| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* LRW: as defined by Cyril Guyot in |
| * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf |
| * |
| * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> |
| * |
| * Based on ecb.c |
| * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> |
| */ |
| /* This implementation is checked against the test vectors in the above |
| * document and by a test vector provided by Ken Buchanan at |
| * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html |
| * |
| * The test vectors are included in the testing module tcrypt.[ch] */ |
| |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| |
| #include <crypto/b128ops.h> |
| #include <crypto/gf128mul.h> |
| |
| #define LRW_BLOCK_SIZE 16 |
| |
| struct lrw_tfm_ctx { |
| struct crypto_skcipher *child; |
| |
| /* |
| * optimizes multiplying a random (non incrementing, as at the |
| * start of a new sector) value with key2, we could also have |
| * used 4k optimization tables or no optimization at all. In the |
| * latter case we would have to store key2 here |
| */ |
| struct gf128mul_64k *table; |
| |
| /* |
| * stores: |
| * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, |
| * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } |
| * key2*{ 0,0,...1,1,1,1,1 }, etc |
| * needed for optimized multiplication of incrementing values |
| * with key2 |
| */ |
| be128 mulinc[128]; |
| }; |
| |
| struct lrw_request_ctx { |
| be128 t; |
| struct skcipher_request subreq; |
| }; |
| |
| static inline void lrw_setbit128_bbe(void *b, int bit) |
| { |
| __set_bit(bit ^ (0x80 - |
| #ifdef __BIG_ENDIAN |
| BITS_PER_LONG |
| #else |
| BITS_PER_BYTE |
| #endif |
| ), b); |
| } |
| |
| static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key, |
| unsigned int keylen) |
| { |
| struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent); |
| struct crypto_skcipher *child = ctx->child; |
| int err, bsize = LRW_BLOCK_SIZE; |
| const u8 *tweak = key + keylen - bsize; |
| be128 tmp = { 0 }; |
| int i; |
| |
| crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_skcipher_setkey(child, key, keylen - bsize); |
| if (err) |
| return err; |
| |
| if (ctx->table) |
| gf128mul_free_64k(ctx->table); |
| |
| /* initialize multiplication table for Key2 */ |
| ctx->table = gf128mul_init_64k_bbe((be128 *)tweak); |
| if (!ctx->table) |
| return -ENOMEM; |
| |
| /* initialize optimization table */ |
| for (i = 0; i < 128; i++) { |
| lrw_setbit128_bbe(&tmp, i); |
| ctx->mulinc[i] = tmp; |
| gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns the number of trailing '1' bits in the words of the counter, which is |
| * represented by 4 32-bit words, arranged from least to most significant. |
| * At the same time, increments the counter by one. |
| * |
| * For example: |
| * |
| * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 }; |
| * int i = lrw_next_index(&counter); |
| * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 } |
| */ |
| static int lrw_next_index(u32 *counter) |
| { |
| int i, res = 0; |
| |
| for (i = 0; i < 4; i++) { |
| if (counter[i] + 1 != 0) |
| return res + ffz(counter[i]++); |
| |
| counter[i] = 0; |
| res += 32; |
| } |
| |
| /* |
| * If we get here, then x == 128 and we are incrementing the counter |
| * from all ones to all zeros. This means we must return index 127, i.e. |
| * the one corresponding to key2*{ 1,...,1 }. |
| */ |
| return 127; |
| } |
| |
| /* |
| * We compute the tweak masks twice (both before and after the ECB encryption or |
| * decryption) to avoid having to allocate a temporary buffer and/or make |
| * mutliple calls to the 'ecb(..)' instance, which usually would be slower than |
| * just doing the lrw_next_index() calls again. |
| */ |
| static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass) |
| { |
| const int bs = LRW_BLOCK_SIZE; |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| be128 t = rctx->t; |
| struct skcipher_walk w; |
| __be32 *iv; |
| u32 counter[4]; |
| int err; |
| |
| if (second_pass) { |
| req = &rctx->subreq; |
| /* set to our TFM to enforce correct alignment: */ |
| skcipher_request_set_tfm(req, tfm); |
| } |
| |
| err = skcipher_walk_virt(&w, req, false); |
| if (err) |
| return err; |
| |
| iv = (__be32 *)w.iv; |
| counter[0] = be32_to_cpu(iv[3]); |
| counter[1] = be32_to_cpu(iv[2]); |
| counter[2] = be32_to_cpu(iv[1]); |
| counter[3] = be32_to_cpu(iv[0]); |
| |
| while (w.nbytes) { |
| unsigned int avail = w.nbytes; |
| be128 *wsrc; |
| be128 *wdst; |
| |
| wsrc = w.src.virt.addr; |
| wdst = w.dst.virt.addr; |
| |
| do { |
| be128_xor(wdst++, &t, wsrc++); |
| |
| /* T <- I*Key2, using the optimization |
| * discussed in the specification */ |
| be128_xor(&t, &t, |
| &ctx->mulinc[lrw_next_index(counter)]); |
| } while ((avail -= bs) >= bs); |
| |
| if (second_pass && w.nbytes == w.total) { |
| iv[0] = cpu_to_be32(counter[3]); |
| iv[1] = cpu_to_be32(counter[2]); |
| iv[2] = cpu_to_be32(counter[1]); |
| iv[3] = cpu_to_be32(counter[0]); |
| } |
| |
| err = skcipher_walk_done(&w, avail); |
| } |
| |
| return err; |
| } |
| |
| static int lrw_xor_tweak_pre(struct skcipher_request *req) |
| { |
| return lrw_xor_tweak(req, false); |
| } |
| |
| static int lrw_xor_tweak_post(struct skcipher_request *req) |
| { |
| return lrw_xor_tweak(req, true); |
| } |
| |
| static void lrw_crypt_done(struct crypto_async_request *areq, int err) |
| { |
| struct skcipher_request *req = areq->data; |
| |
| if (!err) { |
| struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| |
| rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; |
| err = lrw_xor_tweak_post(req); |
| } |
| |
| skcipher_request_complete(req, err); |
| } |
| |
| static void lrw_init_crypt(struct skcipher_request *req) |
| { |
| const struct lrw_tfm_ctx *ctx = |
| crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); |
| struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| struct skcipher_request *subreq = &rctx->subreq; |
| |
| skcipher_request_set_tfm(subreq, ctx->child); |
| skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done, |
| req); |
| /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */ |
| skcipher_request_set_crypt(subreq, req->dst, req->dst, |
| req->cryptlen, req->iv); |
| |
| /* calculate first value of T */ |
| memcpy(&rctx->t, req->iv, sizeof(rctx->t)); |
| |
| /* T <- I*Key2 */ |
| gf128mul_64k_bbe(&rctx->t, ctx->table); |
| } |
| |
| static int lrw_encrypt(struct skcipher_request *req) |
| { |
| struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| struct skcipher_request *subreq = &rctx->subreq; |
| |
| lrw_init_crypt(req); |
| return lrw_xor_tweak_pre(req) ?: |
| crypto_skcipher_encrypt(subreq) ?: |
| lrw_xor_tweak_post(req); |
| } |
| |
| static int lrw_decrypt(struct skcipher_request *req) |
| { |
| struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| struct skcipher_request *subreq = &rctx->subreq; |
| |
| lrw_init_crypt(req); |
| return lrw_xor_tweak_pre(req) ?: |
| crypto_skcipher_decrypt(subreq) ?: |
| lrw_xor_tweak_post(req); |
| } |
| |
| static int lrw_init_tfm(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); |
| struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct crypto_skcipher *cipher; |
| |
| cipher = crypto_spawn_skcipher(spawn); |
| if (IS_ERR(cipher)) |
| return PTR_ERR(cipher); |
| |
| ctx->child = cipher; |
| |
| crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) + |
| sizeof(struct lrw_request_ctx)); |
| |
| return 0; |
| } |
| |
| static void lrw_exit_tfm(struct crypto_skcipher *tfm) |
| { |
| struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| if (ctx->table) |
| gf128mul_free_64k(ctx->table); |
| crypto_free_skcipher(ctx->child); |
| } |
| |
| static void lrw_free_instance(struct skcipher_instance *inst) |
| { |
| crypto_drop_skcipher(skcipher_instance_ctx(inst)); |
| kfree(inst); |
| } |
| |
| static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| struct crypto_skcipher_spawn *spawn; |
| struct skcipher_instance *inst; |
| struct skcipher_alg *alg; |
| const char *cipher_name; |
| char ecb_name[CRYPTO_MAX_ALG_NAME]; |
| u32 mask; |
| int err; |
| |
| err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); |
| if (err) |
| return err; |
| |
| cipher_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(cipher_name)) |
| return PTR_ERR(cipher_name); |
| |
| inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); |
| if (!inst) |
| return -ENOMEM; |
| |
| spawn = skcipher_instance_ctx(inst); |
| |
| err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst), |
| cipher_name, 0, mask); |
| if (err == -ENOENT) { |
| err = -ENAMETOOLONG; |
| if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", |
| cipher_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_free_inst; |
| |
| err = crypto_grab_skcipher(spawn, |
| skcipher_crypto_instance(inst), |
| ecb_name, 0, mask); |
| } |
| |
| if (err) |
| goto err_free_inst; |
| |
| alg = crypto_skcipher_spawn_alg(spawn); |
| |
| err = -EINVAL; |
| if (alg->base.cra_blocksize != LRW_BLOCK_SIZE) |
| goto err_free_inst; |
| |
| if (crypto_skcipher_alg_ivsize(alg)) |
| goto err_free_inst; |
| |
| err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw", |
| &alg->base); |
| if (err) |
| goto err_free_inst; |
| |
| err = -EINVAL; |
| cipher_name = alg->base.cra_name; |
| |
| /* Alas we screwed up the naming so we have to mangle the |
| * cipher name. |
| */ |
| if (!strncmp(cipher_name, "ecb(", 4)) { |
| int len; |
| |
| len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name)); |
| if (len < 2) |
| goto err_free_inst; |
| |
| if (ecb_name[len - 1] != ')') |
| goto err_free_inst; |
| |
| ecb_name[len - 1] = 0; |
| |
| if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, |
| "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) { |
| err = -ENAMETOOLONG; |
| goto err_free_inst; |
| } |
| } else |
| goto err_free_inst; |
| |
| inst->alg.base.cra_priority = alg->base.cra_priority; |
| inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE; |
| inst->alg.base.cra_alignmask = alg->base.cra_alignmask | |
| (__alignof__(be128) - 1); |
| |
| inst->alg.ivsize = LRW_BLOCK_SIZE; |
| inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) + |
| LRW_BLOCK_SIZE; |
| inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) + |
| LRW_BLOCK_SIZE; |
| |
| inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx); |
| |
| inst->alg.init = lrw_init_tfm; |
| inst->alg.exit = lrw_exit_tfm; |
| |
| inst->alg.setkey = lrw_setkey; |
| inst->alg.encrypt = lrw_encrypt; |
| inst->alg.decrypt = lrw_decrypt; |
| |
| inst->free = lrw_free_instance; |
| |
| err = skcipher_register_instance(tmpl, inst); |
| if (err) { |
| err_free_inst: |
| lrw_free_instance(inst); |
| } |
| return err; |
| } |
| |
| static struct crypto_template lrw_tmpl = { |
| .name = "lrw", |
| .create = lrw_create, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init lrw_module_init(void) |
| { |
| return crypto_register_template(&lrw_tmpl); |
| } |
| |
| static void __exit lrw_module_exit(void) |
| { |
| crypto_unregister_template(&lrw_tmpl); |
| } |
| |
| subsys_initcall(lrw_module_init); |
| module_exit(lrw_module_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("LRW block cipher mode"); |
| MODULE_ALIAS_CRYPTO("lrw"); |
| MODULE_SOFTDEP("pre: ecb"); |