| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_PGTABLE_3LEVEL_H |
| #define _ASM_X86_PGTABLE_3LEVEL_H |
| |
| #include <asm/atomic64_32.h> |
| |
| /* |
| * Intel Physical Address Extension (PAE) Mode - three-level page |
| * tables on PPro+ CPUs. |
| * |
| * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> |
| */ |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \ |
| __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low) |
| #define pmd_ERROR(e) \ |
| pr_err("%s:%d: bad pmd %p(%016Lx)\n", \ |
| __FILE__, __LINE__, &(e), pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %p(%016Lx)\n", \ |
| __FILE__, __LINE__, &(e), pgd_val(e)) |
| |
| /* Rules for using set_pte: the pte being assigned *must* be |
| * either not present or in a state where the hardware will |
| * not attempt to update the pte. In places where this is |
| * not possible, use pte_get_and_clear to obtain the old pte |
| * value and then use set_pte to update it. -ben |
| */ |
| static inline void native_set_pte(pte_t *ptep, pte_t pte) |
| { |
| ptep->pte_high = pte.pte_high; |
| smp_wmb(); |
| ptep->pte_low = pte.pte_low; |
| } |
| |
| #define pmd_read_atomic pmd_read_atomic |
| /* |
| * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with |
| * a "*pmdp" dereference done by GCC. Problem is, in certain places |
| * where pte_offset_map_lock() is called, concurrent page faults are |
| * allowed, if the mmap_lock is hold for reading. An example is mincore |
| * vs page faults vs MADV_DONTNEED. On the page fault side |
| * pmd_populate() rightfully does a set_64bit(), but if we're reading the |
| * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen |
| * because GCC will not read the 64-bit value of the pmd atomically. |
| * |
| * To fix this all places running pte_offset_map_lock() while holding the |
| * mmap_lock in read mode, shall read the pmdp pointer using this |
| * function to know if the pmd is null or not, and in turn to know if |
| * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd |
| * operations. |
| * |
| * Without THP if the mmap_lock is held for reading, the pmd can only |
| * transition from null to not null while pmd_read_atomic() runs. So |
| * we can always return atomic pmd values with this function. |
| * |
| * With THP if the mmap_lock is held for reading, the pmd can become |
| * trans_huge or none or point to a pte (and in turn become "stable") |
| * at any time under pmd_read_atomic(). We could read it truly |
| * atomically here with an atomic64_read() for the THP enabled case (and |
| * it would be a whole lot simpler), but to avoid using cmpxchg8b we |
| * only return an atomic pmdval if the low part of the pmdval is later |
| * found to be stable (i.e. pointing to a pte). We are also returning a |
| * 'none' (zero) pmdval if the low part of the pmd is zero. |
| * |
| * In some cases the high and low part of the pmdval returned may not be |
| * consistent if THP is enabled (the low part may point to previously |
| * mapped hugepage, while the high part may point to a more recently |
| * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only |
| * needs the low part of the pmd to be read atomically to decide if the |
| * pmd is unstable or not, with the only exception when the low part |
| * of the pmd is zero, in which case we return a 'none' pmd. |
| */ |
| static inline pmd_t pmd_read_atomic(pmd_t *pmdp) |
| { |
| pmdval_t ret; |
| u32 *tmp = (u32 *)pmdp; |
| |
| ret = (pmdval_t) (*tmp); |
| if (ret) { |
| /* |
| * If the low part is null, we must not read the high part |
| * or we can end up with a partial pmd. |
| */ |
| smp_rmb(); |
| ret |= ((pmdval_t)*(tmp + 1)) << 32; |
| } |
| |
| return (pmd_t) { ret }; |
| } |
| |
| static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) |
| { |
| set_64bit((unsigned long long *)(ptep), native_pte_val(pte)); |
| } |
| |
| static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd)); |
| } |
| |
| static inline void native_set_pud(pud_t *pudp, pud_t pud) |
| { |
| #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd); |
| #endif |
| set_64bit((unsigned long long *)(pudp), native_pud_val(pud)); |
| } |
| |
| /* |
| * For PTEs and PDEs, we must clear the P-bit first when clearing a page table |
| * entry, so clear the bottom half first and enforce ordering with a compiler |
| * barrier. |
| */ |
| static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| ptep->pte_low = 0; |
| smp_wmb(); |
| ptep->pte_high = 0; |
| } |
| |
| static inline void native_pmd_clear(pmd_t *pmd) |
| { |
| u32 *tmp = (u32 *)pmd; |
| *tmp = 0; |
| smp_wmb(); |
| *(tmp + 1) = 0; |
| } |
| |
| static inline void native_pud_clear(pud_t *pudp) |
| { |
| } |
| |
| static inline void pud_clear(pud_t *pudp) |
| { |
| set_pud(pudp, __pud(0)); |
| |
| /* |
| * According to Intel App note "TLBs, Paging-Structure Caches, |
| * and Their Invalidation", April 2007, document 317080-001, |
| * section 8.1: in PAE mode we explicitly have to flush the |
| * TLB via cr3 if the top-level pgd is changed... |
| * |
| * Currently all places where pud_clear() is called either have |
| * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or |
| * pud_clear_bad()), so we don't need TLB flush here. |
| */ |
| } |
| |
| #ifdef CONFIG_SMP |
| static inline pte_t native_ptep_get_and_clear(pte_t *ptep) |
| { |
| pte_t res; |
| |
| res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0); |
| |
| return res; |
| } |
| #else |
| #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp) |
| #endif |
| |
| union split_pmd { |
| struct { |
| u32 pmd_low; |
| u32 pmd_high; |
| }; |
| pmd_t pmd; |
| }; |
| |
| #ifdef CONFIG_SMP |
| static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp) |
| { |
| union split_pmd res, *orig = (union split_pmd *)pmdp; |
| |
| /* xchg acts as a barrier before setting of the high bits */ |
| res.pmd_low = xchg(&orig->pmd_low, 0); |
| res.pmd_high = orig->pmd_high; |
| orig->pmd_high = 0; |
| |
| return res.pmd; |
| } |
| #else |
| #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp) |
| #endif |
| |
| #ifndef pmdp_establish |
| #define pmdp_establish pmdp_establish |
| static inline pmd_t pmdp_establish(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| { |
| pmd_t old; |
| |
| /* |
| * If pmd has present bit cleared we can get away without expensive |
| * cmpxchg64: we can update pmdp half-by-half without racing with |
| * anybody. |
| */ |
| if (!(pmd_val(pmd) & _PAGE_PRESENT)) { |
| union split_pmd old, new, *ptr; |
| |
| ptr = (union split_pmd *)pmdp; |
| |
| new.pmd = pmd; |
| |
| /* xchg acts as a barrier before setting of the high bits */ |
| old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low); |
| old.pmd_high = ptr->pmd_high; |
| ptr->pmd_high = new.pmd_high; |
| return old.pmd; |
| } |
| |
| do { |
| old = *pmdp; |
| } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd); |
| |
| return old; |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| union split_pud { |
| struct { |
| u32 pud_low; |
| u32 pud_high; |
| }; |
| pud_t pud; |
| }; |
| |
| static inline pud_t native_pudp_get_and_clear(pud_t *pudp) |
| { |
| union split_pud res, *orig = (union split_pud *)pudp; |
| |
| #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0)); |
| #endif |
| |
| /* xchg acts as a barrier before setting of the high bits */ |
| res.pud_low = xchg(&orig->pud_low, 0); |
| res.pud_high = orig->pud_high; |
| orig->pud_high = 0; |
| |
| return res.pud; |
| } |
| #else |
| #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp) |
| #endif |
| |
| /* Encode and de-code a swap entry */ |
| #define SWP_TYPE_BITS 5 |
| |
| #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) |
| |
| /* We always extract/encode the offset by shifting it all the way up, and then down again */ |
| #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS) |
| |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) |
| #define __swp_type(x) (((x).val) & ((1UL << SWP_TYPE_BITS) - 1)) |
| #define __swp_offset(x) ((x).val >> SWP_TYPE_BITS) |
| #define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << SWP_TYPE_BITS}) |
| |
| /* |
| * Normally, __swp_entry() converts from arch-independent swp_entry_t to |
| * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result |
| * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the |
| * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to |
| * __swp_entry_to_pte() through the following helper macro based on 64bit |
| * __swp_entry(). |
| */ |
| #define __swp_pteval_entry(type, offset) ((pteval_t) { \ |
| (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ |
| | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) }) |
| |
| #define __swp_entry_to_pte(x) ((pte_t){ .pte = \ |
| __swp_pteval_entry(__swp_type(x), __swp_offset(x)) }) |
| /* |
| * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent |
| * swp_entry_t, but also has to convert it from 64bit to the 32bit |
| * intermediate representation, using the following macros based on 64bit |
| * __swp_type() and __swp_offset(). |
| */ |
| #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS))) |
| #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT)) |
| |
| #define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \ |
| __pteval_swp_offset(pte))) |
| |
| #include <asm/pgtable-invert.h> |
| |
| #endif /* _ASM_X86_PGTABLE_3LEVEL_H */ |