), |
| BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), |
| |
| /* Now, test in the other direction. Adding first |
| * the variable offset to R5, then the constant. |
| */ |
| BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), |
| BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), |
| BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), |
| BPF_EXIT_INSN(), |
| BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), |
| |
| /* Test multiple accumulations of unknown values |
| * into a packet pointer. |
| */ |
| BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), |
| BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4), |
| BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), |
| BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), |
| BPF_EXIT_INSN(), |
| BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), |
| |
| BPF_MOV64_IMM(BPF_REG_0, 0), |
| BPF_EXIT_INSN(), |
| }, |
| .prog_type = BPF_PROG_TYPE_SCHED_CLS, |
| .matches = { |
| /* Calculated offset in R6 has unknown value, but known |
| * alignment of 4. |
| */ |
| "8: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R6=inv54,min_align=4 R10=fp", |
| |
| /* Offset is added to packet pointer R5, resulting in known |
| * auxiliary alignment and offset. |
| */ |
| "11: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R5=pkt(id=1,off=0,r=0),aux_off=14,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| |
| /* At the time the word size load is performed from R5, |
| * it's total offset is NET_IP_ALIGN + reg->off (0) + |
| * reg->aux_off (14) which is 16. Then the variable |
| * offset is considered using reg->aux_off_align which |
| * is 4 and meets the load's requirements. |
| */ |
| "15: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=pkt(id=1,off=4,r=4),aux_off=14,aux_off_align=4 R5=pkt(id=1,off=0,r=4),aux_off=14,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| |
| |
| /* Variable offset is added to R5 packet pointer, |
| * resulting in auxiliary alignment of 4. |
| */ |
| "18: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off=14,aux_off_align=4 R5=pkt(id=2,off=0,r=0),aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| |
| /* Constant offset is added to R5, resulting in |
| * reg->off of 14. |
| */ |
| "19: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off=14,aux_off_align=4 R5=pkt(id=2,off=14,r=0),aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| |
| /* At the time the word size load is performed from R5, |
| * it's total offset is NET_IP_ALIGN + reg->off (14) which |
| * is 16. Then the variable offset is considered using |
| * reg->aux_off_align which is 4 and meets the load's |
| * requirements. |
| */ |
| "23: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=pkt(id=2,off=18,r=18),aux_off_align=4 R5=pkt(id=2,off=14,r=18),aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| |
| /* Constant offset is added to R5 packet pointer, |
| * resulting in reg->off value of 14. |
| */ |
| "26: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off_align=4 R5=pkt(id=0,off=14,r=8) R6=inv54,min_align=4 R10=fp", |
| /* Variable offset is added to R5, resulting in an |
| * auxiliary offset of 14, and an auxiliary alignment of 4. |
| */ |
| "27: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off_align=4 R5=pkt(id=3,off=0,r=0),aux_off=14,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| /* Constant is added to R5 again, setting reg->off to 4. */ |
| "28: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off_align=4 R5=pkt(id=3,off=4,r=0),aux_off=14,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| /* And once more we add a variable, which causes an accumulation |
| * of reg->off into reg->aux_off_align, with resulting value of |
| * 18. The auxiliary alignment stays at 4. |
| */ |
| "29: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=inv,aux_off_align=4 R5=pkt(id=4,off=0,r=0),aux_off=18,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| /* At the time the word size load is performed from R5, |
| * it's total offset is NET_IP_ALIGN + reg->off (0) + |
| * reg->aux_off (18) which is 20. Then the variable offset |
| * is considered using reg->aux_off_align which is 4 and meets |
| * the load's requirements. |
| */ |
| "33: R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8) R3=pkt_end R4=pkt(id=4,off=4,r=4),aux_off=18,aux_off_align=4 R5=pkt(id=4,off=0,r=4),aux_off=18,aux_off_align=4 R6=inv54,min_align=4 R10=fp", |
| }, |
| }, |
| }; |
| |
| static int probe_filter_length(const struct bpf_insn *fp) |
| { |
| int len; |
| |
| for (len = MAX_INSNS - 1; len > 0; --len) |
| if (fp[len].code != 0 || fp[len].imm != 0) |
| break; |
| return len + 1; |
| } |
| |
| static char bpf_vlog[32768]; |
| |
| static int do_test_single(struct bpf_align_test *test) |
| { |
| struct bpf_insn *prog = test->insns; |
| int prog_type = test->prog_type; |
| int prog_len, i; |
| int fd_prog; |
| int ret; |
| |
| prog_len = probe_filter_length(prog); |
| fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, |
| prog, prog_len, 1, "GPL", 0, |
| bpf_vlog, sizeof(bpf_vlog)); |
| if (fd_prog < 0) { |
| printf("Failed to load program.\n"); |
| printf("%s", bpf_vlog); |
| ret = 1; |
| } else { |
| ret = 0; |
| for (i = 0; i < MAX_MATCHES; i++) { |
| const char *t, *m = test->matches[i]; |
| |
| if (!m) |
| break; |
| t = strstr(bpf_vlog, m); |
| if (!t) { |
| printf("Failed to find match: %s\n", m); |
| ret = 1; |
| printf("%s", bpf_vlog); |
| break; |
| } |
| } |
| close(fd_prog); |
| } |
| return ret; |
| } |
| |
| static int do_test(unsigned int from, unsigned int to) |
| { |
| int all_pass = 0; |
| int all_fail = 0; |
| unsigned int i; |
| |
| for (i = from; i < to; i++) { |
| struct bpf_align_test *test = &tests[i]; |
| int fail; |
| |
| printf("Test %3d: %s ... ", |
| i, test->descr); |
| fail = do_test_single(test); |
| if (fail) { |
| all_fail++; |
| printf("FAIL\n"); |
| } else { |
| all_pass++; |
| printf("PASS\n"); |
| } |
| } |
| printf("Results: %d pass %d fail\n", |
| all_pass, all_fail); |
| return all_fail ? EXIT_FAILURE : EXIT_SUCCESS; |
| } |
| |
| int main(int argc, char **argv) |
| { |
| unsigned int from = 0, to = ARRAY_SIZE(tests); |
| struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY }; |
| |
| setrlimit(RLIMIT_MEMLOCK, &rinf); |
| |
| if (argc == 3) { |
| unsigned int l = atoi(argv[argc - 2]); |
| unsigned int u = atoi(argv[argc - 1]); |
| |
| if (l < to && u < to) { |
| from = l; |
| to = u + 1; |
| } |
| } else if (argc == 2) { |
| unsigned int t = atoi(argv[argc - 1]); |
| |
| if (t < to) { |
| from = t; |
| to = t + 1; |
| } |
| } |
| return do_test(from, to); |
| } |