| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/guest.c: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/bits.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/nospec.h> |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/stddef.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <kvm/arm_hypercalls.h> |
| #include <asm/cputype.h> |
| #include <linux/uaccess.h> |
| #include <asm/fpsimd.h> |
| #include <asm/kvm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/sigcontext.h> |
| |
| #include "trace.h" |
| |
| const struct _kvm_stats_desc kvm_vm_stats_desc[] = { |
| KVM_GENERIC_VM_STATS(), |
| STATS_DESC_ICOUNTER(VM, protected_hyp_mem), |
| STATS_DESC_ICOUNTER(VM, protected_shared_mem), |
| }; |
| |
| const struct kvm_stats_header kvm_vm_stats_header = { |
| .name_size = KVM_STATS_NAME_SIZE, |
| .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), |
| .id_offset = sizeof(struct kvm_stats_header), |
| .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, |
| .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + |
| sizeof(kvm_vm_stats_desc), |
| }; |
| |
| const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { |
| KVM_GENERIC_VCPU_STATS(), |
| STATS_DESC_COUNTER(VCPU, hvc_exit_stat), |
| STATS_DESC_COUNTER(VCPU, wfe_exit_stat), |
| STATS_DESC_COUNTER(VCPU, wfi_exit_stat), |
| STATS_DESC_COUNTER(VCPU, mmio_exit_user), |
| STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), |
| STATS_DESC_COUNTER(VCPU, signal_exits), |
| STATS_DESC_COUNTER(VCPU, exits) |
| }; |
| |
| const struct kvm_stats_header kvm_vcpu_stats_header = { |
| .name_size = KVM_STATS_NAME_SIZE, |
| .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), |
| .id_offset = sizeof(struct kvm_stats_header), |
| .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, |
| .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + |
| sizeof(kvm_vcpu_stats_desc), |
| }; |
| |
| static bool core_reg_offset_is_vreg(u64 off) |
| { |
| return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) && |
| off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr); |
| } |
| |
| static u64 core_reg_offset_from_id(u64 id) |
| { |
| return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); |
| } |
| |
| static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off) |
| { |
| int size; |
| |
| switch (off) { |
| case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... |
| KVM_REG_ARM_CORE_REG(regs.regs[30]): |
| case KVM_REG_ARM_CORE_REG(regs.sp): |
| case KVM_REG_ARM_CORE_REG(regs.pc): |
| case KVM_REG_ARM_CORE_REG(regs.pstate): |
| case KVM_REG_ARM_CORE_REG(sp_el1): |
| case KVM_REG_ARM_CORE_REG(elr_el1): |
| case KVM_REG_ARM_CORE_REG(spsr[0]) ... |
| KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): |
| size = sizeof(__u64); |
| break; |
| |
| case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... |
| KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): |
| size = sizeof(__uint128_t); |
| break; |
| |
| case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): |
| case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): |
| size = sizeof(__u32); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (!IS_ALIGNED(off, size / sizeof(__u32))) |
| return -EINVAL; |
| |
| /* |
| * The KVM_REG_ARM64_SVE regs must be used instead of |
| * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on |
| * SVE-enabled vcpus: |
| */ |
| if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off)) |
| return -EINVAL; |
| |
| return size; |
| } |
| |
| static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| u64 off = core_reg_offset_from_id(reg->id); |
| int size = core_reg_size_from_offset(vcpu, off); |
| |
| if (size < 0) |
| return NULL; |
| |
| if (KVM_REG_SIZE(reg->id) != size) |
| return NULL; |
| |
| switch (off) { |
| case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... |
| KVM_REG_ARM_CORE_REG(regs.regs[30]): |
| off -= KVM_REG_ARM_CORE_REG(regs.regs[0]); |
| off /= 2; |
| return &vcpu->arch.ctxt.regs.regs[off]; |
| |
| case KVM_REG_ARM_CORE_REG(regs.sp): |
| return &vcpu->arch.ctxt.regs.sp; |
| |
| case KVM_REG_ARM_CORE_REG(regs.pc): |
| return &vcpu->arch.ctxt.regs.pc; |
| |
| case KVM_REG_ARM_CORE_REG(regs.pstate): |
| return &vcpu->arch.ctxt.regs.pstate; |
| |
| case KVM_REG_ARM_CORE_REG(sp_el1): |
| return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1); |
| |
| case KVM_REG_ARM_CORE_REG(elr_el1): |
| return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1); |
| |
| case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]): |
| return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1); |
| |
| case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]): |
| return &vcpu->arch.ctxt.spsr_abt; |
| |
| case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]): |
| return &vcpu->arch.ctxt.spsr_und; |
| |
| case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]): |
| return &vcpu->arch.ctxt.spsr_irq; |
| |
| case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]): |
| return &vcpu->arch.ctxt.spsr_fiq; |
| |
| case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... |
| KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): |
| off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]); |
| off /= 4; |
| return &vcpu->arch.ctxt.fp_regs.vregs[off]; |
| |
| case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): |
| return &vcpu->arch.ctxt.fp_regs.fpsr; |
| |
| case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): |
| return &vcpu->arch.ctxt.fp_regs.fpcr; |
| |
| default: |
| return NULL; |
| } |
| } |
| |
| static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| /* |
| * Because the kvm_regs structure is a mix of 32, 64 and |
| * 128bit fields, we index it as if it was a 32bit |
| * array. Hence below, nr_regs is the number of entries, and |
| * off the index in the "array". |
| */ |
| __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; |
| int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); |
| void *addr; |
| u32 off; |
| |
| /* Our ID is an index into the kvm_regs struct. */ |
| off = core_reg_offset_from_id(reg->id); |
| if (off >= nr_regs || |
| (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) |
| return -ENOENT; |
| |
| addr = core_reg_addr(vcpu, reg); |
| if (!addr) |
| return -EINVAL; |
| |
| if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; |
| int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); |
| __uint128_t tmp; |
| void *valp = &tmp, *addr; |
| u64 off; |
| int err = 0; |
| |
| /* Our ID is an index into the kvm_regs struct. */ |
| off = core_reg_offset_from_id(reg->id); |
| if (off >= nr_regs || |
| (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) |
| return -ENOENT; |
| |
| addr = core_reg_addr(vcpu, reg); |
| if (!addr) |
| return -EINVAL; |
| |
| if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) |
| return -EINVAL; |
| |
| if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { |
| err = -EFAULT; |
| goto out; |
| } |
| |
| if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { |
| u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK; |
| switch (mode) { |
| case PSR_AA32_MODE_USR: |
| if (!kvm_supports_32bit_el0()) |
| return -EINVAL; |
| break; |
| case PSR_AA32_MODE_FIQ: |
| case PSR_AA32_MODE_IRQ: |
| case PSR_AA32_MODE_SVC: |
| case PSR_AA32_MODE_ABT: |
| case PSR_AA32_MODE_UND: |
| if (!vcpu_el1_is_32bit(vcpu)) |
| return -EINVAL; |
| break; |
| case PSR_MODE_EL0t: |
| case PSR_MODE_EL1t: |
| case PSR_MODE_EL1h: |
| if (vcpu_el1_is_32bit(vcpu)) |
| return -EINVAL; |
| break; |
| default: |
| err = -EINVAL; |
| goto out; |
| } |
| } |
| |
| memcpy(addr, valp, KVM_REG_SIZE(reg->id)); |
| |
| if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) { |
| int i, nr_reg; |
| |
| switch (*vcpu_cpsr(vcpu)) { |
| /* |
| * Either we are dealing with user mode, and only the |
| * first 15 registers (+ PC) must be narrowed to 32bit. |
| * AArch32 r0-r14 conveniently map to AArch64 x0-x14. |
| */ |
| case PSR_AA32_MODE_USR: |
| case PSR_AA32_MODE_SYS: |
| nr_reg = 15; |
| break; |
| |
| /* |
| * Otherwise, this is a privileged mode, and *all* the |
| * registers must be narrowed to 32bit. |
| */ |
| default: |
| nr_reg = 31; |
| break; |
| } |
| |
| for (i = 0; i < nr_reg; i++) |
| vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i)); |
| |
| *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu); |
| } |
| out: |
| return err; |
| } |
| |
| #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64) |
| #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64) |
| #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq))) |
| |
| static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| unsigned int max_vq, vq; |
| u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; |
| |
| if (!vcpu_has_sve(vcpu)) |
| return -ENOENT; |
| |
| if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl))) |
| return -EINVAL; |
| |
| memset(vqs, 0, sizeof(vqs)); |
| |
| max_vq = vcpu_sve_max_vq(vcpu); |
| for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) |
| if (sve_vq_available(vq)) |
| vqs[vq_word(vq)] |= vq_mask(vq); |
| |
| if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| unsigned int max_vq, vq; |
| u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; |
| |
| if (!vcpu_has_sve(vcpu)) |
| return -ENOENT; |
| |
| if (kvm_arm_vcpu_sve_finalized(vcpu)) |
| return -EPERM; /* too late! */ |
| |
| if (WARN_ON(vcpu->arch.sve_state)) |
| return -EINVAL; |
| |
| if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs))) |
| return -EFAULT; |
| |
| max_vq = 0; |
| for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq) |
| if (vq_present(vqs, vq)) |
| max_vq = vq; |
| |
| if (max_vq > sve_vq_from_vl(kvm_sve_max_vl)) |
| return -EINVAL; |
| |
| /* |
| * Vector lengths supported by the host can't currently be |
| * hidden from the guest individually: instead we can only set a |
| * maximum via ZCR_EL2.LEN. So, make sure the available vector |
| * lengths match the set requested exactly up to the requested |
| * maximum: |
| */ |
| for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) |
| if (vq_present(vqs, vq) != sve_vq_available(vq)) |
| return -EINVAL; |
| |
| /* Can't run with no vector lengths at all: */ |
| if (max_vq < SVE_VQ_MIN) |
| return -EINVAL; |
| |
| /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */ |
| vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq); |
| |
| return 0; |
| } |
| |
| #define SVE_REG_SLICE_SHIFT 0 |
| #define SVE_REG_SLICE_BITS 5 |
| #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS) |
| #define SVE_REG_ID_BITS 5 |
| |
| #define SVE_REG_SLICE_MASK \ |
| GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \ |
| SVE_REG_SLICE_SHIFT) |
| #define SVE_REG_ID_MASK \ |
| GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT) |
| |
| #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS) |
| |
| #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0)) |
| #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0)) |
| |
| /* |
| * Number of register slices required to cover each whole SVE register. |
| * NOTE: Only the first slice every exists, for now. |
| * If you are tempted to modify this, you must also rework sve_reg_to_region() |
| * to match: |
| */ |
| #define vcpu_sve_slices(vcpu) 1 |
| |
| /* Bounds of a single SVE register slice within vcpu->arch.sve_state */ |
| struct sve_state_reg_region { |
| unsigned int koffset; /* offset into sve_state in kernel memory */ |
| unsigned int klen; /* length in kernel memory */ |
| unsigned int upad; /* extra trailing padding in user memory */ |
| }; |
| |
| /* |
| * Validate SVE register ID and get sanitised bounds for user/kernel SVE |
| * register copy |
| */ |
| static int sve_reg_to_region(struct sve_state_reg_region *region, |
| struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg) |
| { |
| /* reg ID ranges for Z- registers */ |
| const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0); |
| const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1, |
| SVE_NUM_SLICES - 1); |
| |
| /* reg ID ranges for P- registers and FFR (which are contiguous) */ |
| const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0); |
| const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1); |
| |
| unsigned int vq; |
| unsigned int reg_num; |
| |
| unsigned int reqoffset, reqlen; /* User-requested offset and length */ |
| unsigned int maxlen; /* Maximum permitted length */ |
| |
| size_t sve_state_size; |
| |
| const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1, |
| SVE_NUM_SLICES - 1); |
| |
| /* Verify that the P-regs and FFR really do have contiguous IDs: */ |
| BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1); |
| |
| /* Verify that we match the UAPI header: */ |
| BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES); |
| |
| reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT; |
| |
| if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) { |
| if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) |
| return -ENOENT; |
| |
| vq = vcpu_sve_max_vq(vcpu); |
| |
| reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) - |
| SVE_SIG_REGS_OFFSET; |
| reqlen = KVM_SVE_ZREG_SIZE; |
| maxlen = SVE_SIG_ZREG_SIZE(vq); |
| } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) { |
| if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) |
| return -ENOENT; |
| |
| vq = vcpu_sve_max_vq(vcpu); |
| |
| reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) - |
| SVE_SIG_REGS_OFFSET; |
| reqlen = KVM_SVE_PREG_SIZE; |
| maxlen = SVE_SIG_PREG_SIZE(vq); |
| } else { |
| return -EINVAL; |
| } |
| |
| sve_state_size = vcpu_sve_state_size(vcpu); |
| if (WARN_ON(!sve_state_size)) |
| return -EINVAL; |
| |
| region->koffset = array_index_nospec(reqoffset, sve_state_size); |
| region->klen = min(maxlen, reqlen); |
| region->upad = reqlen - region->klen; |
| |
| return 0; |
| } |
| |
| static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| int ret; |
| struct sve_state_reg_region region; |
| char __user *uptr = (char __user *)reg->addr; |
| |
| /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ |
| if (reg->id == KVM_REG_ARM64_SVE_VLS) |
| return get_sve_vls(vcpu, reg); |
| |
| /* Try to interpret reg ID as an architectural SVE register... */ |
| ret = sve_reg_to_region(®ion, vcpu, reg); |
| if (ret) |
| return ret; |
| |
| if (!kvm_arm_vcpu_sve_finalized(vcpu)) |
| return -EPERM; |
| |
| if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset, |
| region.klen) || |
| clear_user(uptr + region.klen, region.upad)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| int ret; |
| struct sve_state_reg_region region; |
| const char __user *uptr = (const char __user *)reg->addr; |
| |
| /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ |
| if (reg->id == KVM_REG_ARM64_SVE_VLS) |
| return set_sve_vls(vcpu, reg); |
| |
| /* Try to interpret reg ID as an architectural SVE register... */ |
| ret = sve_reg_to_region(®ion, vcpu, reg); |
| if (ret) |
| return ret; |
| |
| if (!kvm_arm_vcpu_sve_finalized(vcpu)) |
| return -EPERM; |
| |
| if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr, |
| region.klen)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| return -EINVAL; |
| } |
| |
| static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, |
| u64 __user *uindices) |
| { |
| unsigned int i; |
| int n = 0; |
| |
| for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { |
| u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i; |
| int size = core_reg_size_from_offset(vcpu, i); |
| |
| if (size < 0) |
| continue; |
| |
| switch (size) { |
| case sizeof(__u32): |
| reg |= KVM_REG_SIZE_U32; |
| break; |
| |
| case sizeof(__u64): |
| reg |= KVM_REG_SIZE_U64; |
| break; |
| |
| case sizeof(__uint128_t): |
| reg |= KVM_REG_SIZE_U128; |
| break; |
| |
| default: |
| WARN_ON(1); |
| continue; |
| } |
| |
| if (uindices) { |
| if (put_user(reg, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| n++; |
| } |
| |
| return n; |
| } |
| |
| static unsigned long num_core_regs(const struct kvm_vcpu *vcpu) |
| { |
| return copy_core_reg_indices(vcpu, NULL); |
| } |
| |
| /** |
| * ARM64 versions of the TIMER registers, always available on arm64 |
| */ |
| |
| #define NUM_TIMER_REGS 3 |
| |
| static bool is_timer_reg(u64 index) |
| { |
| switch (index) { |
| case KVM_REG_ARM_TIMER_CTL: |
| case KVM_REG_ARM_TIMER_CNT: |
| case KVM_REG_ARM_TIMER_CVAL: |
| return true; |
| } |
| return false; |
| } |
| |
| static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) |
| return -EFAULT; |
| uindices++; |
| if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) |
| return -EFAULT; |
| uindices++; |
| if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| u64 val; |
| int ret; |
| |
| ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); |
| if (ret != 0) |
| return -EFAULT; |
| |
| return kvm_arm_timer_set_reg(vcpu, reg->id, val); |
| } |
| |
| static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| u64 val; |
| |
| val = kvm_arm_timer_get_reg(vcpu, reg->id); |
| return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; |
| } |
| |
| static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu) |
| { |
| const unsigned int slices = vcpu_sve_slices(vcpu); |
| |
| if (!vcpu_has_sve(vcpu)) |
| return 0; |
| |
| /* Policed by KVM_GET_REG_LIST: */ |
| WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); |
| |
| return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */) |
| + 1; /* KVM_REG_ARM64_SVE_VLS */ |
| } |
| |
| static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, |
| u64 __user *uindices) |
| { |
| const unsigned int slices = vcpu_sve_slices(vcpu); |
| u64 reg; |
| unsigned int i, n; |
| int num_regs = 0; |
| |
| if (!vcpu_has_sve(vcpu)) |
| return 0; |
| |
| /* Policed by KVM_GET_REG_LIST: */ |
| WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); |
| |
| /* |
| * Enumerate this first, so that userspace can save/restore in |
| * the order reported by KVM_GET_REG_LIST: |
| */ |
| reg = KVM_REG_ARM64_SVE_VLS; |
| if (put_user(reg, uindices++)) |
| return -EFAULT; |
| ++num_regs; |
| |
| for (i = 0; i < slices; i++) { |
| for (n = 0; n < SVE_NUM_ZREGS; n++) { |
| reg = KVM_REG_ARM64_SVE_ZREG(n, i); |
| if (put_user(reg, uindices++)) |
| return -EFAULT; |
| num_regs++; |
| } |
| |
| for (n = 0; n < SVE_NUM_PREGS; n++) { |
| reg = KVM_REG_ARM64_SVE_PREG(n, i); |
| if (put_user(reg, uindices++)) |
| return -EFAULT; |
| num_regs++; |
| } |
| |
| reg = KVM_REG_ARM64_SVE_FFR(i); |
| if (put_user(reg, uindices++)) |
| return -EFAULT; |
| num_regs++; |
| } |
| |
| return num_regs; |
| } |
| |
| /** |
| * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG |
| * |
| * This is for all registers. |
| */ |
| unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) |
| { |
| unsigned long res = 0; |
| |
| res += num_core_regs(vcpu); |
| res += num_sve_regs(vcpu); |
| res += kvm_arm_num_sys_reg_descs(vcpu); |
| res += kvm_arm_get_fw_num_regs(vcpu); |
| res += NUM_TIMER_REGS; |
| |
| return res; |
| } |
| |
| /** |
| * kvm_arm_copy_reg_indices - get indices of all registers. |
| * |
| * We do core registers right here, then we append system regs. |
| */ |
| int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| int ret; |
| |
| ret = copy_core_reg_indices(vcpu, uindices); |
| if (ret < 0) |
| return ret; |
| uindices += ret; |
| |
| ret = copy_sve_reg_indices(vcpu, uindices); |
| if (ret < 0) |
| return ret; |
| uindices += ret; |
| |
| ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices); |
| if (ret < 0) |
| return ret; |
| uindices += kvm_arm_get_fw_num_regs(vcpu); |
| |
| ret = copy_timer_indices(vcpu, uindices); |
| if (ret < 0) |
| return ret; |
| uindices += NUM_TIMER_REGS; |
| |
| return kvm_arm_copy_sys_reg_indices(vcpu, uindices); |
| } |
| |
| int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| /* We currently use nothing arch-specific in upper 32 bits */ |
| if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) |
| return -EINVAL; |
| |
| switch (reg->id & KVM_REG_ARM_COPROC_MASK) { |
| case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg); |
| case KVM_REG_ARM_FW: |
| case KVM_REG_ARM_FW_FEAT_BMAP: |
| return kvm_arm_get_fw_reg(vcpu, reg); |
| case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg); |
| } |
| |
| if (is_timer_reg(reg->id)) |
| return get_timer_reg(vcpu, reg); |
| |
| return kvm_arm_sys_reg_get_reg(vcpu, reg); |
| } |
| |
| int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| /* We currently use nothing arch-specific in upper 32 bits */ |
| if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) |
| return -EINVAL; |
| |
| switch (reg->id & KVM_REG_ARM_COPROC_MASK) { |
| case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg); |
| case KVM_REG_ARM_FW: |
| case KVM_REG_ARM_FW_FEAT_BMAP: |
| return kvm_arm_set_fw_reg(vcpu, reg); |
| case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg); |
| } |
| |
| if (is_timer_reg(reg->id)) |
| return set_timer_reg(vcpu, reg); |
| |
| return kvm_arm_sys_reg_set_reg(vcpu, reg); |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| return -EINVAL; |
| } |
| |
| int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE); |
| events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); |
| |
| if (events->exception.serror_pending && events->exception.serror_has_esr) |
| events->exception.serror_esr = vcpu_get_vsesr(vcpu); |
| |
| /* |
| * We never return a pending ext_dabt here because we deliver it to |
| * the virtual CPU directly when setting the event and it's no longer |
| * 'pending' at this point. |
| */ |
| |
| return 0; |
| } |
| |
| int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| bool serror_pending = events->exception.serror_pending; |
| bool has_esr = events->exception.serror_has_esr; |
| bool ext_dabt_pending = events->exception.ext_dabt_pending; |
| |
| if (serror_pending && has_esr) { |
| if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) |
| return -EINVAL; |
| |
| if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK)) |
| kvm_set_sei_esr(vcpu, events->exception.serror_esr); |
| else |
| return -EINVAL; |
| } else if (serror_pending) { |
| kvm_inject_vabt(vcpu); |
| } |
| |
| if (ext_dabt_pending) |
| kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); |
| |
| return 0; |
| } |
| |
| u32 __attribute_const__ kvm_target_cpu(void) |
| { |
| unsigned long implementor = read_cpuid_implementor(); |
| unsigned long part_number = read_cpuid_part_number(); |
| |
| switch (implementor) { |
| case ARM_CPU_IMP_ARM: |
| switch (part_number) { |
| case ARM_CPU_PART_AEM_V8: |
| return KVM_ARM_TARGET_AEM_V8; |
| case ARM_CPU_PART_FOUNDATION: |
| return KVM_ARM_TARGET_FOUNDATION_V8; |
| case ARM_CPU_PART_CORTEX_A53: |
| return KVM_ARM_TARGET_CORTEX_A53; |
| case ARM_CPU_PART_CORTEX_A57: |
| return KVM_ARM_TARGET_CORTEX_A57; |
| } |
| break; |
| case ARM_CPU_IMP_APM: |
| switch (part_number) { |
| case APM_CPU_PART_POTENZA: |
| return KVM_ARM_TARGET_XGENE_POTENZA; |
| } |
| break; |
| } |
| |
| /* Return a default generic target */ |
| return KVM_ARM_TARGET_GENERIC_V8; |
| } |
| |
| void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) |
| { |
| u32 target = kvm_target_cpu(); |
| |
| memset(init, 0, sizeof(*init)); |
| |
| /* |
| * For now, we don't return any features. |
| * In future, we might use features to return target |
| * specific features available for the preferred |
| * target type. |
| */ |
| init->target = (__u32)target; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| return -EINVAL; |
| } |
| |
| /** |
| * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging |
| * @kvm: pointer to the KVM struct |
| * @kvm_guest_debug: the ioctl data buffer |
| * |
| * This sets up and enables the VM for guest debugging. Userspace |
| * passes in a control flag to enable different debug types and |
| * potentially other architecture specific information in the rest of |
| * the structure. |
| */ |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| int ret = 0; |
| |
| trace_kvm_set_guest_debug(vcpu, dbg->control); |
| |
| if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (dbg->control & KVM_GUESTDBG_ENABLE) { |
| vcpu->guest_debug = dbg->control; |
| |
| /* Hardware assisted Break and Watch points */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { |
| vcpu->arch.external_debug_state = dbg->arch; |
| } |
| |
| } else { |
| /* If not enabled clear all flags */ |
| vcpu->guest_debug = 0; |
| vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret; |
| |
| switch (attr->group) { |
| case KVM_ARM_VCPU_PMU_V3_CTRL: |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| ret = kvm_arm_pmu_v3_set_attr(vcpu, attr); |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| break; |
| case KVM_ARM_VCPU_TIMER_CTRL: |
| ret = kvm_arm_timer_set_attr(vcpu, attr); |
| break; |
| case KVM_ARM_VCPU_PVTIME_CTRL: |
| ret = kvm_arm_pvtime_set_attr(vcpu, attr); |
| break; |
| default: |
| ret = -ENXIO; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret; |
| |
| switch (attr->group) { |
| case KVM_ARM_VCPU_PMU_V3_CTRL: |
| ret = kvm_arm_pmu_v3_get_attr(vcpu, attr); |
| break; |
| case KVM_ARM_VCPU_TIMER_CTRL: |
| ret = kvm_arm_timer_get_attr(vcpu, attr); |
| break; |
| case KVM_ARM_VCPU_PVTIME_CTRL: |
| ret = kvm_arm_pvtime_get_attr(vcpu, attr); |
| break; |
| default: |
| ret = -ENXIO; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret; |
| |
| switch (attr->group) { |
| case KVM_ARM_VCPU_PMU_V3_CTRL: |
| ret = kvm_arm_pmu_v3_has_attr(vcpu, attr); |
| break; |
| case KVM_ARM_VCPU_TIMER_CTRL: |
| ret = kvm_arm_timer_has_attr(vcpu, attr); |
| break; |
| case KVM_ARM_VCPU_PVTIME_CTRL: |
| ret = kvm_arm_pvtime_has_attr(vcpu, attr); |
| break; |
| default: |
| ret = -ENXIO; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, |
| struct kvm_arm_copy_mte_tags *copy_tags) |
| { |
| gpa_t guest_ipa = copy_tags->guest_ipa; |
| size_t length = copy_tags->length; |
| void __user *tags = copy_tags->addr; |
| gpa_t gfn; |
| bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST); |
| int ret = 0; |
| |
| if (!kvm_has_mte(kvm)) |
| return -EINVAL; |
| |
| if (copy_tags->reserved[0] || copy_tags->reserved[1]) |
| return -EINVAL; |
| |
| if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST) |
| return -EINVAL; |
| |
| if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK) |
| return -EINVAL; |
| |
| gfn = gpa_to_gfn(guest_ipa); |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| while (length > 0) { |
| kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL); |
| void *maddr; |
| unsigned long num_tags; |
| struct page *page; |
| |
| if (is_error_noslot_pfn(pfn)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| page = pfn_to_online_page(pfn); |
| if (!page) { |
| /* Reject ZONE_DEVICE memory */ |
| ret = -EFAULT; |
| goto out; |
| } |
| maddr = page_address(page); |
| |
| if (!write) { |
| if (page_mte_tagged(page)) |
| num_tags = mte_copy_tags_to_user(tags, maddr, |
| MTE_GRANULES_PER_PAGE); |
| else |
| /* No tags in memory, so write zeros */ |
| num_tags = MTE_GRANULES_PER_PAGE - |
| clear_user(tags, MTE_GRANULES_PER_PAGE); |
| kvm_release_pfn_clean(pfn); |
| } else { |
| num_tags = mte_copy_tags_from_user(maddr, tags, |
| MTE_GRANULES_PER_PAGE); |
| |
| /* |
| * Set the flag after checking the write |
| * completed fully |
| */ |
| if (num_tags == MTE_GRANULES_PER_PAGE) |
| set_page_mte_tagged(page); |
| |
| kvm_release_pfn_dirty(pfn); |
| } |
| |
| if (num_tags != MTE_GRANULES_PER_PAGE) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| gfn++; |
| tags += num_tags; |
| length -= PAGE_SIZE; |
| } |
| |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| /* If some data has been copied report the number of bytes copied */ |
| if (length != copy_tags->length) |
| return copy_tags->length - length; |
| return ret; |
| } |