| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Handle async block request by crypto hardware engine. |
| * |
| * Copyright (C) 2016 Linaro, Inc. |
| * |
| * Author: Baolin Wang <baolin.wang@linaro.org> |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <crypto/engine.h> |
| #include <uapi/linux/sched/types.h> |
| #include "internal.h" |
| |
| #define CRYPTO_ENGINE_MAX_QLEN 10 |
| |
| /** |
| * crypto_finalize_request - finalize one request if the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| static void crypto_finalize_request(struct crypto_engine *engine, |
| struct crypto_async_request *req, int err) |
| { |
| unsigned long flags; |
| bool finalize_req = false; |
| int ret; |
| struct crypto_engine_ctx *enginectx; |
| |
| /* |
| * If hardware cannot enqueue more requests |
| * and retry mechanism is not supported |
| * make sure we are completing the current request |
| */ |
| if (!engine->retry_support) { |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| if (engine->cur_req == req) { |
| finalize_req = true; |
| engine->cur_req = NULL; |
| } |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| } |
| |
| if (finalize_req || engine->retry_support) { |
| enginectx = crypto_tfm_ctx(req->tfm); |
| if (enginectx->op.prepare_request && |
| enginectx->op.unprepare_request) { |
| ret = enginectx->op.unprepare_request(engine, req); |
| if (ret) |
| dev_err(engine->dev, "failed to unprepare request\n"); |
| } |
| } |
| lockdep_assert_in_softirq(); |
| crypto_request_complete(req, err); |
| |
| kthread_queue_work(engine->kworker, &engine->pump_requests); |
| } |
| |
| /** |
| * crypto_pump_requests - dequeue one request from engine queue to process |
| * @engine: the hardware engine |
| * @in_kthread: true if we are in the context of the request pump thread |
| * |
| * This function checks if there is any request in the engine queue that |
| * needs processing and if so call out to the driver to initialize hardware |
| * and handle each request. |
| */ |
| static void crypto_pump_requests(struct crypto_engine *engine, |
| bool in_kthread) |
| { |
| struct crypto_async_request *async_req, *backlog; |
| unsigned long flags; |
| bool was_busy = false; |
| int ret; |
| struct crypto_engine_ctx *enginectx; |
| |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| |
| /* Make sure we are not already running a request */ |
| if (!engine->retry_support && engine->cur_req) |
| goto out; |
| |
| /* If another context is idling then defer */ |
| if (engine->idling) { |
| kthread_queue_work(engine->kworker, &engine->pump_requests); |
| goto out; |
| } |
| |
| /* Check if the engine queue is idle */ |
| if (!crypto_queue_len(&engine->queue) || !engine->running) { |
| if (!engine->busy) |
| goto out; |
| |
| /* Only do teardown in the thread */ |
| if (!in_kthread) { |
| kthread_queue_work(engine->kworker, |
| &engine->pump_requests); |
| goto out; |
| } |
| |
| engine->busy = false; |
| engine->idling = true; |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| |
| if (engine->unprepare_crypt_hardware && |
| engine->unprepare_crypt_hardware(engine)) |
| dev_err(engine->dev, "failed to unprepare crypt hardware\n"); |
| |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| engine->idling = false; |
| goto out; |
| } |
| |
| start_request: |
| /* Get the fist request from the engine queue to handle */ |
| backlog = crypto_get_backlog(&engine->queue); |
| async_req = crypto_dequeue_request(&engine->queue); |
| if (!async_req) |
| goto out; |
| |
| /* |
| * If hardware doesn't support the retry mechanism, |
| * keep track of the request we are processing now. |
| * We'll need it on completion (crypto_finalize_request). |
| */ |
| if (!engine->retry_support) |
| engine->cur_req = async_req; |
| |
| if (engine->busy) |
| was_busy = true; |
| else |
| engine->busy = true; |
| |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| |
| /* Until here we get the request need to be encrypted successfully */ |
| if (!was_busy && engine->prepare_crypt_hardware) { |
| ret = engine->prepare_crypt_hardware(engine); |
| if (ret) { |
| dev_err(engine->dev, "failed to prepare crypt hardware\n"); |
| goto req_err_2; |
| } |
| } |
| |
| enginectx = crypto_tfm_ctx(async_req->tfm); |
| |
| if (enginectx->op.prepare_request) { |
| ret = enginectx->op.prepare_request(engine, async_req); |
| if (ret) { |
| dev_err(engine->dev, "failed to prepare request: %d\n", |
| ret); |
| goto req_err_2; |
| } |
| } |
| if (!enginectx->op.do_one_request) { |
| dev_err(engine->dev, "failed to do request\n"); |
| ret = -EINVAL; |
| goto req_err_1; |
| } |
| |
| ret = enginectx->op.do_one_request(engine, async_req); |
| |
| /* Request unsuccessfully executed by hardware */ |
| if (ret < 0) { |
| /* |
| * If hardware queue is full (-ENOSPC), requeue request |
| * regardless of backlog flag. |
| * Otherwise, unprepare and complete the request. |
| */ |
| if (!engine->retry_support || |
| (ret != -ENOSPC)) { |
| dev_err(engine->dev, |
| "Failed to do one request from queue: %d\n", |
| ret); |
| goto req_err_1; |
| } |
| /* |
| * If retry mechanism is supported, |
| * unprepare current request and |
| * enqueue it back into crypto-engine queue. |
| */ |
| if (enginectx->op.unprepare_request) { |
| ret = enginectx->op.unprepare_request(engine, |
| async_req); |
| if (ret) |
| dev_err(engine->dev, |
| "failed to unprepare request\n"); |
| } |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| /* |
| * If hardware was unable to execute request, enqueue it |
| * back in front of crypto-engine queue, to keep the order |
| * of requests. |
| */ |
| crypto_enqueue_request_head(&engine->queue, async_req); |
| |
| kthread_queue_work(engine->kworker, &engine->pump_requests); |
| goto out; |
| } |
| |
| goto retry; |
| |
| req_err_1: |
| if (enginectx->op.unprepare_request) { |
| ret = enginectx->op.unprepare_request(engine, async_req); |
| if (ret) |
| dev_err(engine->dev, "failed to unprepare request\n"); |
| } |
| |
| req_err_2: |
| crypto_request_complete(async_req, ret); |
| |
| retry: |
| if (backlog) |
| crypto_request_complete(backlog, -EINPROGRESS); |
| |
| /* If retry mechanism is supported, send new requests to engine */ |
| if (engine->retry_support) { |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| goto start_request; |
| } |
| return; |
| |
| out: |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| |
| /* |
| * Batch requests is possible only if |
| * hardware can enqueue multiple requests |
| */ |
| if (engine->do_batch_requests) { |
| ret = engine->do_batch_requests(engine); |
| if (ret) |
| dev_err(engine->dev, "failed to do batch requests: %d\n", |
| ret); |
| } |
| |
| return; |
| } |
| |
| static void crypto_pump_work(struct kthread_work *work) |
| { |
| struct crypto_engine *engine = |
| container_of(work, struct crypto_engine, pump_requests); |
| |
| crypto_pump_requests(engine, true); |
| } |
| |
| /** |
| * crypto_transfer_request - transfer the new request into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| * @need_pump: indicates whether queue the pump of request to kthread_work |
| */ |
| static int crypto_transfer_request(struct crypto_engine *engine, |
| struct crypto_async_request *req, |
| bool need_pump) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| |
| if (!engine->running) { |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| return -ESHUTDOWN; |
| } |
| |
| ret = crypto_enqueue_request(&engine->queue, req); |
| |
| if (!engine->busy && need_pump) |
| kthread_queue_work(engine->kworker, &engine->pump_requests); |
| |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| return ret; |
| } |
| |
| /** |
| * crypto_transfer_request_to_engine - transfer one request to list |
| * into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| static int crypto_transfer_request_to_engine(struct crypto_engine *engine, |
| struct crypto_async_request *req) |
| { |
| return crypto_transfer_request(engine, req, true); |
| } |
| |
| /** |
| * crypto_transfer_aead_request_to_engine - transfer one aead_request |
| * to list into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, |
| struct aead_request *req) |
| { |
| return crypto_transfer_request_to_engine(engine, &req->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); |
| |
| /** |
| * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request |
| * to list into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, |
| struct akcipher_request *req) |
| { |
| return crypto_transfer_request_to_engine(engine, &req->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); |
| |
| /** |
| * crypto_transfer_hash_request_to_engine - transfer one ahash_request |
| * to list into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, |
| struct ahash_request *req) |
| { |
| return crypto_transfer_request_to_engine(engine, &req->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); |
| |
| /** |
| * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list |
| * into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, |
| struct kpp_request *req) |
| { |
| return crypto_transfer_request_to_engine(engine, &req->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); |
| |
| /** |
| * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request |
| * to list into the engine queue |
| * @engine: the hardware engine |
| * @req: the request need to be listed into the engine queue |
| */ |
| int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, |
| struct skcipher_request *req) |
| { |
| return crypto_transfer_request_to_engine(engine, &req->base); |
| } |
| EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); |
| |
| /** |
| * crypto_finalize_aead_request - finalize one aead_request if |
| * the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| void crypto_finalize_aead_request(struct crypto_engine *engine, |
| struct aead_request *req, int err) |
| { |
| return crypto_finalize_request(engine, &req->base, err); |
| } |
| EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); |
| |
| /** |
| * crypto_finalize_akcipher_request - finalize one akcipher_request if |
| * the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| void crypto_finalize_akcipher_request(struct crypto_engine *engine, |
| struct akcipher_request *req, int err) |
| { |
| return crypto_finalize_request(engine, &req->base, err); |
| } |
| EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); |
| |
| /** |
| * crypto_finalize_hash_request - finalize one ahash_request if |
| * the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| void crypto_finalize_hash_request(struct crypto_engine *engine, |
| struct ahash_request *req, int err) |
| { |
| return crypto_finalize_request(engine, &req->base, err); |
| } |
| EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); |
| |
| /** |
| * crypto_finalize_kpp_request - finalize one kpp_request if the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| void crypto_finalize_kpp_request(struct crypto_engine *engine, |
| struct kpp_request *req, int err) |
| { |
| return crypto_finalize_request(engine, &req->base, err); |
| } |
| EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); |
| |
| /** |
| * crypto_finalize_skcipher_request - finalize one skcipher_request if |
| * the request is done |
| * @engine: the hardware engine |
| * @req: the request need to be finalized |
| * @err: error number |
| */ |
| void crypto_finalize_skcipher_request(struct crypto_engine *engine, |
| struct skcipher_request *req, int err) |
| { |
| return crypto_finalize_request(engine, &req->base, err); |
| } |
| EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); |
| |
| /** |
| * crypto_engine_start - start the hardware engine |
| * @engine: the hardware engine need to be started |
| * |
| * Return 0 on success, else on fail. |
| */ |
| int crypto_engine_start(struct crypto_engine *engine) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| |
| if (engine->running || engine->busy) { |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| return -EBUSY; |
| } |
| |
| engine->running = true; |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| |
| kthread_queue_work(engine->kworker, &engine->pump_requests); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(crypto_engine_start); |
| |
| /** |
| * crypto_engine_stop - stop the hardware engine |
| * @engine: the hardware engine need to be stopped |
| * |
| * Return 0 on success, else on fail. |
| */ |
| int crypto_engine_stop(struct crypto_engine *engine) |
| { |
| unsigned long flags; |
| unsigned int limit = 500; |
| int ret = 0; |
| |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| |
| /* |
| * If the engine queue is not empty or the engine is on busy state, |
| * we need to wait for a while to pump the requests of engine queue. |
| */ |
| while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| msleep(20); |
| spin_lock_irqsave(&engine->queue_lock, flags); |
| } |
| |
| if (crypto_queue_len(&engine->queue) || engine->busy) |
| ret = -EBUSY; |
| else |
| engine->running = false; |
| |
| spin_unlock_irqrestore(&engine->queue_lock, flags); |
| |
| if (ret) |
| dev_warn(engine->dev, "could not stop engine\n"); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(crypto_engine_stop); |
| |
| /** |
| * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure |
| * and initialize it by setting the maximum number of entries in the software |
| * crypto-engine queue. |
| * @dev: the device attached with one hardware engine |
| * @retry_support: whether hardware has support for retry mechanism |
| * @cbk_do_batch: pointer to a callback function to be invoked when executing |
| * a batch of requests. |
| * This has the form: |
| * callback(struct crypto_engine *engine) |
| * where: |
| * @engine: the crypto engine structure. |
| * @rt: whether this queue is set to run as a realtime task |
| * @qlen: maximum size of the crypto-engine queue |
| * |
| * This must be called from context that can sleep. |
| * Return: the crypto engine structure on success, else NULL. |
| */ |
| struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, |
| bool retry_support, |
| int (*cbk_do_batch)(struct crypto_engine *engine), |
| bool rt, int qlen) |
| { |
| struct crypto_engine *engine; |
| |
| if (!dev) |
| return NULL; |
| |
| engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); |
| if (!engine) |
| return NULL; |
| |
| engine->dev = dev; |
| engine->rt = rt; |
| engine->running = false; |
| engine->busy = false; |
| engine->idling = false; |
| engine->retry_support = retry_support; |
| engine->priv_data = dev; |
| /* |
| * Batch requests is possible only if |
| * hardware has support for retry mechanism. |
| */ |
| engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; |
| |
| snprintf(engine->name, sizeof(engine->name), |
| "%s-engine", dev_name(dev)); |
| |
| crypto_init_queue(&engine->queue, qlen); |
| spin_lock_init(&engine->queue_lock); |
| |
| engine->kworker = kthread_create_worker(0, "%s", engine->name); |
| if (IS_ERR(engine->kworker)) { |
| dev_err(dev, "failed to create crypto request pump task\n"); |
| return NULL; |
| } |
| kthread_init_work(&engine->pump_requests, crypto_pump_work); |
| |
| if (engine->rt) { |
| dev_info(dev, "will run requests pump with realtime priority\n"); |
| sched_set_fifo(engine->kworker->task); |
| } |
| |
| return engine; |
| } |
| EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); |
| |
| /** |
| * crypto_engine_alloc_init - allocate crypto hardware engine structure and |
| * initialize it. |
| * @dev: the device attached with one hardware engine |
| * @rt: whether this queue is set to run as a realtime task |
| * |
| * This must be called from context that can sleep. |
| * Return: the crypto engine structure on success, else NULL. |
| */ |
| struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) |
| { |
| return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, |
| CRYPTO_ENGINE_MAX_QLEN); |
| } |
| EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); |
| |
| /** |
| * crypto_engine_exit - free the resources of hardware engine when exit |
| * @engine: the hardware engine need to be freed |
| * |
| * Return 0 for success. |
| */ |
| int crypto_engine_exit(struct crypto_engine *engine) |
| { |
| int ret; |
| |
| ret = crypto_engine_stop(engine); |
| if (ret) |
| return ret; |
| |
| kthread_destroy_worker(engine->kworker); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(crypto_engine_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Crypto hardware engine framework"); |