| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_MICROCODE_H |
| #define _ASM_X86_MICROCODE_H |
| |
| #include <asm/cpu.h> |
| #include <linux/earlycpio.h> |
| #include <linux/initrd.h> |
| #include <asm/microcode_amd.h> |
| |
| struct ucode_patch { |
| struct list_head plist; |
| void *data; /* Intel uses only this one */ |
| unsigned int size; |
| u32 patch_id; |
| u16 equiv_cpu; |
| }; |
| |
| extern struct list_head microcode_cache; |
| |
| struct cpu_signature { |
| unsigned int sig; |
| unsigned int pf; |
| unsigned int rev; |
| }; |
| |
| struct device; |
| |
| enum ucode_state { |
| UCODE_OK = 0, |
| UCODE_NEW, |
| UCODE_UPDATED, |
| UCODE_NFOUND, |
| UCODE_ERROR, |
| }; |
| |
| struct microcode_ops { |
| enum ucode_state (*request_microcode_fw) (int cpu, struct device *, |
| bool refresh_fw); |
| |
| void (*microcode_fini_cpu) (int cpu); |
| |
| /* |
| * The generic 'microcode_core' part guarantees that |
| * the callbacks below run on a target cpu when they |
| * are being called. |
| * See also the "Synchronization" section in microcode_core.c. |
| */ |
| enum ucode_state (*apply_microcode) (int cpu); |
| int (*collect_cpu_info) (int cpu, struct cpu_signature *csig); |
| }; |
| |
| struct ucode_cpu_info { |
| struct cpu_signature cpu_sig; |
| int valid; |
| void *mc; |
| }; |
| extern struct ucode_cpu_info ucode_cpu_info[]; |
| struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa); |
| |
| #ifdef CONFIG_MICROCODE_INTEL |
| extern struct microcode_ops * __init init_intel_microcode(void); |
| #else |
| static inline struct microcode_ops * __init init_intel_microcode(void) |
| { |
| return NULL; |
| } |
| #endif /* CONFIG_MICROCODE_INTEL */ |
| |
| #ifdef CONFIG_MICROCODE_AMD |
| extern struct microcode_ops * __init init_amd_microcode(void); |
| extern void __exit exit_amd_microcode(void); |
| #else |
| static inline struct microcode_ops * __init init_amd_microcode(void) |
| { |
| return NULL; |
| } |
| static inline void __exit exit_amd_microcode(void) {} |
| #endif |
| |
| #define MAX_UCODE_COUNT 128 |
| |
| #define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24)) |
| #define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u') |
| #define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I') |
| #define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l') |
| #define CPUID_AMD1 QCHAR('A', 'u', 't', 'h') |
| #define CPUID_AMD2 QCHAR('e', 'n', 't', 'i') |
| #define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D') |
| |
| #define CPUID_IS(a, b, c, ebx, ecx, edx) \ |
| (!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c)))) |
| |
| /* |
| * In early loading microcode phase on BSP, boot_cpu_data is not set up yet. |
| * x86_cpuid_vendor() gets vendor id for BSP. |
| * |
| * In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify |
| * coding, we still use x86_cpuid_vendor() to get vendor id for AP. |
| * |
| * x86_cpuid_vendor() gets vendor information directly from CPUID. |
| */ |
| static inline int x86_cpuid_vendor(void) |
| { |
| u32 eax = 0x00000000; |
| u32 ebx, ecx = 0, edx; |
| |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx)) |
| return X86_VENDOR_INTEL; |
| |
| if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx)) |
| return X86_VENDOR_AMD; |
| |
| return X86_VENDOR_UNKNOWN; |
| } |
| |
| static inline unsigned int x86_cpuid_family(void) |
| { |
| u32 eax = 0x00000001; |
| u32 ebx, ecx = 0, edx; |
| |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| return x86_family(eax); |
| } |
| |
| #ifdef CONFIG_MICROCODE |
| extern void __init load_ucode_bsp(void); |
| extern void load_ucode_ap(void); |
| void reload_early_microcode(unsigned int cpu); |
| extern bool initrd_gone; |
| void microcode_bsp_resume(void); |
| #else |
| static inline void __init load_ucode_bsp(void) { } |
| static inline void load_ucode_ap(void) { } |
| static inline void reload_early_microcode(unsigned int cpu) { } |
| static inline void microcode_bsp_resume(void) { } |
| #endif |
| |
| #endif /* _ASM_X86_MICROCODE_H */ |