| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_CMPXCHG_32_H |
| #define _ASM_X86_CMPXCHG_32_H |
| |
| /* |
| * Note: if you use set64_bit(), __cmpxchg64(), or their variants, |
| * you need to test for the feature in boot_cpu_data. |
| */ |
| |
| /* |
| * CMPXCHG8B only writes to the target if we had the previous |
| * value in registers, otherwise it acts as a read and gives us the |
| * "new previous" value. That is why there is a loop. Preloading |
| * EDX:EAX is a performance optimization: in the common case it means |
| * we need only one locked operation. |
| * |
| * A SIMD/3DNOW!/MMX/FPU 64-bit store here would require at the very |
| * least an FPU save and/or %cr0.ts manipulation. |
| * |
| * cmpxchg8b must be used with the lock prefix here to allow the |
| * instruction to be executed atomically. We need to have the reader |
| * side to see the coherent 64bit value. |
| */ |
| static inline void set_64bit(volatile u64 *ptr, u64 value) |
| { |
| u32 low = value; |
| u32 high = value >> 32; |
| u64 prev = *ptr; |
| |
| asm volatile("\n1:\t" |
| LOCK_PREFIX "cmpxchg8b %0\n\t" |
| "jnz 1b" |
| : "=m" (*ptr), "+A" (prev) |
| : "b" (low), "c" (high) |
| : "memory"); |
| } |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| #define arch_cmpxchg64(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n))) |
| #define arch_cmpxchg64_local(ptr, o, n) \ |
| ((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \ |
| (unsigned long long)(n))) |
| #define arch_try_cmpxchg64(ptr, po, n) \ |
| __try_cmpxchg64((ptr), (unsigned long long *)(po), \ |
| (unsigned long long)(n)) |
| #endif |
| |
| static inline u64 __cmpxchg64(volatile u64 *ptr, u64 old, u64 new) |
| { |
| u64 prev; |
| asm volatile(LOCK_PREFIX "cmpxchg8b %1" |
| : "=A" (prev), |
| "+m" (*ptr) |
| : "b" ((u32)new), |
| "c" ((u32)(new >> 32)), |
| "0" (old) |
| : "memory"); |
| return prev; |
| } |
| |
| static inline u64 __cmpxchg64_local(volatile u64 *ptr, u64 old, u64 new) |
| { |
| u64 prev; |
| asm volatile("cmpxchg8b %1" |
| : "=A" (prev), |
| "+m" (*ptr) |
| : "b" ((u32)new), |
| "c" ((u32)(new >> 32)), |
| "0" (old) |
| : "memory"); |
| return prev; |
| } |
| |
| static inline bool __try_cmpxchg64(volatile u64 *ptr, u64 *pold, u64 new) |
| { |
| bool success; |
| u64 old = *pold; |
| asm volatile(LOCK_PREFIX "cmpxchg8b %[ptr]" |
| CC_SET(z) |
| : CC_OUT(z) (success), |
| [ptr] "+m" (*ptr), |
| "+A" (old) |
| : "b" ((u32)new), |
| "c" ((u32)(new >> 32)) |
| : "memory"); |
| |
| if (unlikely(!success)) |
| *pold = old; |
| return success; |
| } |
| |
| #ifndef CONFIG_X86_CMPXCHG64 |
| /* |
| * Building a kernel capable running on 80386 and 80486. It may be necessary |
| * to simulate the cmpxchg8b on the 80386 and 80486 CPU. |
| */ |
| |
| #define arch_cmpxchg64(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| __typeof__(*(ptr)) __old = (o); \ |
| __typeof__(*(ptr)) __new = (n); \ |
| alternative_io(LOCK_PREFIX_HERE \ |
| "call cmpxchg8b_emu", \ |
| "lock; cmpxchg8b (%%esi)" , \ |
| X86_FEATURE_CX8, \ |
| "=A" (__ret), \ |
| "S" ((ptr)), "0" (__old), \ |
| "b" ((unsigned int)__new), \ |
| "c" ((unsigned int)(__new>>32)) \ |
| : "memory"); \ |
| __ret; }) |
| |
| |
| #define arch_cmpxchg64_local(ptr, o, n) \ |
| ({ \ |
| __typeof__(*(ptr)) __ret; \ |
| __typeof__(*(ptr)) __old = (o); \ |
| __typeof__(*(ptr)) __new = (n); \ |
| alternative_io("call cmpxchg8b_emu", \ |
| "cmpxchg8b (%%esi)" , \ |
| X86_FEATURE_CX8, \ |
| "=A" (__ret), \ |
| "S" ((ptr)), "0" (__old), \ |
| "b" ((unsigned int)__new), \ |
| "c" ((unsigned int)(__new>>32)) \ |
| : "memory"); \ |
| __ret; }) |
| |
| #endif |
| |
| #define system_has_cmpxchg_double() boot_cpu_has(X86_FEATURE_CX8) |
| |
| #endif /* _ASM_X86_CMPXCHG_32_H */ |