| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * (c) 2005-2016 Advanced Micro Devices, Inc. |
| * |
| * Written by Jacob Shin - AMD, Inc. |
| * Maintained by: Borislav Petkov <bp@alien8.de> |
| * |
| * All MC4_MISCi registers are shared between cores on a node. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/notifier.h> |
| #include <linux/kobject.h> |
| #include <linux/percpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sysfs.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/string.h> |
| |
| #include <asm/amd_nb.h> |
| #include <asm/traps.h> |
| #include <asm/apic.h> |
| #include <asm/mce.h> |
| #include <asm/msr.h> |
| #include <asm/trace/irq_vectors.h> |
| |
| #include "internal.h" |
| |
| #define NR_BLOCKS 5 |
| #define THRESHOLD_MAX 0xFFF |
| #define INT_TYPE_APIC 0x00020000 |
| #define MASK_VALID_HI 0x80000000 |
| #define MASK_CNTP_HI 0x40000000 |
| #define MASK_LOCKED_HI 0x20000000 |
| #define MASK_LVTOFF_HI 0x00F00000 |
| #define MASK_COUNT_EN_HI 0x00080000 |
| #define MASK_INT_TYPE_HI 0x00060000 |
| #define MASK_OVERFLOW_HI 0x00010000 |
| #define MASK_ERR_COUNT_HI 0x00000FFF |
| #define MASK_BLKPTR_LO 0xFF000000 |
| #define MCG_XBLK_ADDR 0xC0000400 |
| |
| /* Deferred error settings */ |
| #define MSR_CU_DEF_ERR 0xC0000410 |
| #define MASK_DEF_LVTOFF 0x000000F0 |
| #define MASK_DEF_INT_TYPE 0x00000006 |
| #define DEF_LVT_OFF 0x2 |
| #define DEF_INT_TYPE_APIC 0x2 |
| |
| /* Scalable MCA: */ |
| |
| /* Threshold LVT offset is at MSR0xC0000410[15:12] */ |
| #define SMCA_THR_LVT_OFF 0xF000 |
| |
| static bool thresholding_irq_en; |
| |
| static const char * const th_names[] = { |
| "load_store", |
| "insn_fetch", |
| "combined_unit", |
| "decode_unit", |
| "northbridge", |
| "execution_unit", |
| }; |
| |
| static const char * const smca_umc_block_names[] = { |
| "dram_ecc", |
| "misc_umc" |
| }; |
| |
| #define HWID_MCATYPE(hwid, mcatype) (((hwid) << 16) | (mcatype)) |
| |
| struct smca_hwid { |
| unsigned int bank_type; /* Use with smca_bank_types for easy indexing. */ |
| u32 hwid_mcatype; /* (hwid,mcatype) tuple */ |
| }; |
| |
| struct smca_bank { |
| const struct smca_hwid *hwid; |
| u32 id; /* Value of MCA_IPID[InstanceId]. */ |
| u8 sysfs_id; /* Value used for sysfs name. */ |
| }; |
| |
| static DEFINE_PER_CPU_READ_MOSTLY(struct smca_bank[MAX_NR_BANKS], smca_banks); |
| static DEFINE_PER_CPU_READ_MOSTLY(u8[N_SMCA_BANK_TYPES], smca_bank_counts); |
| |
| struct smca_bank_name { |
| const char *name; /* Short name for sysfs */ |
| const char *long_name; /* Long name for pretty-printing */ |
| }; |
| |
| static struct smca_bank_name smca_names[] = { |
| [SMCA_LS ... SMCA_LS_V2] = { "load_store", "Load Store Unit" }, |
| [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" }, |
| [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" }, |
| [SMCA_DE] = { "decode_unit", "Decode Unit" }, |
| [SMCA_RESERVED] = { "reserved", "Reserved" }, |
| [SMCA_EX] = { "execution_unit", "Execution Unit" }, |
| [SMCA_FP] = { "floating_point", "Floating Point Unit" }, |
| [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" }, |
| [SMCA_CS ... SMCA_CS_V2] = { "coherent_slave", "Coherent Slave" }, |
| [SMCA_PIE] = { "pie", "Power, Interrupts, etc." }, |
| |
| /* UMC v2 is separate because both of them can exist in a single system. */ |
| [SMCA_UMC] = { "umc", "Unified Memory Controller" }, |
| [SMCA_UMC_V2] = { "umc_v2", "Unified Memory Controller v2" }, |
| [SMCA_PB] = { "param_block", "Parameter Block" }, |
| [SMCA_PSP ... SMCA_PSP_V2] = { "psp", "Platform Security Processor" }, |
| [SMCA_SMU ... SMCA_SMU_V2] = { "smu", "System Management Unit" }, |
| [SMCA_MP5] = { "mp5", "Microprocessor 5 Unit" }, |
| [SMCA_MPDMA] = { "mpdma", "MPDMA Unit" }, |
| [SMCA_NBIO] = { "nbio", "Northbridge IO Unit" }, |
| [SMCA_PCIE ... SMCA_PCIE_V2] = { "pcie", "PCI Express Unit" }, |
| [SMCA_XGMI_PCS] = { "xgmi_pcs", "Ext Global Memory Interconnect PCS Unit" }, |
| [SMCA_NBIF] = { "nbif", "NBIF Unit" }, |
| [SMCA_SHUB] = { "shub", "System Hub Unit" }, |
| [SMCA_SATA] = { "sata", "SATA Unit" }, |
| [SMCA_USB] = { "usb", "USB Unit" }, |
| [SMCA_GMI_PCS] = { "gmi_pcs", "Global Memory Interconnect PCS Unit" }, |
| [SMCA_XGMI_PHY] = { "xgmi_phy", "Ext Global Memory Interconnect PHY Unit" }, |
| [SMCA_WAFL_PHY] = { "wafl_phy", "WAFL PHY Unit" }, |
| [SMCA_GMI_PHY] = { "gmi_phy", "Global Memory Interconnect PHY Unit" }, |
| }; |
| |
| static const char *smca_get_name(enum smca_bank_types t) |
| { |
| if (t >= N_SMCA_BANK_TYPES) |
| return NULL; |
| |
| return smca_names[t].name; |
| } |
| |
| const char *smca_get_long_name(enum smca_bank_types t) |
| { |
| if (t >= N_SMCA_BANK_TYPES) |
| return NULL; |
| |
| return smca_names[t].long_name; |
| } |
| EXPORT_SYMBOL_GPL(smca_get_long_name); |
| |
| enum smca_bank_types smca_get_bank_type(unsigned int cpu, unsigned int bank) |
| { |
| struct smca_bank *b; |
| |
| if (bank >= MAX_NR_BANKS) |
| return N_SMCA_BANK_TYPES; |
| |
| b = &per_cpu(smca_banks, cpu)[bank]; |
| if (!b->hwid) |
| return N_SMCA_BANK_TYPES; |
| |
| return b->hwid->bank_type; |
| } |
| EXPORT_SYMBOL_GPL(smca_get_bank_type); |
| |
| static const struct smca_hwid smca_hwid_mcatypes[] = { |
| /* { bank_type, hwid_mcatype } */ |
| |
| /* Reserved type */ |
| { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0) }, |
| |
| /* ZN Core (HWID=0xB0) MCA types */ |
| { SMCA_LS, HWID_MCATYPE(0xB0, 0x0) }, |
| { SMCA_LS_V2, HWID_MCATYPE(0xB0, 0x10) }, |
| { SMCA_IF, HWID_MCATYPE(0xB0, 0x1) }, |
| { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2) }, |
| { SMCA_DE, HWID_MCATYPE(0xB0, 0x3) }, |
| /* HWID 0xB0 MCATYPE 0x4 is Reserved */ |
| { SMCA_EX, HWID_MCATYPE(0xB0, 0x5) }, |
| { SMCA_FP, HWID_MCATYPE(0xB0, 0x6) }, |
| { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7) }, |
| |
| /* Data Fabric MCA types */ |
| { SMCA_CS, HWID_MCATYPE(0x2E, 0x0) }, |
| { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1) }, |
| { SMCA_CS_V2, HWID_MCATYPE(0x2E, 0x2) }, |
| |
| /* Unified Memory Controller MCA type */ |
| { SMCA_UMC, HWID_MCATYPE(0x96, 0x0) }, |
| { SMCA_UMC_V2, HWID_MCATYPE(0x96, 0x1) }, |
| |
| /* Parameter Block MCA type */ |
| { SMCA_PB, HWID_MCATYPE(0x05, 0x0) }, |
| |
| /* Platform Security Processor MCA type */ |
| { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0) }, |
| { SMCA_PSP_V2, HWID_MCATYPE(0xFF, 0x1) }, |
| |
| /* System Management Unit MCA type */ |
| { SMCA_SMU, HWID_MCATYPE(0x01, 0x0) }, |
| { SMCA_SMU_V2, HWID_MCATYPE(0x01, 0x1) }, |
| |
| /* Microprocessor 5 Unit MCA type */ |
| { SMCA_MP5, HWID_MCATYPE(0x01, 0x2) }, |
| |
| /* MPDMA MCA type */ |
| { SMCA_MPDMA, HWID_MCATYPE(0x01, 0x3) }, |
| |
| /* Northbridge IO Unit MCA type */ |
| { SMCA_NBIO, HWID_MCATYPE(0x18, 0x0) }, |
| |
| /* PCI Express Unit MCA type */ |
| { SMCA_PCIE, HWID_MCATYPE(0x46, 0x0) }, |
| { SMCA_PCIE_V2, HWID_MCATYPE(0x46, 0x1) }, |
| |
| { SMCA_XGMI_PCS, HWID_MCATYPE(0x50, 0x0) }, |
| { SMCA_NBIF, HWID_MCATYPE(0x6C, 0x0) }, |
| { SMCA_SHUB, HWID_MCATYPE(0x80, 0x0) }, |
| { SMCA_SATA, HWID_MCATYPE(0xA8, 0x0) }, |
| { SMCA_USB, HWID_MCATYPE(0xAA, 0x0) }, |
| { SMCA_GMI_PCS, HWID_MCATYPE(0x241, 0x0) }, |
| { SMCA_XGMI_PHY, HWID_MCATYPE(0x259, 0x0) }, |
| { SMCA_WAFL_PHY, HWID_MCATYPE(0x267, 0x0) }, |
| { SMCA_GMI_PHY, HWID_MCATYPE(0x269, 0x0) }, |
| }; |
| |
| /* |
| * In SMCA enabled processors, we can have multiple banks for a given IP type. |
| * So to define a unique name for each bank, we use a temp c-string to append |
| * the MCA_IPID[InstanceId] to type's name in get_name(). |
| * |
| * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN |
| * is greater than 8 plus 1 (for underscore) plus length of longest type name. |
| */ |
| #define MAX_MCATYPE_NAME_LEN 30 |
| static char buf_mcatype[MAX_MCATYPE_NAME_LEN]; |
| |
| static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks); |
| |
| /* |
| * A list of the banks enabled on each logical CPU. Controls which respective |
| * descriptors to initialize later in mce_threshold_create_device(). |
| */ |
| static DEFINE_PER_CPU(u64, bank_map); |
| |
| /* Map of banks that have more than MCA_MISC0 available. */ |
| static DEFINE_PER_CPU(u64, smca_misc_banks_map); |
| |
| static void amd_threshold_interrupt(void); |
| static void amd_deferred_error_interrupt(void); |
| |
| static void default_deferred_error_interrupt(void) |
| { |
| pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR); |
| } |
| void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt; |
| |
| static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu) |
| { |
| u32 low, high; |
| |
| /* |
| * For SMCA enabled processors, BLKPTR field of the first MISC register |
| * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4). |
| */ |
| if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high)) |
| return; |
| |
| if (!(low & MCI_CONFIG_MCAX)) |
| return; |
| |
| if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high)) |
| return; |
| |
| if (low & MASK_BLKPTR_LO) |
| per_cpu(smca_misc_banks_map, cpu) |= BIT_ULL(bank); |
| |
| } |
| |
| static void smca_configure(unsigned int bank, unsigned int cpu) |
| { |
| u8 *bank_counts = this_cpu_ptr(smca_bank_counts); |
| const struct smca_hwid *s_hwid; |
| unsigned int i, hwid_mcatype; |
| u32 high, low; |
| u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank); |
| |
| /* Set appropriate bits in MCA_CONFIG */ |
| if (!rdmsr_safe(smca_config, &low, &high)) { |
| /* |
| * OS is required to set the MCAX bit to acknowledge that it is |
| * now using the new MSR ranges and new registers under each |
| * bank. It also means that the OS will configure deferred |
| * errors in the new MCx_CONFIG register. If the bit is not set, |
| * uncorrectable errors will cause a system panic. |
| * |
| * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.) |
| */ |
| high |= BIT(0); |
| |
| /* |
| * SMCA sets the Deferred Error Interrupt type per bank. |
| * |
| * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us |
| * if the DeferredIntType bit field is available. |
| * |
| * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the |
| * high portion of the MSR). OS should set this to 0x1 to enable |
| * APIC based interrupt. First, check that no interrupt has been |
| * set. |
| */ |
| if ((low & BIT(5)) && !((high >> 5) & 0x3)) |
| high |= BIT(5); |
| |
| wrmsr(smca_config, low, high); |
| } |
| |
| smca_set_misc_banks_map(bank, cpu); |
| |
| if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) { |
| pr_warn("Failed to read MCA_IPID for bank %d\n", bank); |
| return; |
| } |
| |
| hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID, |
| (high & MCI_IPID_MCATYPE) >> 16); |
| |
| for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) { |
| s_hwid = &smca_hwid_mcatypes[i]; |
| |
| if (hwid_mcatype == s_hwid->hwid_mcatype) { |
| this_cpu_ptr(smca_banks)[bank].hwid = s_hwid; |
| this_cpu_ptr(smca_banks)[bank].id = low; |
| this_cpu_ptr(smca_banks)[bank].sysfs_id = bank_counts[s_hwid->bank_type]++; |
| break; |
| } |
| } |
| } |
| |
| struct thresh_restart { |
| struct threshold_block *b; |
| int reset; |
| int set_lvt_off; |
| int lvt_off; |
| u16 old_limit; |
| }; |
| |
| static inline bool is_shared_bank(int bank) |
| { |
| /* |
| * Scalable MCA provides for only one core to have access to the MSRs of |
| * a shared bank. |
| */ |
| if (mce_flags.smca) |
| return false; |
| |
| /* Bank 4 is for northbridge reporting and is thus shared */ |
| return (bank == 4); |
| } |
| |
| static const char *bank4_names(const struct threshold_block *b) |
| { |
| switch (b->address) { |
| /* MSR4_MISC0 */ |
| case 0x00000413: |
| return "dram"; |
| |
| case 0xc0000408: |
| return "ht_links"; |
| |
| case 0xc0000409: |
| return "l3_cache"; |
| |
| default: |
| WARN(1, "Funny MSR: 0x%08x\n", b->address); |
| return ""; |
| } |
| }; |
| |
| |
| static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits) |
| { |
| /* |
| * bank 4 supports APIC LVT interrupts implicitly since forever. |
| */ |
| if (bank == 4) |
| return true; |
| |
| /* |
| * IntP: interrupt present; if this bit is set, the thresholding |
| * bank can generate APIC LVT interrupts |
| */ |
| return msr_high_bits & BIT(28); |
| } |
| |
| static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi) |
| { |
| int msr = (hi & MASK_LVTOFF_HI) >> 20; |
| |
| if (apic < 0) { |
| pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt " |
| "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu, |
| b->bank, b->block, b->address, hi, lo); |
| return 0; |
| } |
| |
| if (apic != msr) { |
| /* |
| * On SMCA CPUs, LVT offset is programmed at a different MSR, and |
| * the BIOS provides the value. The original field where LVT offset |
| * was set is reserved. Return early here: |
| */ |
| if (mce_flags.smca) |
| return 0; |
| |
| pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d " |
| "for bank %d, block %d (MSR%08X=0x%x%08x)\n", |
| b->cpu, apic, b->bank, b->block, b->address, hi, lo); |
| return 0; |
| } |
| |
| return 1; |
| }; |
| |
| /* Reprogram MCx_MISC MSR behind this threshold bank. */ |
| static void threshold_restart_bank(void *_tr) |
| { |
| struct thresh_restart *tr = _tr; |
| u32 hi, lo; |
| |
| /* sysfs write might race against an offline operation */ |
| if (!this_cpu_read(threshold_banks) && !tr->set_lvt_off) |
| return; |
| |
| rdmsr(tr->b->address, lo, hi); |
| |
| if (tr->b->threshold_limit < (hi & THRESHOLD_MAX)) |
| tr->reset = 1; /* limit cannot be lower than err count */ |
| |
| if (tr->reset) { /* reset err count and overflow bit */ |
| hi = |
| (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) | |
| (THRESHOLD_MAX - tr->b->threshold_limit); |
| } else if (tr->old_limit) { /* change limit w/o reset */ |
| int new_count = (hi & THRESHOLD_MAX) + |
| (tr->old_limit - tr->b->threshold_limit); |
| |
| hi = (hi & ~MASK_ERR_COUNT_HI) | |
| (new_count & THRESHOLD_MAX); |
| } |
| |
| /* clear IntType */ |
| hi &= ~MASK_INT_TYPE_HI; |
| |
| if (!tr->b->interrupt_capable) |
| goto done; |
| |
| if (tr->set_lvt_off) { |
| if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) { |
| /* set new lvt offset */ |
| hi &= ~MASK_LVTOFF_HI; |
| hi |= tr->lvt_off << 20; |
| } |
| } |
| |
| if (tr->b->interrupt_enable) |
| hi |= INT_TYPE_APIC; |
| |
| done: |
| |
| hi |= MASK_COUNT_EN_HI; |
| wrmsr(tr->b->address, lo, hi); |
| } |
| |
| static void mce_threshold_block_init(struct threshold_block *b, int offset) |
| { |
| struct thresh_restart tr = { |
| .b = b, |
| .set_lvt_off = 1, |
| .lvt_off = offset, |
| }; |
| |
| b->threshold_limit = THRESHOLD_MAX; |
| threshold_restart_bank(&tr); |
| }; |
| |
| static int setup_APIC_mce_threshold(int reserved, int new) |
| { |
| if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR, |
| APIC_EILVT_MSG_FIX, 0)) |
| return new; |
| |
| return reserved; |
| } |
| |
| static int setup_APIC_deferred_error(int reserved, int new) |
| { |
| if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR, |
| APIC_EILVT_MSG_FIX, 0)) |
| return new; |
| |
| return reserved; |
| } |
| |
| static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c) |
| { |
| u32 low = 0, high = 0; |
| int def_offset = -1, def_new; |
| |
| if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high)) |
| return; |
| |
| def_new = (low & MASK_DEF_LVTOFF) >> 4; |
| if (!(low & MASK_DEF_LVTOFF)) { |
| pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n"); |
| def_new = DEF_LVT_OFF; |
| low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4); |
| } |
| |
| def_offset = setup_APIC_deferred_error(def_offset, def_new); |
| if ((def_offset == def_new) && |
| (deferred_error_int_vector != amd_deferred_error_interrupt)) |
| deferred_error_int_vector = amd_deferred_error_interrupt; |
| |
| if (!mce_flags.smca) |
| low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC; |
| |
| wrmsr(MSR_CU_DEF_ERR, low, high); |
| } |
| |
| static u32 smca_get_block_address(unsigned int bank, unsigned int block, |
| unsigned int cpu) |
| { |
| if (!block) |
| return MSR_AMD64_SMCA_MCx_MISC(bank); |
| |
| if (!(per_cpu(smca_misc_banks_map, cpu) & BIT_ULL(bank))) |
| return 0; |
| |
| return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1); |
| } |
| |
| static u32 get_block_address(u32 current_addr, u32 low, u32 high, |
| unsigned int bank, unsigned int block, |
| unsigned int cpu) |
| { |
| u32 addr = 0, offset = 0; |
| |
| if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS)) |
| return addr; |
| |
| if (mce_flags.smca) |
| return smca_get_block_address(bank, block, cpu); |
| |
| /* Fall back to method we used for older processors: */ |
| switch (block) { |
| case 0: |
| addr = mca_msr_reg(bank, MCA_MISC); |
| break; |
| case 1: |
| offset = ((low & MASK_BLKPTR_LO) >> 21); |
| if (offset) |
| addr = MCG_XBLK_ADDR + offset; |
| break; |
| default: |
| addr = ++current_addr; |
| } |
| return addr; |
| } |
| |
| static int |
| prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr, |
| int offset, u32 misc_high) |
| { |
| unsigned int cpu = smp_processor_id(); |
| u32 smca_low, smca_high; |
| struct threshold_block b; |
| int new; |
| |
| if (!block) |
| per_cpu(bank_map, cpu) |= BIT_ULL(bank); |
| |
| memset(&b, 0, sizeof(b)); |
| b.cpu = cpu; |
| b.bank = bank; |
| b.block = block; |
| b.address = addr; |
| b.interrupt_capable = lvt_interrupt_supported(bank, misc_high); |
| |
| if (!b.interrupt_capable) |
| goto done; |
| |
| b.interrupt_enable = 1; |
| |
| if (!mce_flags.smca) { |
| new = (misc_high & MASK_LVTOFF_HI) >> 20; |
| goto set_offset; |
| } |
| |
| /* Gather LVT offset for thresholding: */ |
| if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high)) |
| goto out; |
| |
| new = (smca_low & SMCA_THR_LVT_OFF) >> 12; |
| |
| set_offset: |
| offset = setup_APIC_mce_threshold(offset, new); |
| if (offset == new) |
| thresholding_irq_en = true; |
| |
| done: |
| mce_threshold_block_init(&b, offset); |
| |
| out: |
| return offset; |
| } |
| |
| bool amd_filter_mce(struct mce *m) |
| { |
| enum smca_bank_types bank_type = smca_get_bank_type(m->extcpu, m->bank); |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| /* See Family 17h Models 10h-2Fh Erratum #1114. */ |
| if (c->x86 == 0x17 && |
| c->x86_model >= 0x10 && c->x86_model <= 0x2F && |
| bank_type == SMCA_IF && XEC(m->status, 0x3f) == 10) |
| return true; |
| |
| /* NB GART TLB error reporting is disabled by default. */ |
| if (c->x86 < 0x17) { |
| if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Turn off thresholding banks for the following conditions: |
| * - MC4_MISC thresholding is not supported on Family 0x15. |
| * - Prevent possible spurious interrupts from the IF bank on Family 0x17 |
| * Models 0x10-0x2F due to Erratum #1114. |
| */ |
| static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank) |
| { |
| int i, num_msrs; |
| u64 hwcr; |
| bool need_toggle; |
| u32 msrs[NR_BLOCKS]; |
| |
| if (c->x86 == 0x15 && bank == 4) { |
| msrs[0] = 0x00000413; /* MC4_MISC0 */ |
| msrs[1] = 0xc0000408; /* MC4_MISC1 */ |
| num_msrs = 2; |
| } else if (c->x86 == 0x17 && |
| (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) { |
| |
| if (smca_get_bank_type(smp_processor_id(), bank) != SMCA_IF) |
| return; |
| |
| msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank); |
| num_msrs = 1; |
| } else { |
| return; |
| } |
| |
| rdmsrl(MSR_K7_HWCR, hwcr); |
| |
| /* McStatusWrEn has to be set */ |
| need_toggle = !(hwcr & BIT(18)); |
| if (need_toggle) |
| wrmsrl(MSR_K7_HWCR, hwcr | BIT(18)); |
| |
| /* Clear CntP bit safely */ |
| for (i = 0; i < num_msrs; i++) |
| msr_clear_bit(msrs[i], 62); |
| |
| /* restore old settings */ |
| if (need_toggle) |
| wrmsrl(MSR_K7_HWCR, hwcr); |
| } |
| |
| /* cpu init entry point, called from mce.c with preempt off */ |
| void mce_amd_feature_init(struct cpuinfo_x86 *c) |
| { |
| unsigned int bank, block, cpu = smp_processor_id(); |
| u32 low = 0, high = 0, address = 0; |
| int offset = -1; |
| |
| |
| for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { |
| if (mce_flags.smca) |
| smca_configure(bank, cpu); |
| |
| disable_err_thresholding(c, bank); |
| |
| for (block = 0; block < NR_BLOCKS; ++block) { |
| address = get_block_address(address, low, high, bank, block, cpu); |
| if (!address) |
| break; |
| |
| if (rdmsr_safe(address, &low, &high)) |
| break; |
| |
| if (!(high & MASK_VALID_HI)) |
| continue; |
| |
| if (!(high & MASK_CNTP_HI) || |
| (high & MASK_LOCKED_HI)) |
| continue; |
| |
| offset = prepare_threshold_block(bank, block, address, offset, high); |
| } |
| } |
| |
| if (mce_flags.succor) |
| deferred_error_interrupt_enable(c); |
| } |
| |
| bool amd_mce_is_memory_error(struct mce *m) |
| { |
| /* ErrCodeExt[20:16] */ |
| u8 xec = (m->status >> 16) & 0x1f; |
| |
| if (mce_flags.smca) |
| return smca_get_bank_type(m->extcpu, m->bank) == SMCA_UMC && xec == 0x0; |
| |
| return m->bank == 4 && xec == 0x8; |
| } |
| |
| static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc) |
| { |
| struct mce m; |
| |
| mce_setup(&m); |
| |
| m.status = status; |
| m.misc = misc; |
| m.bank = bank; |
| m.tsc = rdtsc(); |
| |
| if (m.status & MCI_STATUS_ADDRV) { |
| m.addr = addr; |
| |
| /* |
| * Extract [55:<lsb>] where lsb is the least significant |
| * *valid* bit of the address bits. |
| */ |
| if (mce_flags.smca) { |
| u8 lsb = (m.addr >> 56) & 0x3f; |
| |
| m.addr &= GENMASK_ULL(55, lsb); |
| } |
| } |
| |
| if (mce_flags.smca) { |
| rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid); |
| |
| if (m.status & MCI_STATUS_SYNDV) |
| rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd); |
| } |
| |
| mce_log(&m); |
| } |
| |
| DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error) |
| { |
| trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR); |
| inc_irq_stat(irq_deferred_error_count); |
| deferred_error_int_vector(); |
| trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR); |
| ack_APIC_irq(); |
| } |
| |
| /* |
| * Returns true if the logged error is deferred. False, otherwise. |
| */ |
| static inline bool |
| _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc) |
| { |
| u64 status, addr = 0; |
| |
| rdmsrl(msr_stat, status); |
| if (!(status & MCI_STATUS_VAL)) |
| return false; |
| |
| if (status & MCI_STATUS_ADDRV) |
| rdmsrl(msr_addr, addr); |
| |
| __log_error(bank, status, addr, misc); |
| |
| wrmsrl(msr_stat, 0); |
| |
| return status & MCI_STATUS_DEFERRED; |
| } |
| |
| static bool _log_error_deferred(unsigned int bank, u32 misc) |
| { |
| if (!_log_error_bank(bank, mca_msr_reg(bank, MCA_STATUS), |
| mca_msr_reg(bank, MCA_ADDR), misc)) |
| return false; |
| |
| /* |
| * Non-SMCA systems don't have MCA_DESTAT/MCA_DEADDR registers. |
| * Return true here to avoid accessing these registers. |
| */ |
| if (!mce_flags.smca) |
| return true; |
| |
| /* Clear MCA_DESTAT if the deferred error was logged from MCA_STATUS. */ |
| wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0); |
| return true; |
| } |
| |
| /* |
| * We have three scenarios for checking for Deferred errors: |
| * |
| * 1) Non-SMCA systems check MCA_STATUS and log error if found. |
| * 2) SMCA systems check MCA_STATUS. If error is found then log it and also |
| * clear MCA_DESTAT. |
| * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and |
| * log it. |
| */ |
| static void log_error_deferred(unsigned int bank) |
| { |
| if (_log_error_deferred(bank, 0)) |
| return; |
| |
| /* |
| * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check |
| * for a valid error. |
| */ |
| _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank), |
| MSR_AMD64_SMCA_MCx_DEADDR(bank), 0); |
| } |
| |
| /* APIC interrupt handler for deferred errors */ |
| static void amd_deferred_error_interrupt(void) |
| { |
| unsigned int bank; |
| |
| for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) |
| log_error_deferred(bank); |
| } |
| |
| static void log_error_thresholding(unsigned int bank, u64 misc) |
| { |
| _log_error_deferred(bank, misc); |
| } |
| |
| static void log_and_reset_block(struct threshold_block *block) |
| { |
| struct thresh_restart tr; |
| u32 low = 0, high = 0; |
| |
| if (!block) |
| return; |
| |
| if (rdmsr_safe(block->address, &low, &high)) |
| return; |
| |
| if (!(high & MASK_OVERFLOW_HI)) |
| return; |
| |
| /* Log the MCE which caused the threshold event. */ |
| log_error_thresholding(block->bank, ((u64)high << 32) | low); |
| |
| /* Reset threshold block after logging error. */ |
| memset(&tr, 0, sizeof(tr)); |
| tr.b = block; |
| threshold_restart_bank(&tr); |
| } |
| |
| /* |
| * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt |
| * goes off when error_count reaches threshold_limit. |
| */ |
| static void amd_threshold_interrupt(void) |
| { |
| struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL; |
| struct threshold_bank **bp = this_cpu_read(threshold_banks); |
| unsigned int bank, cpu = smp_processor_id(); |
| |
| /* |
| * Validate that the threshold bank has been initialized already. The |
| * handler is installed at boot time, but on a hotplug event the |
| * interrupt might fire before the data has been initialized. |
| */ |
| if (!bp) |
| return; |
| |
| for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { |
| if (!(per_cpu(bank_map, cpu) & BIT_ULL(bank))) |
| continue; |
| |
| first_block = bp[bank]->blocks; |
| if (!first_block) |
| continue; |
| |
| /* |
| * The first block is also the head of the list. Check it first |
| * before iterating over the rest. |
| */ |
| log_and_reset_block(first_block); |
| list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj) |
| log_and_reset_block(block); |
| } |
| } |
| |
| /* |
| * Sysfs Interface |
| */ |
| |
| struct threshold_attr { |
| struct attribute attr; |
| ssize_t (*show) (struct threshold_block *, char *); |
| ssize_t (*store) (struct threshold_block *, const char *, size_t count); |
| }; |
| |
| #define SHOW_FIELDS(name) \ |
| static ssize_t show_ ## name(struct threshold_block *b, char *buf) \ |
| { \ |
| return sprintf(buf, "%lu\n", (unsigned long) b->name); \ |
| } |
| SHOW_FIELDS(interrupt_enable) |
| SHOW_FIELDS(threshold_limit) |
| |
| static ssize_t |
| store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size) |
| { |
| struct thresh_restart tr; |
| unsigned long new; |
| |
| if (!b->interrupt_capable) |
| return -EINVAL; |
| |
| if (kstrtoul(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| b->interrupt_enable = !!new; |
| |
| memset(&tr, 0, sizeof(tr)); |
| tr.b = b; |
| |
| if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1)) |
| return -ENODEV; |
| |
| return size; |
| } |
| |
| static ssize_t |
| store_threshold_limit(struct threshold_block *b, const char *buf, size_t size) |
| { |
| struct thresh_restart tr; |
| unsigned long new; |
| |
| if (kstrtoul(buf, 0, &new) < 0) |
| return -EINVAL; |
| |
| if (new > THRESHOLD_MAX) |
| new = THRESHOLD_MAX; |
| if (new < 1) |
| new = 1; |
| |
| memset(&tr, 0, sizeof(tr)); |
| tr.old_limit = b->threshold_limit; |
| b->threshold_limit = new; |
| tr.b = b; |
| |
| if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1)) |
| return -ENODEV; |
| |
| return size; |
| } |
| |
| static ssize_t show_error_count(struct threshold_block *b, char *buf) |
| { |
| u32 lo, hi; |
| |
| /* CPU might be offline by now */ |
| if (rdmsr_on_cpu(b->cpu, b->address, &lo, &hi)) |
| return -ENODEV; |
| |
| return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) - |
| (THRESHOLD_MAX - b->threshold_limit))); |
| } |
| |
| static struct threshold_attr error_count = { |
| .attr = {.name = __stringify(error_count), .mode = 0444 }, |
| .show = show_error_count, |
| }; |
| |
| #define RW_ATTR(val) \ |
| static struct threshold_attr val = { \ |
| .attr = {.name = __stringify(val), .mode = 0644 }, \ |
| .show = show_## val, \ |
| .store = store_## val, \ |
| }; |
| |
| RW_ATTR(interrupt_enable); |
| RW_ATTR(threshold_limit); |
| |
| static struct attribute *default_attrs[] = { |
| &threshold_limit.attr, |
| &error_count.attr, |
| NULL, /* possibly interrupt_enable if supported, see below */ |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(default); |
| |
| #define to_block(k) container_of(k, struct threshold_block, kobj) |
| #define to_attr(a) container_of(a, struct threshold_attr, attr) |
| |
| static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) |
| { |
| struct threshold_block *b = to_block(kobj); |
| struct threshold_attr *a = to_attr(attr); |
| ssize_t ret; |
| |
| ret = a->show ? a->show(b, buf) : -EIO; |
| |
| return ret; |
| } |
| |
| static ssize_t store(struct kobject *kobj, struct attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct threshold_block *b = to_block(kobj); |
| struct threshold_attr *a = to_attr(attr); |
| ssize_t ret; |
| |
| ret = a->store ? a->store(b, buf, count) : -EIO; |
| |
| return ret; |
| } |
| |
| static const struct sysfs_ops threshold_ops = { |
| .show = show, |
| .store = store, |
| }; |
| |
| static void threshold_block_release(struct kobject *kobj); |
| |
| static struct kobj_type threshold_ktype = { |
| .sysfs_ops = &threshold_ops, |
| .default_groups = default_groups, |
| .release = threshold_block_release, |
| }; |
| |
| static const char *get_name(unsigned int cpu, unsigned int bank, struct threshold_block *b) |
| { |
| enum smca_bank_types bank_type; |
| |
| if (!mce_flags.smca) { |
| if (b && bank == 4) |
| return bank4_names(b); |
| |
| return th_names[bank]; |
| } |
| |
| bank_type = smca_get_bank_type(cpu, bank); |
| if (bank_type >= N_SMCA_BANK_TYPES) |
| return NULL; |
| |
| if (b && bank_type == SMCA_UMC) { |
| if (b->block < ARRAY_SIZE(smca_umc_block_names)) |
| return smca_umc_block_names[b->block]; |
| return NULL; |
| } |
| |
| if (per_cpu(smca_bank_counts, cpu)[bank_type] == 1) |
| return smca_get_name(bank_type); |
| |
| snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN, |
| "%s_%u", smca_get_name(bank_type), |
| per_cpu(smca_banks, cpu)[bank].sysfs_id); |
| return buf_mcatype; |
| } |
| |
| static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb, |
| unsigned int bank, unsigned int block, |
| u32 address) |
| { |
| struct threshold_block *b = NULL; |
| u32 low, high; |
| int err; |
| |
| if ((bank >= this_cpu_read(mce_num_banks)) || (block >= NR_BLOCKS)) |
| return 0; |
| |
| if (rdmsr_safe(address, &low, &high)) |
| return 0; |
| |
| if (!(high & MASK_VALID_HI)) { |
| if (block) |
| goto recurse; |
| else |
| return 0; |
| } |
| |
| if (!(high & MASK_CNTP_HI) || |
| (high & MASK_LOCKED_HI)) |
| goto recurse; |
| |
| b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL); |
| if (!b) |
| return -ENOMEM; |
| |
| b->block = block; |
| b->bank = bank; |
| b->cpu = cpu; |
| b->address = address; |
| b->interrupt_enable = 0; |
| b->interrupt_capable = lvt_interrupt_supported(bank, high); |
| b->threshold_limit = THRESHOLD_MAX; |
| |
| if (b->interrupt_capable) { |
| default_attrs[2] = &interrupt_enable.attr; |
| b->interrupt_enable = 1; |
| } else { |
| default_attrs[2] = NULL; |
| } |
| |
| INIT_LIST_HEAD(&b->miscj); |
| |
| /* This is safe as @tb is not visible yet */ |
| if (tb->blocks) |
| list_add(&b->miscj, &tb->blocks->miscj); |
| else |
| tb->blocks = b; |
| |
| err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(cpu, bank, b)); |
| if (err) |
| goto out_free; |
| recurse: |
| address = get_block_address(address, low, high, bank, ++block, cpu); |
| if (!address) |
| return 0; |
| |
| err = allocate_threshold_blocks(cpu, tb, bank, block, address); |
| if (err) |
| goto out_free; |
| |
| if (b) |
| kobject_uevent(&b->kobj, KOBJ_ADD); |
| |
| return 0; |
| |
| out_free: |
| if (b) { |
| list_del(&b->miscj); |
| kobject_put(&b->kobj); |
| } |
| return err; |
| } |
| |
| static int __threshold_add_blocks(struct threshold_bank *b) |
| { |
| struct list_head *head = &b->blocks->miscj; |
| struct threshold_block *pos = NULL; |
| struct threshold_block *tmp = NULL; |
| int err = 0; |
| |
| err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name); |
| if (err) |
| return err; |
| |
| list_for_each_entry_safe(pos, tmp, head, miscj) { |
| |
| err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name); |
| if (err) { |
| list_for_each_entry_safe_reverse(pos, tmp, head, miscj) |
| kobject_del(&pos->kobj); |
| |
| return err; |
| } |
| } |
| return err; |
| } |
| |
| static int threshold_create_bank(struct threshold_bank **bp, unsigned int cpu, |
| unsigned int bank) |
| { |
| struct device *dev = this_cpu_read(mce_device); |
| struct amd_northbridge *nb = NULL; |
| struct threshold_bank *b = NULL; |
| const char *name = get_name(cpu, bank, NULL); |
| int err = 0; |
| |
| if (!dev) |
| return -ENODEV; |
| |
| if (is_shared_bank(bank)) { |
| nb = node_to_amd_nb(topology_die_id(cpu)); |
| |
| /* threshold descriptor already initialized on this node? */ |
| if (nb && nb->bank4) { |
| /* yes, use it */ |
| b = nb->bank4; |
| err = kobject_add(b->kobj, &dev->kobj, name); |
| if (err) |
| goto out; |
| |
| bp[bank] = b; |
| refcount_inc(&b->cpus); |
| |
| err = __threshold_add_blocks(b); |
| |
| goto out; |
| } |
| } |
| |
| b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL); |
| if (!b) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Associate the bank with the per-CPU MCE device */ |
| b->kobj = kobject_create_and_add(name, &dev->kobj); |
| if (!b->kobj) { |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| if (is_shared_bank(bank)) { |
| b->shared = 1; |
| refcount_set(&b->cpus, 1); |
| |
| /* nb is already initialized, see above */ |
| if (nb) { |
| WARN_ON(nb->bank4); |
| nb->bank4 = b; |
| } |
| } |
| |
| err = allocate_threshold_blocks(cpu, b, bank, 0, mca_msr_reg(bank, MCA_MISC)); |
| if (err) |
| goto out_kobj; |
| |
| bp[bank] = b; |
| return 0; |
| |
| out_kobj: |
| kobject_put(b->kobj); |
| out_free: |
| kfree(b); |
| out: |
| return err; |
| } |
| |
| static void threshold_block_release(struct kobject *kobj) |
| { |
| kfree(to_block(kobj)); |
| } |
| |
| static void deallocate_threshold_blocks(struct threshold_bank *bank) |
| { |
| struct threshold_block *pos, *tmp; |
| |
| list_for_each_entry_safe(pos, tmp, &bank->blocks->miscj, miscj) { |
| list_del(&pos->miscj); |
| kobject_put(&pos->kobj); |
| } |
| |
| kobject_put(&bank->blocks->kobj); |
| } |
| |
| static void __threshold_remove_blocks(struct threshold_bank *b) |
| { |
| struct threshold_block *pos = NULL; |
| struct threshold_block *tmp = NULL; |
| |
| kobject_put(b->kobj); |
| |
| list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj) |
| kobject_put(b->kobj); |
| } |
| |
| static void threshold_remove_bank(struct threshold_bank *bank) |
| { |
| struct amd_northbridge *nb; |
| |
| if (!bank->blocks) |
| goto out_free; |
| |
| if (!bank->shared) |
| goto out_dealloc; |
| |
| if (!refcount_dec_and_test(&bank->cpus)) { |
| __threshold_remove_blocks(bank); |
| return; |
| } else { |
| /* |
| * The last CPU on this node using the shared bank is going |
| * away, remove that bank now. |
| */ |
| nb = node_to_amd_nb(topology_die_id(smp_processor_id())); |
| nb->bank4 = NULL; |
| } |
| |
| out_dealloc: |
| deallocate_threshold_blocks(bank); |
| |
| out_free: |
| kobject_put(bank->kobj); |
| kfree(bank); |
| } |
| |
| static void __threshold_remove_device(struct threshold_bank **bp) |
| { |
| unsigned int bank, numbanks = this_cpu_read(mce_num_banks); |
| |
| for (bank = 0; bank < numbanks; bank++) { |
| if (!bp[bank]) |
| continue; |
| |
| threshold_remove_bank(bp[bank]); |
| bp[bank] = NULL; |
| } |
| kfree(bp); |
| } |
| |
| int mce_threshold_remove_device(unsigned int cpu) |
| { |
| struct threshold_bank **bp = this_cpu_read(threshold_banks); |
| |
| if (!bp) |
| return 0; |
| |
| /* |
| * Clear the pointer before cleaning up, so that the interrupt won't |
| * touch anything of this. |
| */ |
| this_cpu_write(threshold_banks, NULL); |
| |
| __threshold_remove_device(bp); |
| return 0; |
| } |
| |
| /** |
| * mce_threshold_create_device - Create the per-CPU MCE threshold device |
| * @cpu: The plugged in CPU |
| * |
| * Create directories and files for all valid threshold banks. |
| * |
| * This is invoked from the CPU hotplug callback which was installed in |
| * mcheck_init_device(). The invocation happens in context of the hotplug |
| * thread running on @cpu. The callback is invoked on all CPUs which are |
| * online when the callback is installed or during a real hotplug event. |
| */ |
| int mce_threshold_create_device(unsigned int cpu) |
| { |
| unsigned int numbanks, bank; |
| struct threshold_bank **bp; |
| int err; |
| |
| if (!mce_flags.amd_threshold) |
| return 0; |
| |
| bp = this_cpu_read(threshold_banks); |
| if (bp) |
| return 0; |
| |
| numbanks = this_cpu_read(mce_num_banks); |
| bp = kcalloc(numbanks, sizeof(*bp), GFP_KERNEL); |
| if (!bp) |
| return -ENOMEM; |
| |
| for (bank = 0; bank < numbanks; ++bank) { |
| if (!(this_cpu_read(bank_map) & BIT_ULL(bank))) |
| continue; |
| err = threshold_create_bank(bp, cpu, bank); |
| if (err) { |
| __threshold_remove_device(bp); |
| return err; |
| } |
| } |
| this_cpu_write(threshold_banks, bp); |
| |
| if (thresholding_irq_en) |
| mce_threshold_vector = amd_threshold_interrupt; |
| return 0; |
| } |