| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright IBM Corp. 2012 |
| * |
| * Author(s): |
| * Jan Glauber <jang@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pci.h> |
| #include <asm/pci_dma.h> |
| |
| static struct kmem_cache *dma_region_table_cache; |
| static struct kmem_cache *dma_page_table_cache; |
| static int s390_iommu_strict; |
| static u64 s390_iommu_aperture; |
| static u32 s390_iommu_aperture_factor = 1; |
| |
| static int zpci_refresh_global(struct zpci_dev *zdev) |
| { |
| return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma, |
| zdev->iommu_pages * PAGE_SIZE); |
| } |
| |
| unsigned long *dma_alloc_cpu_table(void) |
| { |
| unsigned long *table, *entry; |
| |
| table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC); |
| if (!table) |
| return NULL; |
| |
| for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) |
| *entry = ZPCI_TABLE_INVALID; |
| return table; |
| } |
| |
| static void dma_free_cpu_table(void *table) |
| { |
| kmem_cache_free(dma_region_table_cache, table); |
| } |
| |
| static unsigned long *dma_alloc_page_table(void) |
| { |
| unsigned long *table, *entry; |
| |
| table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC); |
| if (!table) |
| return NULL; |
| |
| for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) |
| *entry = ZPCI_PTE_INVALID; |
| return table; |
| } |
| |
| static void dma_free_page_table(void *table) |
| { |
| kmem_cache_free(dma_page_table_cache, table); |
| } |
| |
| static unsigned long *dma_get_seg_table_origin(unsigned long *entry) |
| { |
| unsigned long *sto; |
| |
| if (reg_entry_isvalid(*entry)) |
| sto = get_rt_sto(*entry); |
| else { |
| sto = dma_alloc_cpu_table(); |
| if (!sto) |
| return NULL; |
| |
| set_rt_sto(entry, virt_to_phys(sto)); |
| validate_rt_entry(entry); |
| entry_clr_protected(entry); |
| } |
| return sto; |
| } |
| |
| static unsigned long *dma_get_page_table_origin(unsigned long *entry) |
| { |
| unsigned long *pto; |
| |
| if (reg_entry_isvalid(*entry)) |
| pto = get_st_pto(*entry); |
| else { |
| pto = dma_alloc_page_table(); |
| if (!pto) |
| return NULL; |
| set_st_pto(entry, virt_to_phys(pto)); |
| validate_st_entry(entry); |
| entry_clr_protected(entry); |
| } |
| return pto; |
| } |
| |
| unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr) |
| { |
| unsigned long *sto, *pto; |
| unsigned int rtx, sx, px; |
| |
| rtx = calc_rtx(dma_addr); |
| sto = dma_get_seg_table_origin(&rto[rtx]); |
| if (!sto) |
| return NULL; |
| |
| sx = calc_sx(dma_addr); |
| pto = dma_get_page_table_origin(&sto[sx]); |
| if (!pto) |
| return NULL; |
| |
| px = calc_px(dma_addr); |
| return &pto[px]; |
| } |
| |
| void dma_update_cpu_trans(unsigned long *entry, phys_addr_t page_addr, int flags) |
| { |
| if (flags & ZPCI_PTE_INVALID) { |
| invalidate_pt_entry(entry); |
| } else { |
| set_pt_pfaa(entry, page_addr); |
| validate_pt_entry(entry); |
| } |
| |
| if (flags & ZPCI_TABLE_PROTECTED) |
| entry_set_protected(entry); |
| else |
| entry_clr_protected(entry); |
| } |
| |
| static int __dma_update_trans(struct zpci_dev *zdev, phys_addr_t pa, |
| dma_addr_t dma_addr, size_t size, int flags) |
| { |
| unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| phys_addr_t page_addr = (pa & PAGE_MASK); |
| unsigned long irq_flags; |
| unsigned long *entry; |
| int i, rc = 0; |
| |
| if (!nr_pages) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&zdev->dma_table_lock, irq_flags); |
| if (!zdev->dma_table) { |
| rc = -EINVAL; |
| goto out_unlock; |
| } |
| |
| for (i = 0; i < nr_pages; i++) { |
| entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); |
| if (!entry) { |
| rc = -ENOMEM; |
| goto undo_cpu_trans; |
| } |
| dma_update_cpu_trans(entry, page_addr, flags); |
| page_addr += PAGE_SIZE; |
| dma_addr += PAGE_SIZE; |
| } |
| |
| undo_cpu_trans: |
| if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) { |
| flags = ZPCI_PTE_INVALID; |
| while (i-- > 0) { |
| page_addr -= PAGE_SIZE; |
| dma_addr -= PAGE_SIZE; |
| entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); |
| if (!entry) |
| break; |
| dma_update_cpu_trans(entry, page_addr, flags); |
| } |
| } |
| out_unlock: |
| spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags); |
| return rc; |
| } |
| |
| static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr, |
| size_t size, int flags) |
| { |
| unsigned long irqflags; |
| int ret; |
| |
| /* |
| * With zdev->tlb_refresh == 0, rpcit is not required to establish new |
| * translations when previously invalid translation-table entries are |
| * validated. With lazy unmap, rpcit is skipped for previously valid |
| * entries, but a global rpcit is then required before any address can |
| * be re-used, i.e. after each iommu bitmap wrap-around. |
| */ |
| if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) { |
| if (!zdev->tlb_refresh) |
| return 0; |
| } else { |
| if (!s390_iommu_strict) |
| return 0; |
| } |
| |
| ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr, |
| PAGE_ALIGN(size)); |
| if (ret == -ENOMEM && !s390_iommu_strict) { |
| /* enable the hypervisor to free some resources */ |
| if (zpci_refresh_global(zdev)) |
| goto out; |
| |
| spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags); |
| bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap, |
| zdev->lazy_bitmap, zdev->iommu_pages); |
| bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages); |
| spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags); |
| ret = 0; |
| } |
| out: |
| return ret; |
| } |
| |
| static int dma_update_trans(struct zpci_dev *zdev, phys_addr_t pa, |
| dma_addr_t dma_addr, size_t size, int flags) |
| { |
| int rc; |
| |
| rc = __dma_update_trans(zdev, pa, dma_addr, size, flags); |
| if (rc) |
| return rc; |
| |
| rc = __dma_purge_tlb(zdev, dma_addr, size, flags); |
| if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) |
| __dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID); |
| |
| return rc; |
| } |
| |
| void dma_free_seg_table(unsigned long entry) |
| { |
| unsigned long *sto = get_rt_sto(entry); |
| int sx; |
| |
| for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) |
| if (reg_entry_isvalid(sto[sx])) |
| dma_free_page_table(get_st_pto(sto[sx])); |
| |
| dma_free_cpu_table(sto); |
| } |
| |
| void dma_cleanup_tables(unsigned long *table) |
| { |
| int rtx; |
| |
| if (!table) |
| return; |
| |
| for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) |
| if (reg_entry_isvalid(table[rtx])) |
| dma_free_seg_table(table[rtx]); |
| |
| dma_free_cpu_table(table); |
| } |
| |
| static unsigned long __dma_alloc_iommu(struct device *dev, |
| unsigned long start, int size) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| |
| return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages, |
| start, size, zdev->start_dma >> PAGE_SHIFT, |
| dma_get_seg_boundary_nr_pages(dev, PAGE_SHIFT), |
| 0); |
| } |
| |
| static dma_addr_t dma_alloc_address(struct device *dev, int size) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| unsigned long offset, flags; |
| |
| spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); |
| offset = __dma_alloc_iommu(dev, zdev->next_bit, size); |
| if (offset == -1) { |
| if (!s390_iommu_strict) { |
| /* global flush before DMA addresses are reused */ |
| if (zpci_refresh_global(zdev)) |
| goto out_error; |
| |
| bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap, |
| zdev->lazy_bitmap, zdev->iommu_pages); |
| bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages); |
| } |
| /* wrap-around */ |
| offset = __dma_alloc_iommu(dev, 0, size); |
| if (offset == -1) |
| goto out_error; |
| } |
| zdev->next_bit = offset + size; |
| spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); |
| |
| return zdev->start_dma + offset * PAGE_SIZE; |
| |
| out_error: |
| spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| unsigned long flags, offset; |
| |
| offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT; |
| |
| spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); |
| if (!zdev->iommu_bitmap) |
| goto out; |
| |
| if (s390_iommu_strict) |
| bitmap_clear(zdev->iommu_bitmap, offset, size); |
| else |
| bitmap_set(zdev->lazy_bitmap, offset, size); |
| |
| out: |
| spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); |
| } |
| |
| static inline void zpci_err_dma(unsigned long rc, unsigned long addr) |
| { |
| struct { |
| unsigned long rc; |
| unsigned long addr; |
| } __packed data = {rc, addr}; |
| |
| zpci_err_hex(&data, sizeof(data)); |
| } |
| |
| static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| unsigned long pa = page_to_phys(page) + offset; |
| int flags = ZPCI_PTE_VALID; |
| unsigned long nr_pages; |
| dma_addr_t dma_addr; |
| int ret; |
| |
| /* This rounds up number of pages based on size and offset */ |
| nr_pages = iommu_num_pages(pa, size, PAGE_SIZE); |
| dma_addr = dma_alloc_address(dev, nr_pages); |
| if (dma_addr == DMA_MAPPING_ERROR) { |
| ret = -ENOSPC; |
| goto out_err; |
| } |
| |
| /* Use rounded up size */ |
| size = nr_pages * PAGE_SIZE; |
| |
| if (direction == DMA_NONE || direction == DMA_TO_DEVICE) |
| flags |= ZPCI_TABLE_PROTECTED; |
| |
| ret = dma_update_trans(zdev, pa, dma_addr, size, flags); |
| if (ret) |
| goto out_free; |
| |
| atomic64_add(nr_pages, &zdev->mapped_pages); |
| return dma_addr + (offset & ~PAGE_MASK); |
| |
| out_free: |
| dma_free_address(dev, dma_addr, nr_pages); |
| out_err: |
| zpci_err("map error:\n"); |
| zpci_err_dma(ret, pa); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr, |
| size_t size, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| int npages, ret; |
| |
| npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| dma_addr = dma_addr & PAGE_MASK; |
| ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE, |
| ZPCI_PTE_INVALID); |
| if (ret) { |
| zpci_err("unmap error:\n"); |
| zpci_err_dma(ret, dma_addr); |
| return; |
| } |
| |
| atomic64_add(npages, &zdev->unmapped_pages); |
| dma_free_address(dev, dma_addr, npages); |
| } |
| |
| static void *s390_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag, |
| unsigned long attrs) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| struct page *page; |
| phys_addr_t pa; |
| dma_addr_t map; |
| |
| size = PAGE_ALIGN(size); |
| page = alloc_pages(flag | __GFP_ZERO, get_order(size)); |
| if (!page) |
| return NULL; |
| |
| pa = page_to_phys(page); |
| map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0); |
| if (dma_mapping_error(dev, map)) { |
| __free_pages(page, get_order(size)); |
| return NULL; |
| } |
| |
| atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages); |
| if (dma_handle) |
| *dma_handle = map; |
| return phys_to_virt(pa); |
| } |
| |
| static void s390_dma_free(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle, |
| unsigned long attrs) |
| { |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| |
| size = PAGE_ALIGN(size); |
| atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages); |
| s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0); |
| free_pages((unsigned long)vaddr, get_order(size)); |
| } |
| |
| /* Map a segment into a contiguous dma address area */ |
| static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| size_t size, dma_addr_t *handle, |
| enum dma_data_direction dir) |
| { |
| unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); |
| dma_addr_t dma_addr_base, dma_addr; |
| int flags = ZPCI_PTE_VALID; |
| struct scatterlist *s; |
| phys_addr_t pa = 0; |
| int ret; |
| |
| dma_addr_base = dma_alloc_address(dev, nr_pages); |
| if (dma_addr_base == DMA_MAPPING_ERROR) |
| return -ENOMEM; |
| |
| dma_addr = dma_addr_base; |
| if (dir == DMA_NONE || dir == DMA_TO_DEVICE) |
| flags |= ZPCI_TABLE_PROTECTED; |
| |
| for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) { |
| pa = page_to_phys(sg_page(s)); |
| ret = __dma_update_trans(zdev, pa, dma_addr, |
| s->offset + s->length, flags); |
| if (ret) |
| goto unmap; |
| |
| dma_addr += s->offset + s->length; |
| } |
| ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags); |
| if (ret) |
| goto unmap; |
| |
| *handle = dma_addr_base; |
| atomic64_add(nr_pages, &zdev->mapped_pages); |
| |
| return ret; |
| |
| unmap: |
| dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base, |
| ZPCI_PTE_INVALID); |
| dma_free_address(dev, dma_addr_base, nr_pages); |
| zpci_err("map error:\n"); |
| zpci_err_dma(ret, pa); |
| return ret; |
| } |
| |
| static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nr_elements, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct scatterlist *s = sg, *start = sg, *dma = sg; |
| unsigned int max = dma_get_max_seg_size(dev); |
| unsigned int size = s->offset + s->length; |
| unsigned int offset = s->offset; |
| int count = 0, i, ret; |
| |
| for (i = 1; i < nr_elements; i++) { |
| s = sg_next(s); |
| |
| s->dma_length = 0; |
| |
| if (s->offset || (size & ~PAGE_MASK) || |
| size + s->length > max) { |
| ret = __s390_dma_map_sg(dev, start, size, |
| &dma->dma_address, dir); |
| if (ret) |
| goto unmap; |
| |
| dma->dma_address += offset; |
| dma->dma_length = size - offset; |
| |
| size = offset = s->offset; |
| start = s; |
| dma = sg_next(dma); |
| count++; |
| } |
| size += s->length; |
| } |
| ret = __s390_dma_map_sg(dev, start, size, &dma->dma_address, dir); |
| if (ret) |
| goto unmap; |
| |
| dma->dma_address += offset; |
| dma->dma_length = size - offset; |
| |
| return count + 1; |
| unmap: |
| for_each_sg(sg, s, count, i) |
| s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s), |
| dir, attrs); |
| |
| return ret; |
| } |
| |
| static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nr_elements, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nr_elements, i) { |
| if (s->dma_length) |
| s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, |
| dir, attrs); |
| s->dma_address = 0; |
| s->dma_length = 0; |
| } |
| } |
| |
| int zpci_dma_init_device(struct zpci_dev *zdev) |
| { |
| int rc; |
| |
| /* |
| * At this point, if the device is part of an IOMMU domain, this would |
| * be a strong hint towards a bug in the IOMMU API (common) code and/or |
| * simultaneous access via IOMMU and DMA API. So let's issue a warning. |
| */ |
| WARN_ON(zdev->s390_domain); |
| |
| spin_lock_init(&zdev->iommu_bitmap_lock); |
| spin_lock_init(&zdev->dma_table_lock); |
| |
| zdev->dma_table = dma_alloc_cpu_table(); |
| if (!zdev->dma_table) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Restrict the iommu bitmap size to the minimum of the following: |
| * - s390_iommu_aperture which defaults to high_memory |
| * - 3-level pagetable address limit minus start_dma offset |
| * - DMA address range allowed by the hardware (clp query pci fn) |
| * |
| * Also set zdev->end_dma to the actual end address of the usable |
| * range, instead of the theoretical maximum as reported by hardware. |
| * |
| * This limits the number of concurrently usable DMA mappings since |
| * for each DMA mapped memory address we need a DMA address including |
| * extra DMA addresses for multiple mappings of the same memory address. |
| */ |
| zdev->start_dma = PAGE_ALIGN(zdev->start_dma); |
| zdev->iommu_size = min3(s390_iommu_aperture, |
| ZPCI_TABLE_SIZE_RT - zdev->start_dma, |
| zdev->end_dma - zdev->start_dma + 1); |
| zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1; |
| zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT; |
| zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8); |
| if (!zdev->iommu_bitmap) { |
| rc = -ENOMEM; |
| goto free_dma_table; |
| } |
| if (!s390_iommu_strict) { |
| zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8); |
| if (!zdev->lazy_bitmap) { |
| rc = -ENOMEM; |
| goto free_bitmap; |
| } |
| |
| } |
| if (zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, |
| virt_to_phys(zdev->dma_table))) { |
| rc = -EIO; |
| goto free_bitmap; |
| } |
| |
| return 0; |
| free_bitmap: |
| vfree(zdev->iommu_bitmap); |
| zdev->iommu_bitmap = NULL; |
| vfree(zdev->lazy_bitmap); |
| zdev->lazy_bitmap = NULL; |
| free_dma_table: |
| dma_free_cpu_table(zdev->dma_table); |
| zdev->dma_table = NULL; |
| out: |
| return rc; |
| } |
| |
| int zpci_dma_exit_device(struct zpci_dev *zdev) |
| { |
| int cc = 0; |
| |
| /* |
| * At this point, if the device is part of an IOMMU domain, this would |
| * be a strong hint towards a bug in the IOMMU API (common) code and/or |
| * simultaneous access via IOMMU and DMA API. So let's issue a warning. |
| */ |
| WARN_ON(zdev->s390_domain); |
| if (zdev_enabled(zdev)) |
| cc = zpci_unregister_ioat(zdev, 0); |
| /* |
| * cc == 3 indicates the function is gone already. This can happen |
| * if the function was deconfigured/disabled suddenly and we have not |
| * received a new handle yet. |
| */ |
| if (cc && cc != 3) |
| return -EIO; |
| |
| dma_cleanup_tables(zdev->dma_table); |
| zdev->dma_table = NULL; |
| vfree(zdev->iommu_bitmap); |
| zdev->iommu_bitmap = NULL; |
| vfree(zdev->lazy_bitmap); |
| zdev->lazy_bitmap = NULL; |
| zdev->next_bit = 0; |
| return 0; |
| } |
| |
| static int __init dma_alloc_cpu_table_caches(void) |
| { |
| dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", |
| ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, |
| 0, NULL); |
| if (!dma_region_table_cache) |
| return -ENOMEM; |
| |
| dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", |
| ZPCI_PT_SIZE, ZPCI_PT_ALIGN, |
| 0, NULL); |
| if (!dma_page_table_cache) { |
| kmem_cache_destroy(dma_region_table_cache); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| int __init zpci_dma_init(void) |
| { |
| s390_iommu_aperture = (u64)virt_to_phys(high_memory); |
| if (!s390_iommu_aperture_factor) |
| s390_iommu_aperture = ULONG_MAX; |
| else |
| s390_iommu_aperture *= s390_iommu_aperture_factor; |
| |
| return dma_alloc_cpu_table_caches(); |
| } |
| |
| void zpci_dma_exit(void) |
| { |
| kmem_cache_destroy(dma_page_table_cache); |
| kmem_cache_destroy(dma_region_table_cache); |
| } |
| |
| const struct dma_map_ops s390_pci_dma_ops = { |
| .alloc = s390_dma_alloc, |
| .free = s390_dma_free, |
| .map_sg = s390_dma_map_sg, |
| .unmap_sg = s390_dma_unmap_sg, |
| .map_page = s390_dma_map_pages, |
| .unmap_page = s390_dma_unmap_pages, |
| .mmap = dma_common_mmap, |
| .get_sgtable = dma_common_get_sgtable, |
| .alloc_pages = dma_common_alloc_pages, |
| .free_pages = dma_common_free_pages, |
| /* dma_supported is unconditionally true without a callback */ |
| }; |
| EXPORT_SYMBOL_GPL(s390_pci_dma_ops); |
| |
| static int __init s390_iommu_setup(char *str) |
| { |
| if (!strcmp(str, "strict")) |
| s390_iommu_strict = 1; |
| return 1; |
| } |
| |
| __setup("s390_iommu=", s390_iommu_setup); |
| |
| static int __init s390_iommu_aperture_setup(char *str) |
| { |
| if (kstrtou32(str, 10, &s390_iommu_aperture_factor)) |
| s390_iommu_aperture_factor = 1; |
| return 1; |
| } |
| |
| __setup("s390_iommu_aperture=", s390_iommu_aperture_setup); |