| ================================================================ |
| Documentation for Kdump - The kexec-based Crash Dumping Solution |
| ================================================================ |
| |
| This document includes overview, setup, installation, and analysis |
| information. |
| |
| Overview |
| ======== |
| |
| Kdump uses kexec to quickly boot to a dump-capture kernel whenever a |
| dump of the system kernel's memory needs to be taken (for example, when |
| the system panics). The system kernel's memory image is preserved across |
| the reboot and is accessible to the dump-capture kernel. |
| |
| You can use common commands, such as cp, scp or makedumpfile to copy |
| the memory image to a dump file on the local disk, or across the network |
| to a remote system. |
| |
| Kdump and kexec are currently supported on the x86, x86_64, ppc64, ia64, |
| s390x, arm and arm64 architectures. |
| |
| When the system kernel boots, it reserves a small section of memory for |
| the dump-capture kernel. This ensures that ongoing Direct Memory Access |
| (DMA) from the system kernel does not corrupt the dump-capture kernel. |
| The kexec -p command loads the dump-capture kernel into this reserved |
| memory. |
| |
| On x86 machines, the first 640 KB of physical memory is needed for boot, |
| regardless of where the kernel loads. For simpler handling, the whole |
| low 1M is reserved to avoid any later kernel or device driver writing |
| data into this area. Like this, the low 1M can be reused as system RAM |
| by kdump kernel without extra handling. |
| |
| On PPC64 machines first 32KB of physical memory is needed for booting |
| regardless of where the kernel is loaded and to support 64K page size |
| kexec backs up the first 64KB memory. |
| |
| For s390x, when kdump is triggered, the crashkernel region is exchanged |
| with the region [0, crashkernel region size] and then the kdump kernel |
| runs in [0, crashkernel region size]. Therefore no relocatable kernel is |
| needed for s390x. |
| |
| All of the necessary information about the system kernel's core image is |
| encoded in the ELF format, and stored in a reserved area of memory |
| before a crash. The physical address of the start of the ELF header is |
| passed to the dump-capture kernel through the elfcorehdr= boot |
| parameter. Optionally the size of the ELF header can also be passed |
| when using the elfcorehdr=[size[KMG]@]offset[KMG] syntax. |
| |
| With the dump-capture kernel, you can access the memory image through |
| /proc/vmcore. This exports the dump as an ELF-format file that you can |
| write out using file copy commands such as cp or scp. You can also use |
| makedumpfile utility to analyze and write out filtered contents with |
| options, e.g with '-d 31' it will only write out kernel data. Further, |
| you can use analysis tools such as the GNU Debugger (GDB) and the Crash |
| tool to debug the dump file. This method ensures that the dump pages are |
| correctly ordered. |
| |
| Setup and Installation |
| ====================== |
| |
| Install kexec-tools |
| ------------------- |
| |
| 1) Login as the root user. |
| |
| 2) Download the kexec-tools user-space package from the following URL: |
| |
| http://kernel.org/pub/linux/utils/kernel/kexec/kexec-tools.tar.gz |
| |
| This is a symlink to the latest version. |
| |
| The latest kexec-tools git tree is available at: |
| |
| - git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git |
| - http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git |
| |
| There is also a gitweb interface available at |
| http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git |
| |
| More information about kexec-tools can be found at |
| http://horms.net/projects/kexec/ |
| |
| 3) Unpack the tarball with the tar command, as follows:: |
| |
| tar xvpzf kexec-tools.tar.gz |
| |
| 4) Change to the kexec-tools directory, as follows:: |
| |
| cd kexec-tools-VERSION |
| |
| 5) Configure the package, as follows:: |
| |
| ./configure |
| |
| 6) Compile the package, as follows:: |
| |
| make |
| |
| 7) Install the package, as follows:: |
| |
| make install |
| |
| |
| Build the system and dump-capture kernels |
| ----------------------------------------- |
| There are two possible methods of using Kdump. |
| |
| 1) Build a separate custom dump-capture kernel for capturing the |
| kernel core dump. |
| |
| 2) Or use the system kernel binary itself as dump-capture kernel and there is |
| no need to build a separate dump-capture kernel. This is possible |
| only with the architectures which support a relocatable kernel. As |
| of today, i386, x86_64, ppc64, ia64, arm and arm64 architectures support |
| relocatable kernel. |
| |
| Building a relocatable kernel is advantageous from the point of view that |
| one does not have to build a second kernel for capturing the dump. But |
| at the same time one might want to build a custom dump capture kernel |
| suitable to his needs. |
| |
| Following are the configuration setting required for system and |
| dump-capture kernels for enabling kdump support. |
| |
| System kernel config options |
| ---------------------------- |
| |
| 1) Enable "kexec system call" or "kexec file based system call" in |
| "Processor type and features.":: |
| |
| CONFIG_KEXEC=y or CONFIG_KEXEC_FILE=y |
| |
| And both of them will select KEXEC_CORE:: |
| |
| CONFIG_KEXEC_CORE=y |
| |
| Subsequently, CRASH_CORE is selected by KEXEC_CORE:: |
| |
| CONFIG_CRASH_CORE=y |
| |
| 2) Enable "sysfs file system support" in "Filesystem" -> "Pseudo |
| filesystems." This is usually enabled by default:: |
| |
| CONFIG_SYSFS=y |
| |
| Note that "sysfs file system support" might not appear in the "Pseudo |
| filesystems" menu if "Configure standard kernel features (expert users)" |
| is not enabled in "General Setup." In this case, check the .config file |
| itself to ensure that sysfs is turned on, as follows:: |
| |
| grep 'CONFIG_SYSFS' .config |
| |
| 3) Enable "Compile the kernel with debug info" in "Kernel hacking.":: |
| |
| CONFIG_DEBUG_INFO=Y |
| |
| This causes the kernel to be built with debug symbols. The dump |
| analysis tools require a vmlinux with debug symbols in order to read |
| and analyze a dump file. |
| |
| Dump-capture kernel config options (Arch Independent) |
| ----------------------------------------------------- |
| |
| 1) Enable "kernel crash dumps" support under "Processor type and |
| features":: |
| |
| CONFIG_CRASH_DUMP=y |
| |
| 2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems":: |
| |
| CONFIG_PROC_VMCORE=y |
| |
| (CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.) |
| |
| Dump-capture kernel config options (Arch Dependent, i386 and x86_64) |
| -------------------------------------------------------------------- |
| |
| 1) On i386, enable high memory support under "Processor type and |
| features":: |
| |
| CONFIG_HIGHMEM64G=y |
| |
| or:: |
| |
| CONFIG_HIGHMEM4G |
| |
| 2) With CONFIG_SMP=y, usually nr_cpus=1 need specified on the kernel |
| command line when loading the dump-capture kernel because one |
| CPU is enough for kdump kernel to dump vmcore on most of systems. |
| |
| However, you can also specify nr_cpus=X to enable multiple processors |
| in kdump kernel. In this case, "disable_cpu_apicid=" is needed to |
| tell kdump kernel which cpu is 1st kernel's BSP. Please refer to |
| admin-guide/kernel-parameters.txt for more details. |
| |
| With CONFIG_SMP=n, the above things are not related. |
| |
| 3) A relocatable kernel is suggested to be built by default. If not yet, |
| enable "Build a relocatable kernel" support under "Processor type and |
| features":: |
| |
| CONFIG_RELOCATABLE=y |
| |
| 4) Use a suitable value for "Physical address where the kernel is |
| loaded" (under "Processor type and features"). This only appears when |
| "kernel crash dumps" is enabled. A suitable value depends upon |
| whether kernel is relocatable or not. |
| |
| If you are using a relocatable kernel use CONFIG_PHYSICAL_START=0x100000 |
| This will compile the kernel for physical address 1MB, but given the fact |
| kernel is relocatable, it can be run from any physical address hence |
| kexec boot loader will load it in memory region reserved for dump-capture |
| kernel. |
| |
| Otherwise it should be the start of memory region reserved for |
| second kernel using boot parameter "crashkernel=Y@X". Here X is |
| start of memory region reserved for dump-capture kernel. |
| Generally X is 16MB (0x1000000). So you can set |
| CONFIG_PHYSICAL_START=0x1000000 |
| |
| 5) Make and install the kernel and its modules. DO NOT add this kernel |
| to the boot loader configuration files. |
| |
| Dump-capture kernel config options (Arch Dependent, ppc64) |
| ---------------------------------------------------------- |
| |
| 1) Enable "Build a kdump crash kernel" support under "Kernel" options:: |
| |
| CONFIG_CRASH_DUMP=y |
| |
| 2) Enable "Build a relocatable kernel" support:: |
| |
| CONFIG_RELOCATABLE=y |
| |
| Make and install the kernel and its modules. |
| |
| Dump-capture kernel config options (Arch Dependent, ia64) |
| ---------------------------------------------------------- |
| |
| - No specific options are required to create a dump-capture kernel |
| for ia64, other than those specified in the arch independent section |
| above. This means that it is possible to use the system kernel |
| as a dump-capture kernel if desired. |
| |
| The crashkernel region can be automatically placed by the system |
| kernel at runtime. This is done by specifying the base address as 0, |
| or omitting it all together:: |
| |
| crashkernel=256M@0 |
| |
| or:: |
| |
| crashkernel=256M |
| |
| Dump-capture kernel config options (Arch Dependent, arm) |
| ---------------------------------------------------------- |
| |
| - To use a relocatable kernel, |
| Enable "AUTO_ZRELADDR" support under "Boot" options:: |
| |
| AUTO_ZRELADDR=y |
| |
| Dump-capture kernel config options (Arch Dependent, arm64) |
| ---------------------------------------------------------- |
| |
| - Please note that kvm of the dump-capture kernel will not be enabled |
| on non-VHE systems even if it is configured. This is because the CPU |
| will not be reset to EL2 on panic. |
| |
| crashkernel syntax |
| =========================== |
| 1) crashkernel=size@offset |
| |
| Here 'size' specifies how much memory to reserve for the dump-capture kernel |
| and 'offset' specifies the beginning of this reserved memory. For example, |
| "crashkernel=64M@16M" tells the system kernel to reserve 64 MB of memory |
| starting at physical address 0x01000000 (16MB) for the dump-capture kernel. |
| |
| The crashkernel region can be automatically placed by the system |
| kernel at run time. This is done by specifying the base address as 0, |
| or omitting it all together:: |
| |
| crashkernel=256M@0 |
| |
| or:: |
| |
| crashkernel=256M |
| |
| If the start address is specified, note that the start address of the |
| kernel will be aligned to a value (which is Arch dependent), so if the |
| start address is not then any space below the alignment point will be |
| wasted. |
| |
| 2) range1:size1[,range2:size2,...][@offset] |
| |
| While the "crashkernel=size[@offset]" syntax is sufficient for most |
| configurations, sometimes it's handy to have the reserved memory dependent |
| on the value of System RAM -- that's mostly for distributors that pre-setup |
| the kernel command line to avoid a unbootable system after some memory has |
| been removed from the machine. |
| |
| The syntax is:: |
| |
| crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] |
| range=start-[end] |
| |
| For example:: |
| |
| crashkernel=512M-2G:64M,2G-:128M |
| |
| This would mean: |
| |
| 1) if the RAM is smaller than 512M, then don't reserve anything |
| (this is the "rescue" case) |
| 2) if the RAM size is between 512M and 2G (exclusive), then reserve 64M |
| 3) if the RAM size is larger than 2G, then reserve 128M |
| |
| 3) crashkernel=size,high and crashkernel=size,low |
| |
| If memory above 4G is preferred, crashkernel=size,high can be used to |
| fulfill that. With it, physical memory is allowed to be allocated from top, |
| so could be above 4G if system has more than 4G RAM installed. Otherwise, |
| memory region will be allocated below 4G if available. |
| |
| When crashkernel=X,high is passed, kernel could allocate physical memory |
| region above 4G, low memory under 4G is needed in this case. There are |
| three ways to get low memory: |
| |
| 1) Kernel will allocate at least 256M memory below 4G automatically |
| if crashkernel=Y,low is not specified. |
| 2) Let user specify low memory size instead. |
| 3) Specified value 0 will disable low memory allocation:: |
| |
| crashkernel=0,low |
| |
| Boot into System Kernel |
| ----------------------- |
| 1) Update the boot loader (such as grub, yaboot, or lilo) configuration |
| files as necessary. |
| |
| 2) Boot the system kernel with the boot parameter "crashkernel=Y@X". |
| |
| On x86 and x86_64, use "crashkernel=Y[@X]". Most of the time, the |
| start address 'X' is not necessary, kernel will search a suitable |
| area. Unless an explicit start address is expected. |
| |
| On ppc64, use "crashkernel=128M@32M". |
| |
| On ia64, 256M@256M is a generous value that typically works. |
| The region may be automatically placed on ia64, see the |
| dump-capture kernel config option notes above. |
| If use sparse memory, the size should be rounded to GRANULE boundaries. |
| |
| On s390x, typically use "crashkernel=xxM". The value of xx is dependent |
| on the memory consumption of the kdump system. In general this is not |
| dependent on the memory size of the production system. |
| |
| On arm, the use of "crashkernel=Y@X" is no longer necessary; the |
| kernel will automatically locate the crash kernel image within the |
| first 512MB of RAM if X is not given. |
| |
| On arm64, use "crashkernel=Y[@X]". Note that the start address of |
| the kernel, X if explicitly specified, must be aligned to 2MiB (0x200000). |
| |
| Load the Dump-capture Kernel |
| ============================ |
| |
| After booting to the system kernel, dump-capture kernel needs to be |
| loaded. |
| |
| Based on the architecture and type of image (relocatable or not), one |
| can choose to load the uncompressed vmlinux or compressed bzImage/vmlinuz |
| of dump-capture kernel. Following is the summary. |
| |
| For i386 and x86_64: |
| |
| - Use bzImage/vmlinuz if kernel is relocatable. |
| - Use vmlinux if kernel is not relocatable. |
| |
| For ppc64: |
| |
| - Use vmlinux |
| |
| For ia64: |
| |
| - Use vmlinux or vmlinuz.gz |
| |
| For s390x: |
| |
| - Use image or bzImage |
| |
| For arm: |
| |
| - Use zImage |
| |
| For arm64: |
| |
| - Use vmlinux or Image |
| |
| If you are using an uncompressed vmlinux image then use following command |
| to load dump-capture kernel:: |
| |
| kexec -p <dump-capture-kernel-vmlinux-image> \ |
| --initrd=<initrd-for-dump-capture-kernel> --args-linux \ |
| --append="root=<root-dev> <arch-specific-options>" |
| |
| If you are using a compressed bzImage/vmlinuz, then use following command |
| to load dump-capture kernel:: |
| |
| kexec -p <dump-capture-kernel-bzImage> \ |
| --initrd=<initrd-for-dump-capture-kernel> \ |
| --append="root=<root-dev> <arch-specific-options>" |
| |
| If you are using a compressed zImage, then use following command |
| to load dump-capture kernel:: |
| |
| kexec --type zImage -p <dump-capture-kernel-bzImage> \ |
| --initrd=<initrd-for-dump-capture-kernel> \ |
| --dtb=<dtb-for-dump-capture-kernel> \ |
| --append="root=<root-dev> <arch-specific-options>" |
| |
| If you are using an uncompressed Image, then use following command |
| to load dump-capture kernel:: |
| |
| kexec -p <dump-capture-kernel-Image> \ |
| --initrd=<initrd-for-dump-capture-kernel> \ |
| --append="root=<root-dev> <arch-specific-options>" |
| |
| Please note, that --args-linux does not need to be specified for ia64. |
| It is planned to make this a no-op on that architecture, but for now |
| it should be omitted |
| |
| Following are the arch specific command line options to be used while |
| loading dump-capture kernel. |
| |
| For i386, x86_64 and ia64: |
| |
| "1 irqpoll nr_cpus=1 reset_devices" |
| |
| For ppc64: |
| |
| "1 maxcpus=1 noirqdistrib reset_devices" |
| |
| For s390x: |
| |
| "1 nr_cpus=1 cgroup_disable=memory" |
| |
| For arm: |
| |
| "1 maxcpus=1 reset_devices" |
| |
| For arm64: |
| |
| "1 nr_cpus=1 reset_devices" |
| |
| Notes on loading the dump-capture kernel: |
| |
| * By default, the ELF headers are stored in ELF64 format to support |
| systems with more than 4GB memory. On i386, kexec automatically checks if |
| the physical RAM size exceeds the 4 GB limit and if not, uses ELF32. |
| So, on non-PAE systems, ELF32 is always used. |
| |
| The --elf32-core-headers option can be used to force the generation of ELF32 |
| headers. This is necessary because GDB currently cannot open vmcore files |
| with ELF64 headers on 32-bit systems. |
| |
| * The "irqpoll" boot parameter reduces driver initialization failures |
| due to shared interrupts in the dump-capture kernel. |
| |
| * You must specify <root-dev> in the format corresponding to the root |
| device name in the output of mount command. |
| |
| * Boot parameter "1" boots the dump-capture kernel into single-user |
| mode without networking. If you want networking, use "3". |
| |
| * We generally don't have to bring up a SMP kernel just to capture the |
| dump. Hence generally it is useful either to build a UP dump-capture |
| kernel or specify maxcpus=1 option while loading dump-capture kernel. |
| Note, though maxcpus always works, you had better replace it with |
| nr_cpus to save memory if supported by the current ARCH, such as x86. |
| |
| * You should enable multi-cpu support in dump-capture kernel if you intend |
| to use multi-thread programs with it, such as parallel dump feature of |
| makedumpfile. Otherwise, the multi-thread program may have a great |
| performance degradation. To enable multi-cpu support, you should bring up an |
| SMP dump-capture kernel and specify maxcpus/nr_cpus, disable_cpu_apicid=[X] |
| options while loading it. |
| |
| * For s390x there are two kdump modes: If a ELF header is specified with |
| the elfcorehdr= kernel parameter, it is used by the kdump kernel as it |
| is done on all other architectures. If no elfcorehdr= kernel parameter is |
| specified, the s390x kdump kernel dynamically creates the header. The |
| second mode has the advantage that for CPU and memory hotplug, kdump has |
| not to be reloaded with kexec_load(). |
| |
| * For s390x systems with many attached devices the "cio_ignore" kernel |
| parameter should be used for the kdump kernel in order to prevent allocation |
| of kernel memory for devices that are not relevant for kdump. The same |
| applies to systems that use SCSI/FCP devices. In that case the |
| "allow_lun_scan" zfcp module parameter should be set to zero before |
| setting FCP devices online. |
| |
| Kernel Panic |
| ============ |
| |
| After successfully loading the dump-capture kernel as previously |
| described, the system will reboot into the dump-capture kernel if a |
| system crash is triggered. Trigger points are located in panic(), |
| die(), die_nmi() and in the sysrq handler (ALT-SysRq-c). |
| |
| The following conditions will execute a crash trigger point: |
| |
| If a hard lockup is detected and "NMI watchdog" is configured, the system |
| will boot into the dump-capture kernel ( die_nmi() ). |
| |
| If die() is called, and it happens to be a thread with pid 0 or 1, or die() |
| is called inside interrupt context or die() is called and panic_on_oops is set, |
| the system will boot into the dump-capture kernel. |
| |
| On powerpc systems when a soft-reset is generated, die() is called by all cpus |
| and the system will boot into the dump-capture kernel. |
| |
| For testing purposes, you can trigger a crash by using "ALT-SysRq-c", |
| "echo c > /proc/sysrq-trigger" or write a module to force the panic. |
| |
| Write Out the Dump File |
| ======================= |
| |
| After the dump-capture kernel is booted, write out the dump file with |
| the following command:: |
| |
| cp /proc/vmcore <dump-file> |
| |
| or use scp to write out the dump file between hosts on a network, e.g:: |
| |
| scp /proc/vmcore remote_username@remote_ip:<dump-file> |
| |
| You can also use makedumpfile utility to write out the dump file |
| with specified options to filter out unwanted contents, e.g:: |
| |
| makedumpfile -l --message-level 1 -d 31 /proc/vmcore <dump-file> |
| |
| Analysis |
| ======== |
| |
| Before analyzing the dump image, you should reboot into a stable kernel. |
| |
| You can do limited analysis using GDB on the dump file copied out of |
| /proc/vmcore. Use the debug vmlinux built with -g and run the following |
| command:: |
| |
| gdb vmlinux <dump-file> |
| |
| Stack trace for the task on processor 0, register display, and memory |
| display work fine. |
| |
| Note: GDB cannot analyze core files generated in ELF64 format for x86. |
| On systems with a maximum of 4GB of memory, you can generate |
| ELF32-format headers using the --elf32-core-headers kernel option on the |
| dump kernel. |
| |
| You can also use the Crash utility to analyze dump files in Kdump |
| format. Crash is available at the following URL: |
| |
| https://github.com/crash-utility/crash |
| |
| Crash document can be found at: |
| https://crash-utility.github.io/ |
| |
| Trigger Kdump on WARN() |
| ======================= |
| |
| The kernel parameter, panic_on_warn, calls panic() in all WARN() paths. This |
| will cause a kdump to occur at the panic() call. In cases where a user wants |
| to specify this during runtime, /proc/sys/kernel/panic_on_warn can be set to 1 |
| to achieve the same behaviour. |
| |
| Trigger Kdump on add_taint() |
| ============================ |
| |
| The kernel parameter panic_on_taint facilitates a conditional call to panic() |
| from within add_taint() whenever the value set in this bitmask matches with the |
| bit flag being set by add_taint(). |
| This will cause a kdump to occur at the add_taint()->panic() call. |
| |
| Contact |
| ======= |
| |
| - kexec@lists.infradead.org |
| |
| GDB macros |
| ========== |
| |
| .. include:: gdbmacros.txt |
| :literal: |