blob: b409be8ef0e087096297877b3eb8a2e7d2e1b7a6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 - Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/io.h>
#include <linux/kmemleak.h>
#include <linux/kvm_host.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of_address.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/stat.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pkvm.h>
#include <asm/kvm_pkvm_module.h>
#include <asm/setup.h>
#include <uapi/linux/mount.h>
#include <linux/init_syscalls.h>
#include "hyp_constants.h"
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
static struct reserved_mem *pkvm_firmware_mem;
static phys_addr_t *pvmfw_base = &kvm_nvhe_sym(pvmfw_base);
static phys_addr_t *pvmfw_size = &kvm_nvhe_sym(pvmfw_size);
static struct pkvm_moveable_reg *moveable_regs = kvm_nvhe_sym(pkvm_moveable_regs);
static struct memblock_region *hyp_memory = kvm_nvhe_sym(hyp_memory);
static unsigned int *hyp_memblock_nr_ptr = &kvm_nvhe_sym(hyp_memblock_nr);
phys_addr_t hyp_mem_base;
phys_addr_t hyp_mem_size;
static int cmp_hyp_memblock(const void *p1, const void *p2)
{
const struct memblock_region *r1 = p1;
const struct memblock_region *r2 = p2;
return r1->base < r2->base ? -1 : (r1->base > r2->base);
}
static void __init sort_memblock_regions(void)
{
sort(hyp_memory,
*hyp_memblock_nr_ptr,
sizeof(struct memblock_region),
cmp_hyp_memblock,
NULL);
}
static int __init register_memblock_regions(void)
{
struct memblock_region *reg;
for_each_mem_region(reg) {
if (*hyp_memblock_nr_ptr >= HYP_MEMBLOCK_REGIONS)
return -ENOMEM;
hyp_memory[*hyp_memblock_nr_ptr] = *reg;
(*hyp_memblock_nr_ptr)++;
}
sort_memblock_regions();
return 0;
}
static int cmp_moveable_reg(const void *p1, const void *p2)
{
const struct pkvm_moveable_reg *r1 = p1;
const struct pkvm_moveable_reg *r2 = p2;
/*
* Moveable regions may overlap, so put the largest one first when start
* addresses are equal to allow a simpler walk from e.g.
* host_stage2_unmap_unmoveable_regs().
*/
if (r1->start < r2->start)
return -1;
else if (r1->start > r2->start)
return 1;
else if (r1->size > r2->size)
return -1;
else if (r1->size < r2->size)
return 1;
return 0;
}
static void __init sort_moveable_regs(void)
{
sort(moveable_regs,
kvm_nvhe_sym(pkvm_moveable_regs_nr),
sizeof(struct pkvm_moveable_reg),
cmp_moveable_reg,
NULL);
}
static int __init register_moveable_regions(void)
{
struct memblock_region *reg;
struct device_node *np;
int i = 0;
for_each_mem_region(reg) {
if (i >= PKVM_NR_MOVEABLE_REGS)
return -ENOMEM;
moveable_regs[i].start = reg->base;
moveable_regs[i].size = reg->size;
moveable_regs[i].type = PKVM_MREG_MEMORY;
i++;
}
for_each_compatible_node(np, NULL, "pkvm,protected-region") {
struct resource res;
u64 start, size;
int ret;
if (i >= PKVM_NR_MOVEABLE_REGS)
return -ENOMEM;
ret = of_address_to_resource(np, 0, &res);
if (ret)
return ret;
start = res.start;
size = resource_size(&res);
if (!PAGE_ALIGNED(start) || !PAGE_ALIGNED(size))
return -EINVAL;
moveable_regs[i].start = start;
moveable_regs[i].size = size;
moveable_regs[i].type = PKVM_MREG_PROTECTED_RANGE;
i++;
}
kvm_nvhe_sym(pkvm_moveable_regs_nr) = i;
sort_moveable_regs();
return 0;
}
void __init kvm_hyp_reserve(void)
{
u64 hyp_mem_pages = 0;
int ret;
if (!is_hyp_mode_available() || is_kernel_in_hyp_mode())
return;
if (kvm_get_mode() != KVM_MODE_PROTECTED)
return;
ret = register_memblock_regions();
if (ret) {
*hyp_memblock_nr_ptr = 0;
kvm_err("Failed to register hyp memblocks: %d\n", ret);
return;
}
ret = register_moveable_regions();
if (ret) {
*hyp_memblock_nr_ptr = 0;
kvm_err("Failed to register pkvm moveable regions: %d\n", ret);
return;
}
hyp_mem_pages += hyp_s1_pgtable_pages();
hyp_mem_pages += host_s2_pgtable_pages();
hyp_mem_pages += hyp_vm_table_pages();
hyp_mem_pages += hyp_vmemmap_pages(STRUCT_HYP_PAGE_SIZE);
hyp_mem_pages += hyp_ffa_proxy_pages();
/*
* Try to allocate a PMD-aligned region to reduce TLB pressure once
* this is unmapped from the host stage-2, and fallback to PAGE_SIZE.
*/
hyp_mem_size = hyp_mem_pages << PAGE_SHIFT;
hyp_mem_base = memblock_phys_alloc(ALIGN(hyp_mem_size, PMD_SIZE),
PMD_SIZE);
if (!hyp_mem_base)
hyp_mem_base = memblock_phys_alloc(hyp_mem_size, PAGE_SIZE);
else
hyp_mem_size = ALIGN(hyp_mem_size, PMD_SIZE);
if (!hyp_mem_base) {
kvm_err("Failed to reserve hyp memory\n");
return;
}
kvm_info("Reserved %lld MiB at 0x%llx\n", hyp_mem_size >> 20,
hyp_mem_base);
}
/*
* Allocates and donates memory for hypervisor VM structs at EL2.
*
* Allocates space for the VM state, which includes the hyp vm as well as
* the hyp vcpus.
*
* Stores an opaque handler in the kvm struct for future reference.
*
* Return 0 on success, negative error code on failure.
*/
static int __pkvm_create_hyp_vm(struct kvm *host_kvm)
{
size_t pgd_sz, hyp_vm_sz, hyp_vcpu_sz, last_ran_sz, total_sz;
struct kvm_vcpu *host_vcpu;
pkvm_handle_t handle;
void *pgd, *hyp_vm, *last_ran;
unsigned long idx;
int ret;
if (host_kvm->created_vcpus < 1)
return -EINVAL;
pgd_sz = kvm_pgtable_stage2_pgd_size(host_kvm->arch.vtcr);
/*
* The PGD pages will be reclaimed using a hyp_memcache which implies
* page granularity. So, use alloc_pages_exact() to get individual
* refcounts.
*/
pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT);
if (!pgd)
return -ENOMEM;
/* Allocate memory to donate to hyp for vm and vcpu pointers. */
hyp_vm_sz = PAGE_ALIGN(size_add(PKVM_HYP_VM_SIZE,
size_mul(sizeof(void *),
host_kvm->created_vcpus)));
hyp_vm = alloc_pages_exact(hyp_vm_sz, GFP_KERNEL_ACCOUNT);
if (!hyp_vm) {
ret = -ENOMEM;
goto free_pgd;
}
/* Allocate memory to donate to hyp for tracking mmu->last_vcpu_ran. */
last_ran_sz = PAGE_ALIGN(array_size(num_possible_cpus(), sizeof(int)));
last_ran = alloc_pages_exact(last_ran_sz, GFP_KERNEL_ACCOUNT);
if (!last_ran) {
ret = -ENOMEM;
goto free_vm;
}
/* Donate the VM memory to hyp and let hyp initialize it. */
ret = kvm_call_hyp_nvhe(__pkvm_init_vm, host_kvm, hyp_vm, pgd, last_ran);
if (ret < 0)
goto free_last_ran;
handle = ret;
host_kvm->arch.pkvm.handle = handle;
total_sz = hyp_vm_sz + last_ran_sz + pgd_sz;
/* Donate memory for the vcpus at hyp and initialize it. */
hyp_vcpu_sz = PAGE_ALIGN(PKVM_HYP_VCPU_SIZE);
kvm_for_each_vcpu(idx, host_vcpu, host_kvm) {
void *hyp_vcpu;
/* Indexing of the vcpus to be sequential starting at 0. */
if (WARN_ON(host_vcpu->vcpu_idx != idx)) {
ret = -EINVAL;
goto destroy_vm;
}
hyp_vcpu = alloc_pages_exact(hyp_vcpu_sz, GFP_KERNEL_ACCOUNT);
if (!hyp_vcpu) {
ret = -ENOMEM;
goto destroy_vm;
}
total_sz += hyp_vcpu_sz;
ret = kvm_call_hyp_nvhe(__pkvm_init_vcpu, handle, host_vcpu,
hyp_vcpu);
if (ret) {
free_pages_exact(hyp_vcpu, hyp_vcpu_sz);
goto destroy_vm;
}
}
atomic64_set(&host_kvm->stat.protected_hyp_mem, total_sz);
kvm_account_pgtable_pages(pgd, pgd_sz >> PAGE_SHIFT);
return 0;
destroy_vm:
pkvm_destroy_hyp_vm(host_kvm);
return ret;
free_last_ran:
free_pages_exact(last_ran, last_ran_sz);
free_vm:
free_pages_exact(hyp_vm, hyp_vm_sz);
free_pgd:
free_pages_exact(pgd, pgd_sz);
return ret;
}
int pkvm_create_hyp_vm(struct kvm *host_kvm)
{
int ret = 0;
mutex_lock(&host_kvm->lock);
if (!host_kvm->arch.pkvm.handle)
ret = __pkvm_create_hyp_vm(host_kvm);
mutex_unlock(&host_kvm->lock);
return ret;
}
void pkvm_destroy_hyp_vm(struct kvm *host_kvm)
{
struct kvm_pinned_page *ppage;
struct mm_struct *mm = current->mm;
struct rb_node *node;
if (!host_kvm->arch.pkvm.handle)
goto out_free;
WARN_ON(kvm_call_hyp_nvhe(__pkvm_start_teardown_vm, host_kvm->arch.pkvm.handle));
node = rb_first(&host_kvm->arch.pkvm.pinned_pages);
while (node) {
ppage = rb_entry(node, struct kvm_pinned_page, node);
WARN_ON(kvm_call_hyp_nvhe(__pkvm_reclaim_dying_guest_page,
host_kvm->arch.pkvm.handle,
page_to_pfn(ppage->page),
ppage->ipa));
cond_resched();
account_locked_vm(mm, 1, false);
unpin_user_pages_dirty_lock(&ppage->page, 1, true);
node = rb_next(node);
rb_erase(&ppage->node, &host_kvm->arch.pkvm.pinned_pages);
kfree(ppage);
}
WARN_ON(kvm_call_hyp_nvhe(__pkvm_finalize_teardown_vm, host_kvm->arch.pkvm.handle));
out_free:
host_kvm->arch.pkvm.handle = 0;
free_hyp_memcache(&host_kvm->arch.pkvm.teardown_mc, host_kvm);
free_hyp_stage2_memcache(&host_kvm->arch.pkvm.teardown_stage2_mc,
host_kvm);
}
int pkvm_init_host_vm(struct kvm *host_kvm, unsigned long type)
{
mutex_init(&host_kvm->lock);
if (!(type & KVM_VM_TYPE_ARM_PROTECTED))
return 0;
if (!is_protected_kvm_enabled())
return -EINVAL;
host_kvm->arch.pkvm.pvmfw_load_addr = PVMFW_INVALID_LOAD_ADDR;
host_kvm->arch.pkvm.enabled = true;
return 0;
}
static int rb_ppage_cmp(const void *key, const struct rb_node *node)
{
struct kvm_pinned_page *p = container_of(node, struct kvm_pinned_page, node);
phys_addr_t ipa = (phys_addr_t)key;
return (ipa < p->ipa) ? -1 : (ipa > p->ipa);
}
void pkvm_host_reclaim_page(struct kvm *host_kvm, phys_addr_t ipa)
{
struct kvm_pinned_page *ppage;
struct mm_struct *mm = current->mm;
struct rb_node *node;
write_lock(&host_kvm->mmu_lock);
node = rb_find((void *)ipa, &host_kvm->arch.pkvm.pinned_pages,
rb_ppage_cmp);
if (node)
rb_erase(node, &host_kvm->arch.pkvm.pinned_pages);
write_unlock(&host_kvm->mmu_lock);
WARN_ON(!node);
if (!node)
return;
ppage = container_of(node, struct kvm_pinned_page, node);
account_locked_vm(mm, 1, false);
unpin_user_pages_dirty_lock(&ppage->page, 1, true);
kfree(ppage);
}
static int __init pkvm_firmware_rmem_err(struct reserved_mem *rmem,
const char *reason)
{
phys_addr_t end = rmem->base + rmem->size;
kvm_err("Ignoring pkvm guest firmware memory reservation [%pa - %pa]: %s\n",
&rmem->base, &end, reason);
return -EINVAL;
}
static int __init pkvm_firmware_rmem_init(struct reserved_mem *rmem)
{
unsigned long node = rmem->fdt_node;
if (pkvm_firmware_mem)
return pkvm_firmware_rmem_err(rmem, "duplicate reservation");
if (!of_get_flat_dt_prop(node, "no-map", NULL))
return pkvm_firmware_rmem_err(rmem, "missing \"no-map\" property");
if (of_get_flat_dt_prop(node, "reusable", NULL))
return pkvm_firmware_rmem_err(rmem, "\"reusable\" property unsupported");
if (!PAGE_ALIGNED(rmem->base))
return pkvm_firmware_rmem_err(rmem, "base is not page-aligned");
if (!PAGE_ALIGNED(rmem->size))
return pkvm_firmware_rmem_err(rmem, "size is not page-aligned");
*pvmfw_size = rmem->size;
*pvmfw_base = rmem->base;
pkvm_firmware_mem = rmem;
return 0;
}
RESERVEDMEM_OF_DECLARE(pkvm_firmware, "linux,pkvm-guest-firmware-memory",
pkvm_firmware_rmem_init);
static int __init pkvm_firmware_rmem_clear(void)
{
void *addr;
phys_addr_t size;
if (likely(!pkvm_firmware_mem))
return 0;
kvm_info("Clearing unused pKVM firmware memory\n");
size = pkvm_firmware_mem->size;
addr = memremap(pkvm_firmware_mem->base, size, MEMREMAP_WB);
if (!addr)
return -EINVAL;
memset(addr, 0, size);
/* Clear so user space doesn't get stale info via IOCTL. */
pkvm_firmware_mem = NULL;
dcache_clean_poc((unsigned long)addr, (unsigned long)addr + size);
memunmap(addr);
return 0;
}
static void _kvm_host_prot_finalize(void *arg)
{
int *err = arg;
if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
WRITE_ONCE(*err, -EINVAL);
}
static int pkvm_drop_host_privileges(void)
{
int ret = 0;
/*
* Flip the static key upfront as that may no longer be possible
* once the host stage 2 is installed.
*/
static_branch_enable(&kvm_protected_mode_initialized);
/*
* Fixup the boot mode so that we don't take spurious round
* trips via EL2 on cpu_resume. Flush to the PoC for a good
* measure, so that it can be observed by a CPU coming out of
* suspend with the MMU off.
*/
__boot_cpu_mode[0] = __boot_cpu_mode[1] = BOOT_CPU_MODE_EL1;
dcache_clean_poc((unsigned long)__boot_cpu_mode,
(unsigned long)(__boot_cpu_mode + 2));
on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
return ret;
}
static int __init finalize_pkvm(void)
{
int ret;
if (!is_protected_kvm_enabled()) {
pkvm_firmware_rmem_clear();
return 0;
}
/*
* Modules can play an essential part in the pKVM protection. All of
* them must properly load to enable protected VMs.
*/
if (pkvm_load_early_modules())
pkvm_firmware_rmem_clear();
/*
* Exclude HYP sections from kmemleak so that they don't get peeked
* at, which would end badly once inaccessible.
*/
kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
kmemleak_free_part(__hyp_data_start, __hyp_data_end - __hyp_data_start);
kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
flush_deferred_probe_now();
/* If no DMA protection. */
if (!pkvm_iommu_finalized())
pkvm_firmware_rmem_clear();
ret = pkvm_drop_host_privileges();
if (ret) {
pr_err("Failed to de-privilege the host kernel: %d\n", ret);
pkvm_firmware_rmem_clear();
}
#ifdef CONFIG_ANDROID_ARM64_WORKAROUND_DMA_BEYOND_POC
if (!ret)
ret = pkvm_register_early_nc_mappings();
#endif
return ret;
}
device_initcall_sync(finalize_pkvm);
static int test_memattr(void)
{
int ret;
void *v = alloc_pages_exact(64*PAGE_SIZE, GFP_KERNEL);
u64 pfn = page_to_pfn(virt_to_page(v));
int i;
enum kvm_pgtable_prot prot_r = KVM_PGTABLE_PROT_R;
enum kvm_pgtable_prot prot_rwx = KVM_PGTABLE_PROT_RWX;
printk("%s %p %llx\n", __FUNCTION__, v, pfn);
for (i = 0; i < 10; i++) {
*(volatile int *)v = 23;
ret = kvm_call_hyp_nvhe(__pkvm_host_page_prot_XXX, pfn, prot_r, 64);
WARN_ON(ret);
printk("[%d]\n", *(volatile int *)v);
ret = kvm_call_hyp_nvhe(__pkvm_host_page_prot_XXX, pfn, prot_rwx, 64);
WARN_ON(ret);
}
printk("End\n");
ret = kvm_call_hyp_nvhe(__pkvm_host_page_prot_XXX, pfn, prot_r, 1);
WARN_ON(ret);
*(volatile int *)v = 23;
return ret;
}
late_initcall_sync(test_memattr);
static int pkvm_vm_ioctl_set_fw_ipa(struct kvm *kvm, u64 ipa)
{
int ret = 0;
if (!pkvm_firmware_mem)
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->arch.pkvm.handle) {
ret = -EBUSY;
goto out_unlock;
}
kvm->arch.pkvm.pvmfw_load_addr = ipa;
out_unlock:
mutex_unlock(&kvm->lock);
return ret;
}
static int pkvm_vm_ioctl_info(struct kvm *kvm,
struct kvm_protected_vm_info __user *info)
{
struct kvm_protected_vm_info kinfo = {
.firmware_size = pkvm_firmware_mem ?
pkvm_firmware_mem->size :
0,
};
return copy_to_user(info, &kinfo, sizeof(kinfo)) ? -EFAULT : 0;
}
int pkvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
if (!kvm_vm_is_protected(kvm))
return -EINVAL;
if (cap->args[1] || cap->args[2] || cap->args[3])
return -EINVAL;
switch (cap->flags) {
case KVM_CAP_ARM_PROTECTED_VM_FLAGS_SET_FW_IPA:
return pkvm_vm_ioctl_set_fw_ipa(kvm, cap->args[0]);
case KVM_CAP_ARM_PROTECTED_VM_FLAGS_INFO:
return pkvm_vm_ioctl_info(kvm, (void __force __user *)cap->args[0]);
default:
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_MODULES
static char early_pkvm_modules[COMMAND_LINE_SIZE] __initdata;
static int __init early_pkvm_modules_cfg(char *arg)
{
/*
* Loading pKVM modules with kvm-arm.protected_modules is deprecated
* Use kvm-arm.protected_modules=<module1>,<module2>
*/
if (!arg)
return -EINVAL;
strscpy(early_pkvm_modules, arg, COMMAND_LINE_SIZE);
return 0;
}
early_param("kvm-arm.protected_modules", early_pkvm_modules_cfg);
static void free_modprobe_argv(struct subprocess_info *info)
{
kfree(info->argv);
}
/*
* Heavily inspired by request_module(). The latest couldn't be reused though as
* the feature can be disabled depending on umh configuration. Here some
* security is enforced by making sure this can be called only when pKVM is
* enabled, not yet completely initialized.
*/
static int __init __pkvm_request_early_module(char *module_name,
char *module_path)
{
char *modprobe_path = CONFIG_MODPROBE_PATH;
struct subprocess_info *info;
static char *envp[] = {
"HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
NULL
};
char **argv;
int idx = 0;
if (!is_protected_kvm_enabled())
return -EACCES;
if (static_branch_likely(&kvm_protected_mode_initialized))
return -EACCES;
argv = kmalloc(sizeof(char *) * 7, GFP_KERNEL);
if (!argv)
return -ENOMEM;
argv[idx++] = modprobe_path;
argv[idx++] = "-q";
if (*module_path != '\0') {
argv[idx++] = "-d";
argv[idx++] = module_path;
}
argv[idx++] = "--";
argv[idx++] = module_name;
argv[idx++] = NULL;
info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
NULL, free_modprobe_argv, NULL);
if (!info)
goto err;
/* Even with CONFIG_STATIC_USERMODEHELPER we really want this path */
info->path = modprobe_path;
return call_usermodehelper_exec(info, UMH_WAIT_PROC | UMH_KILLABLE);
err:
kfree(argv);
return -ENOMEM;
}
static int __init pkvm_request_early_module(char *module_name, char *module_path)
{
int err = __pkvm_request_early_module(module_name, module_path);
if (!err)
return 0;
/* Already tried the default path */
if (*module_path == '\0')
return err;
pr_info("loading %s from %s failed, fallback to the default path\n",
module_name, module_path);
return __pkvm_request_early_module(module_name, "");
}
int __init pkvm_load_early_modules(void)
{
char *token, *buf = early_pkvm_modules;
char *module_path = CONFIG_PKVM_MODULE_PATH;
int err = init_mount("proc", "/proc", "proc",
MS_SILENT | MS_NOEXEC | MS_NOSUID, NULL);
if (err)
return err;
while (true) {
token = strsep(&buf, ",");
if (!token)
break;
if (*token) {
err = pkvm_request_early_module(token, module_path);
if (err) {
pr_err("Failed to load pkvm module %s: %d\n",
token, err);
return err;
}
}
if (buf)
*(buf - 1) = ',';
}
return 0;
}
struct pkvm_mod_sec_mapping {
struct pkvm_module_section *sec;
enum kvm_pgtable_prot prot;
};
static void pkvm_unmap_module_pages(void *kern_va, void *hyp_va, size_t size)
{
size_t offset;
u64 pfn;
for (offset = 0; offset < size; offset += PAGE_SIZE) {
pfn = vmalloc_to_pfn(kern_va + offset);
kvm_call_hyp_nvhe(__pkvm_unmap_module_page, pfn,
hyp_va + offset);
}
}
static void pkvm_unmap_module_sections(struct pkvm_mod_sec_mapping *secs_map, void *hyp_va_base, int nr_secs)
{
size_t offset, size;
void *start;
int i;
for (i = 0; i < nr_secs; i++) {
start = secs_map[i].sec->start;
size = secs_map[i].sec->end - start;
offset = start - secs_map[0].sec->start;
pkvm_unmap_module_pages(start, hyp_va_base + offset, size);
}
}
static int pkvm_map_module_section(struct pkvm_mod_sec_mapping *sec_map, void *hyp_va)
{
size_t offset, size = sec_map->sec->end - sec_map->sec->start;
int ret;
u64 pfn;
for (offset = 0; offset < size; offset += PAGE_SIZE) {
pfn = vmalloc_to_pfn(sec_map->sec->start + offset);
ret = kvm_call_hyp_nvhe(__pkvm_map_module_page, pfn,
hyp_va + offset, sec_map->prot);
if (ret) {
pkvm_unmap_module_pages(sec_map->sec->start, hyp_va, offset);
return ret;
}
}
return 0;
}
static int pkvm_map_module_sections(struct pkvm_mod_sec_mapping *secs_map, void *hyp_va_base, int nr_secs)
{
size_t offset;
int i, ret;
for (i = 0; i < nr_secs; i++) {
offset = secs_map[i].sec->start - secs_map[0].sec->start;
ret = pkvm_map_module_section(&secs_map[i], hyp_va_base + offset);
if (ret) {
pkvm_unmap_module_sections(secs_map, hyp_va_base, i);
return ret;
}
}
return 0;
}
static int __pkvm_cmp_mod_sec(const void *p1, const void *p2)
{
struct pkvm_mod_sec_mapping const *s1 = p1;
struct pkvm_mod_sec_mapping const *s2 = p2;
return s1->sec->start < s2->sec->start ? -1 : s1->sec->start > s2->sec->start;
}
int __pkvm_load_el2_module(struct module *this, unsigned long *token)
{
struct pkvm_el2_module *mod = &this->arch.hyp;
struct pkvm_mod_sec_mapping secs_map[] = {
{ &mod->text, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_X },
{ &mod->bss, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W },
{ &mod->rodata, KVM_PGTABLE_PROT_R },
{ &mod->data, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W },
};
void *start, *end, *hyp_va;
struct arm_smccc_res res;
kvm_nvhe_reloc_t *endrel;
int ret, i, secs_first;
size_t offset, size;
/* The pKVM hyp only allows loading before it is fully initialized */
if (!is_protected_kvm_enabled() || is_pkvm_initialized())
return -EOPNOTSUPP;
for (i = 0; i < ARRAY_SIZE(secs_map); i++) {
if (!PAGE_ALIGNED(secs_map[i].sec->start)) {
kvm_err("EL2 sections are not page-aligned\n");
return -EINVAL;
}
}
if (!try_module_get(this)) {
kvm_err("Kernel module has been unloaded\n");
return -ENODEV;
}
/* Missing or empty module sections are placed first */
sort(secs_map, ARRAY_SIZE(secs_map), sizeof(secs_map[0]), __pkvm_cmp_mod_sec, NULL);
for (secs_first = 0; secs_first < ARRAY_SIZE(secs_map); secs_first++) {
start = secs_map[secs_first].sec->start;
if (start)
break;
}
end = secs_map[ARRAY_SIZE(secs_map) - 1].sec->end;
size = end - start;
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__pkvm_alloc_module_va),
size >> PAGE_SHIFT, &res);
if (res.a0 != SMCCC_RET_SUCCESS || !res.a1) {
kvm_err("Failed to allocate hypervisor VA space for EL2 module\n");
module_put(this);
return res.a0 == SMCCC_RET_SUCCESS ? -ENOMEM : -EPERM;
}
hyp_va = (void *)res.a1;
/*
* The token can be used for other calls related to this module.
* Conveniently the only information needed is this addr so let's use it
* as an identifier.
*/
if (token)
*token = (unsigned long)hyp_va;
endrel = (void *)mod->relocs + mod->nr_relocs * sizeof(*endrel);
kvm_apply_hyp_module_relocations(start, hyp_va, mod->relocs, endrel);
/*
* Exclude EL2 module sections from kmemleak before making them
* inaccessible.
*/
kmemleak_free_part(start, size);
ret = pkvm_map_module_sections(secs_map + secs_first, hyp_va,
ARRAY_SIZE(secs_map) - secs_first);
if (ret) {
kvm_err("Failed to map EL2 module page: %d\n", ret);
module_put(this);
return ret;
}
offset = (size_t)((void *)mod->init - start);
ret = kvm_call_hyp_nvhe(__pkvm_init_module, hyp_va + offset);
if (ret) {
kvm_err("Failed to init EL2 module: %d\n", ret);
pkvm_unmap_module_sections(secs_map, hyp_va, ARRAY_SIZE(secs_map));
module_put(this);
return ret;
}
return 0;
}
EXPORT_SYMBOL(__pkvm_load_el2_module);
int __pkvm_register_el2_call(unsigned long hfn_hyp_va)
{
return kvm_call_hyp_nvhe(__pkvm_register_hcall, hfn_hyp_va);
}
EXPORT_SYMBOL(__pkvm_register_el2_call);
#endif /* CONFIG_MODULES */