| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Functions for working with the Flattened Device Tree data format |
| * |
| * Copyright 2009 Benjamin Herrenschmidt, IBM Corp |
| * benh@kernel.crashing.org |
| */ |
| |
| #define pr_fmt(fmt) "OF: fdt: " fmt |
| |
| #include <linux/crash_dump.h> |
| #include <linux/crc32.h> |
| #include <linux/kernel.h> |
| #include <linux/initrd.h> |
| #include <linux/memblock.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/sizes.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/libfdt.h> |
| #include <linux/debugfs.h> |
| #include <linux/serial_core.h> |
| #include <linux/sysfs.h> |
| #include <linux/random.h> |
| |
| #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ |
| #include <asm/page.h> |
| |
| #include "of_private.h" |
| |
| /* |
| * of_fdt_limit_memory - limit the number of regions in the /memory node |
| * @limit: maximum entries |
| * |
| * Adjust the flattened device tree to have at most 'limit' number of |
| * memory entries in the /memory node. This function may be called |
| * any time after initial_boot_param is set. |
| */ |
| void __init of_fdt_limit_memory(int limit) |
| { |
| int memory; |
| int len; |
| const void *val; |
| int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| const __be32 *addr_prop; |
| const __be32 *size_prop; |
| int root_offset; |
| int cell_size; |
| |
| root_offset = fdt_path_offset(initial_boot_params, "/"); |
| if (root_offset < 0) |
| return; |
| |
| addr_prop = fdt_getprop(initial_boot_params, root_offset, |
| "#address-cells", NULL); |
| if (addr_prop) |
| nr_address_cells = fdt32_to_cpu(*addr_prop); |
| |
| size_prop = fdt_getprop(initial_boot_params, root_offset, |
| "#size-cells", NULL); |
| if (size_prop) |
| nr_size_cells = fdt32_to_cpu(*size_prop); |
| |
| cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); |
| |
| memory = fdt_path_offset(initial_boot_params, "/memory"); |
| if (memory > 0) { |
| val = fdt_getprop(initial_boot_params, memory, "reg", &len); |
| if (len > limit*cell_size) { |
| len = limit*cell_size; |
| pr_debug("Limiting number of entries to %d\n", limit); |
| fdt_setprop(initial_boot_params, memory, "reg", val, |
| len); |
| } |
| } |
| } |
| |
| static bool of_fdt_device_is_available(const void *blob, unsigned long node) |
| { |
| const char *status = fdt_getprop(blob, node, "status", NULL); |
| |
| if (!status) |
| return true; |
| |
| if (!strcmp(status, "ok") || !strcmp(status, "okay")) |
| return true; |
| |
| return false; |
| } |
| |
| static void *unflatten_dt_alloc(void **mem, unsigned long size, |
| unsigned long align) |
| { |
| void *res; |
| |
| *mem = PTR_ALIGN(*mem, align); |
| res = *mem; |
| *mem += size; |
| |
| return res; |
| } |
| |
| static void populate_properties(const void *blob, |
| int offset, |
| void **mem, |
| struct device_node *np, |
| const char *nodename, |
| bool dryrun) |
| { |
| struct property *pp, **pprev = NULL; |
| int cur; |
| bool has_name = false; |
| |
| pprev = &np->properties; |
| for (cur = fdt_first_property_offset(blob, offset); |
| cur >= 0; |
| cur = fdt_next_property_offset(blob, cur)) { |
| const __be32 *val; |
| const char *pname; |
| u32 sz; |
| |
| val = fdt_getprop_by_offset(blob, cur, &pname, &sz); |
| if (!val) { |
| pr_warn("Cannot locate property at 0x%x\n", cur); |
| continue; |
| } |
| |
| if (!pname) { |
| pr_warn("Cannot find property name at 0x%x\n", cur); |
| continue; |
| } |
| |
| if (!strcmp(pname, "name")) |
| has_name = true; |
| |
| pp = unflatten_dt_alloc(mem, sizeof(struct property), |
| __alignof__(struct property)); |
| if (dryrun) |
| continue; |
| |
| /* We accept flattened tree phandles either in |
| * ePAPR-style "phandle" properties, or the |
| * legacy "linux,phandle" properties. If both |
| * appear and have different values, things |
| * will get weird. Don't do that. |
| */ |
| if (!strcmp(pname, "phandle") || |
| !strcmp(pname, "linux,phandle")) { |
| if (!np->phandle) |
| np->phandle = be32_to_cpup(val); |
| } |
| |
| /* And we process the "ibm,phandle" property |
| * used in pSeries dynamic device tree |
| * stuff |
| */ |
| if (!strcmp(pname, "ibm,phandle")) |
| np->phandle = be32_to_cpup(val); |
| |
| pp->name = (char *)pname; |
| pp->length = sz; |
| pp->value = (__be32 *)val; |
| *pprev = pp; |
| pprev = &pp->next; |
| } |
| |
| /* With version 0x10 we may not have the name property, |
| * recreate it here from the unit name if absent |
| */ |
| if (!has_name) { |
| const char *p = nodename, *ps = p, *pa = NULL; |
| int len; |
| |
| while (*p) { |
| if ((*p) == '@') |
| pa = p; |
| else if ((*p) == '/') |
| ps = p + 1; |
| p++; |
| } |
| |
| if (pa < ps) |
| pa = p; |
| len = (pa - ps) + 1; |
| pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, |
| __alignof__(struct property)); |
| if (!dryrun) { |
| pp->name = "name"; |
| pp->length = len; |
| pp->value = pp + 1; |
| *pprev = pp; |
| memcpy(pp->value, ps, len - 1); |
| ((char *)pp->value)[len - 1] = 0; |
| pr_debug("fixed up name for %s -> %s\n", |
| nodename, (char *)pp->value); |
| } |
| } |
| } |
| |
| static int populate_node(const void *blob, |
| int offset, |
| void **mem, |
| struct device_node *dad, |
| struct device_node **pnp, |
| bool dryrun) |
| { |
| struct device_node *np; |
| const char *pathp; |
| int len; |
| |
| pathp = fdt_get_name(blob, offset, &len); |
| if (!pathp) { |
| *pnp = NULL; |
| return len; |
| } |
| |
| len++; |
| |
| np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len, |
| __alignof__(struct device_node)); |
| if (!dryrun) { |
| char *fn; |
| of_node_init(np); |
| np->full_name = fn = ((char *)np) + sizeof(*np); |
| |
| memcpy(fn, pathp, len); |
| |
| if (dad != NULL) { |
| np->parent = dad; |
| np->sibling = dad->child; |
| dad->child = np; |
| } |
| } |
| |
| populate_properties(blob, offset, mem, np, pathp, dryrun); |
| if (!dryrun) { |
| np->name = of_get_property(np, "name", NULL); |
| if (!np->name) |
| np->name = "<NULL>"; |
| } |
| |
| *pnp = np; |
| return 0; |
| } |
| |
| static void reverse_nodes(struct device_node *parent) |
| { |
| struct device_node *child, *next; |
| |
| /* In-depth first */ |
| child = parent->child; |
| while (child) { |
| reverse_nodes(child); |
| |
| child = child->sibling; |
| } |
| |
| /* Reverse the nodes in the child list */ |
| child = parent->child; |
| parent->child = NULL; |
| while (child) { |
| next = child->sibling; |
| |
| child->sibling = parent->child; |
| parent->child = child; |
| child = next; |
| } |
| } |
| |
| /** |
| * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree |
| * @blob: The parent device tree blob |
| * @mem: Memory chunk to use for allocating device nodes and properties |
| * @dad: Parent struct device_node |
| * @nodepp: The device_node tree created by the call |
| * |
| * Return: The size of unflattened device tree or error code |
| */ |
| static int unflatten_dt_nodes(const void *blob, |
| void *mem, |
| struct device_node *dad, |
| struct device_node **nodepp) |
| { |
| struct device_node *root; |
| int offset = 0, depth = 0, initial_depth = 0; |
| #define FDT_MAX_DEPTH 64 |
| struct device_node *nps[FDT_MAX_DEPTH]; |
| void *base = mem; |
| bool dryrun = !base; |
| int ret; |
| |
| if (nodepp) |
| *nodepp = NULL; |
| |
| /* |
| * We're unflattening device sub-tree if @dad is valid. There are |
| * possibly multiple nodes in the first level of depth. We need |
| * set @depth to 1 to make fdt_next_node() happy as it bails |
| * immediately when negative @depth is found. Otherwise, the device |
| * nodes except the first one won't be unflattened successfully. |
| */ |
| if (dad) |
| depth = initial_depth = 1; |
| |
| root = dad; |
| nps[depth] = dad; |
| |
| for (offset = 0; |
| offset >= 0 && depth >= initial_depth; |
| offset = fdt_next_node(blob, offset, &depth)) { |
| if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) |
| continue; |
| |
| if (!IS_ENABLED(CONFIG_OF_KOBJ) && |
| !of_fdt_device_is_available(blob, offset)) |
| continue; |
| |
| ret = populate_node(blob, offset, &mem, nps[depth], |
| &nps[depth+1], dryrun); |
| if (ret < 0) |
| return ret; |
| |
| if (!dryrun && nodepp && !*nodepp) |
| *nodepp = nps[depth+1]; |
| if (!dryrun && !root) |
| root = nps[depth+1]; |
| } |
| |
| if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { |
| pr_err("Error %d processing FDT\n", offset); |
| return -EINVAL; |
| } |
| |
| /* |
| * Reverse the child list. Some drivers assumes node order matches .dts |
| * node order |
| */ |
| if (!dryrun) |
| reverse_nodes(root); |
| |
| return mem - base; |
| } |
| |
| /** |
| * __unflatten_device_tree - create tree of device_nodes from flat blob |
| * @blob: The blob to expand |
| * @dad: Parent device node |
| * @mynodes: The device_node tree created by the call |
| * @dt_alloc: An allocator that provides a virtual address to memory |
| * for the resulting tree |
| * @detached: if true set OF_DETACHED on @mynodes |
| * |
| * unflattens a device-tree, creating the tree of struct device_node. It also |
| * fills the "name" and "type" pointers of the nodes so the normal device-tree |
| * walking functions can be used. |
| * |
| * Return: NULL on failure or the memory chunk containing the unflattened |
| * device tree on success. |
| */ |
| void *__unflatten_device_tree(const void *blob, |
| struct device_node *dad, |
| struct device_node **mynodes, |
| void *(*dt_alloc)(u64 size, u64 align), |
| bool detached) |
| { |
| int size; |
| void *mem; |
| int ret; |
| |
| if (mynodes) |
| *mynodes = NULL; |
| |
| pr_debug(" -> unflatten_device_tree()\n"); |
| |
| if (!blob) { |
| pr_debug("No device tree pointer\n"); |
| return NULL; |
| } |
| |
| pr_debug("Unflattening device tree:\n"); |
| pr_debug("magic: %08x\n", fdt_magic(blob)); |
| pr_debug("size: %08x\n", fdt_totalsize(blob)); |
| pr_debug("version: %08x\n", fdt_version(blob)); |
| |
| if (fdt_check_header(blob)) { |
| pr_err("Invalid device tree blob header\n"); |
| return NULL; |
| } |
| |
| /* First pass, scan for size */ |
| size = unflatten_dt_nodes(blob, NULL, dad, NULL); |
| if (size <= 0) |
| return NULL; |
| |
| size = ALIGN(size, 4); |
| pr_debug(" size is %d, allocating...\n", size); |
| |
| /* Allocate memory for the expanded device tree */ |
| mem = dt_alloc(size + 4, __alignof__(struct device_node)); |
| if (!mem) |
| return NULL; |
| |
| memset(mem, 0, size); |
| |
| *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); |
| |
| pr_debug(" unflattening %p...\n", mem); |
| |
| /* Second pass, do actual unflattening */ |
| ret = unflatten_dt_nodes(blob, mem, dad, mynodes); |
| |
| if (be32_to_cpup(mem + size) != 0xdeadbeef) |
| pr_warn("End of tree marker overwritten: %08x\n", |
| be32_to_cpup(mem + size)); |
| |
| if (ret <= 0) |
| return NULL; |
| |
| if (detached && mynodes && *mynodes) { |
| of_node_set_flag(*mynodes, OF_DETACHED); |
| pr_debug("unflattened tree is detached\n"); |
| } |
| |
| pr_debug(" <- unflatten_device_tree()\n"); |
| return mem; |
| } |
| |
| static void *kernel_tree_alloc(u64 size, u64 align) |
| { |
| return kzalloc(size, GFP_KERNEL); |
| } |
| |
| static DEFINE_MUTEX(of_fdt_unflatten_mutex); |
| |
| /** |
| * of_fdt_unflatten_tree - create tree of device_nodes from flat blob |
| * @blob: Flat device tree blob |
| * @dad: Parent device node |
| * @mynodes: The device tree created by the call |
| * |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. |
| * |
| * Return: NULL on failure or the memory chunk containing the unflattened |
| * device tree on success. |
| */ |
| void *of_fdt_unflatten_tree(const unsigned long *blob, |
| struct device_node *dad, |
| struct device_node **mynodes) |
| { |
| void *mem; |
| |
| mutex_lock(&of_fdt_unflatten_mutex); |
| mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, |
| true); |
| mutex_unlock(&of_fdt_unflatten_mutex); |
| |
| return mem; |
| } |
| EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); |
| |
| /* Everything below here references initial_boot_params directly. */ |
| int __initdata dt_root_addr_cells; |
| int __initdata dt_root_size_cells; |
| |
| void *initial_boot_params __ro_after_init; |
| |
| #ifdef CONFIG_OF_EARLY_FLATTREE |
| |
| static u32 of_fdt_crc32; |
| |
| static int __init early_init_dt_reserve_memory(phys_addr_t base, |
| phys_addr_t size, bool nomap) |
| { |
| if (nomap) { |
| /* |
| * If the memory is already reserved (by another region), we |
| * should not allow it to be marked nomap, but don't worry |
| * if the region isn't memory as it won't be mapped. |
| */ |
| if (memblock_overlaps_region(&memblock.memory, base, size) && |
| memblock_is_region_reserved(base, size)) |
| return -EBUSY; |
| |
| return memblock_mark_nomap(base, size); |
| } |
| return memblock_reserve(base, size); |
| } |
| |
| /* |
| * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property |
| */ |
| static int __init __reserved_mem_reserve_reg(unsigned long node, |
| const char *uname) |
| { |
| int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); |
| phys_addr_t base, size; |
| int len; |
| const __be32 *prop; |
| int first = 1; |
| bool nomap; |
| |
| prop = of_get_flat_dt_prop(node, "reg", &len); |
| if (!prop) |
| return -ENOENT; |
| |
| if (len && len % t_len != 0) { |
| pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", |
| uname); |
| return -EINVAL; |
| } |
| |
| nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; |
| |
| while (len >= t_len) { |
| base = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| |
| if (size && |
| early_init_dt_reserve_memory(base, size, nomap) == 0) |
| pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", |
| uname, &base, (unsigned long)(size / SZ_1M)); |
| else |
| pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", |
| uname, &base, (unsigned long)(size / SZ_1M)); |
| |
| len -= t_len; |
| if (first) { |
| fdt_reserved_mem_save_node(node, uname, base, size); |
| first = 0; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * __reserved_mem_check_root() - check if #size-cells, #address-cells provided |
| * in /reserved-memory matches the values supported by the current implementation, |
| * also check if ranges property has been provided |
| */ |
| static int __init __reserved_mem_check_root(unsigned long node) |
| { |
| const __be32 *prop; |
| |
| prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| if (!prop || be32_to_cpup(prop) != dt_root_size_cells) |
| return -EINVAL; |
| |
| prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) |
| return -EINVAL; |
| |
| prop = of_get_flat_dt_prop(node, "ranges", NULL); |
| if (!prop) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* |
| * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory |
| */ |
| static int __init fdt_scan_reserved_mem(void) |
| { |
| int node, child; |
| const void *fdt = initial_boot_params; |
| |
| node = fdt_path_offset(fdt, "/reserved-memory"); |
| if (node < 0) |
| return -ENODEV; |
| |
| if (__reserved_mem_check_root(node) != 0) { |
| pr_err("Reserved memory: unsupported node format, ignoring\n"); |
| return -EINVAL; |
| } |
| |
| fdt_for_each_subnode(child, fdt, node) { |
| const char *uname; |
| int err; |
| |
| if (!of_fdt_device_is_available(fdt, child)) |
| continue; |
| |
| uname = fdt_get_name(fdt, child, NULL); |
| |
| err = __reserved_mem_reserve_reg(child, uname); |
| if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) |
| fdt_reserved_mem_save_node(child, uname, 0, 0); |
| } |
| return 0; |
| } |
| |
| /* |
| * fdt_reserve_elfcorehdr() - reserves memory for elf core header |
| * |
| * This function reserves the memory occupied by an elf core header |
| * described in the device tree. This region contains all the |
| * information about primary kernel's core image and is used by a dump |
| * capture kernel to access the system memory on primary kernel. |
| */ |
| static void __init fdt_reserve_elfcorehdr(void) |
| { |
| if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size) |
| return; |
| |
| if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { |
| pr_warn("elfcorehdr is overlapped\n"); |
| return; |
| } |
| |
| memblock_reserve(elfcorehdr_addr, elfcorehdr_size); |
| |
| pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", |
| elfcorehdr_size >> 10, elfcorehdr_addr); |
| } |
| |
| /** |
| * early_init_fdt_scan_reserved_mem() - create reserved memory regions |
| * |
| * This function grabs memory from early allocator for device exclusive use |
| * defined in device tree structures. It should be called by arch specific code |
| * once the early allocator (i.e. memblock) has been fully activated. |
| */ |
| void __init early_init_fdt_scan_reserved_mem(void) |
| { |
| int n; |
| u64 base, size; |
| |
| if (!initial_boot_params) |
| return; |
| |
| /* Process header /memreserve/ fields */ |
| for (n = 0; ; n++) { |
| fdt_get_mem_rsv(initial_boot_params, n, &base, &size); |
| if (!size) |
| break; |
| memblock_reserve(base, size); |
| } |
| |
| fdt_scan_reserved_mem(); |
| fdt_reserve_elfcorehdr(); |
| fdt_init_reserved_mem(); |
| } |
| |
| /** |
| * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob |
| */ |
| void __init early_init_fdt_reserve_self(void) |
| { |
| if (!initial_boot_params) |
| return; |
| |
| /* Reserve the dtb region */ |
| memblock_reserve(__pa(initial_boot_params), |
| fdt_totalsize(initial_boot_params)); |
| } |
| |
| /** |
| * of_scan_flat_dt - scan flattened tree blob and call callback on each. |
| * @it: callback function |
| * @data: context data pointer |
| * |
| * This function is used to scan the flattened device-tree, it is |
| * used to extract the memory information at boot before we can |
| * unflatten the tree |
| */ |
| int __init of_scan_flat_dt(int (*it)(unsigned long node, |
| const char *uname, int depth, |
| void *data), |
| void *data) |
| { |
| const void *blob = initial_boot_params; |
| const char *pathp; |
| int offset, rc = 0, depth = -1; |
| |
| if (!blob) |
| return 0; |
| |
| for (offset = fdt_next_node(blob, -1, &depth); |
| offset >= 0 && depth >= 0 && !rc; |
| offset = fdt_next_node(blob, offset, &depth)) { |
| |
| pathp = fdt_get_name(blob, offset, NULL); |
| rc = it(offset, pathp, depth, data); |
| } |
| return rc; |
| } |
| |
| /** |
| * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. |
| * @parent: parent node |
| * @it: callback function |
| * @data: context data pointer |
| * |
| * This function is used to scan sub-nodes of a node. |
| */ |
| int __init of_scan_flat_dt_subnodes(unsigned long parent, |
| int (*it)(unsigned long node, |
| const char *uname, |
| void *data), |
| void *data) |
| { |
| const void *blob = initial_boot_params; |
| int node; |
| |
| fdt_for_each_subnode(node, blob, parent) { |
| const char *pathp; |
| int rc; |
| |
| pathp = fdt_get_name(blob, node, NULL); |
| rc = it(node, pathp, data); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| |
| /** |
| * of_get_flat_dt_subnode_by_name - get the subnode by given name |
| * |
| * @node: the parent node |
| * @uname: the name of subnode |
| * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none |
| */ |
| |
| int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) |
| { |
| return fdt_subnode_offset(initial_boot_params, node, uname); |
| } |
| |
| /* |
| * of_get_flat_dt_root - find the root node in the flat blob |
| */ |
| unsigned long __init of_get_flat_dt_root(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr |
| * |
| * This function can be used within scan_flattened_dt callback to get |
| * access to properties |
| */ |
| const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, |
| int *size) |
| { |
| return fdt_getprop(initial_boot_params, node, name, size); |
| } |
| |
| /** |
| * of_fdt_is_compatible - Return true if given node from the given blob has |
| * compat in its compatible list |
| * @blob: A device tree blob |
| * @node: node to test |
| * @compat: compatible string to compare with compatible list. |
| * |
| * Return: a non-zero value on match with smaller values returned for more |
| * specific compatible values. |
| */ |
| static int of_fdt_is_compatible(const void *blob, |
| unsigned long node, const char *compat) |
| { |
| const char *cp; |
| int cplen; |
| unsigned long l, score = 0; |
| |
| cp = fdt_getprop(blob, node, "compatible", &cplen); |
| if (cp == NULL) |
| return 0; |
| while (cplen > 0) { |
| score++; |
| if (of_compat_cmp(cp, compat, strlen(compat)) == 0) |
| return score; |
| l = strlen(cp) + 1; |
| cp += l; |
| cplen -= l; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * of_flat_dt_is_compatible - Return true if given node has compat in compatible list |
| * @node: node to test |
| * @compat: compatible string to compare with compatible list. |
| */ |
| int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) |
| { |
| return of_fdt_is_compatible(initial_boot_params, node, compat); |
| } |
| |
| /* |
| * of_flat_dt_match - Return true if node matches a list of compatible values |
| */ |
| static int __init of_flat_dt_match(unsigned long node, const char *const *compat) |
| { |
| unsigned int tmp, score = 0; |
| |
| if (!compat) |
| return 0; |
| |
| while (*compat) { |
| tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); |
| if (tmp && (score == 0 || (tmp < score))) |
| score = tmp; |
| compat++; |
| } |
| |
| return score; |
| } |
| |
| /* |
| * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle |
| */ |
| uint32_t __init of_get_flat_dt_phandle(unsigned long node) |
| { |
| return fdt_get_phandle(initial_boot_params, node); |
| } |
| |
| const char * __init of_flat_dt_get_machine_name(void) |
| { |
| const char *name; |
| unsigned long dt_root = of_get_flat_dt_root(); |
| |
| name = of_get_flat_dt_prop(dt_root, "model", NULL); |
| if (!name) |
| name = of_get_flat_dt_prop(dt_root, "compatible", NULL); |
| return name; |
| } |
| |
| /** |
| * of_flat_dt_match_machine - Iterate match tables to find matching machine. |
| * |
| * @default_match: A machine specific ptr to return in case of no match. |
| * @get_next_compat: callback function to return next compatible match table. |
| * |
| * Iterate through machine match tables to find the best match for the machine |
| * compatible string in the FDT. |
| */ |
| const void * __init of_flat_dt_match_machine(const void *default_match, |
| const void * (*get_next_compat)(const char * const**)) |
| { |
| const void *data = NULL; |
| const void *best_data = default_match; |
| const char *const *compat; |
| unsigned long dt_root; |
| unsigned int best_score = ~1, score = 0; |
| |
| dt_root = of_get_flat_dt_root(); |
| while ((data = get_next_compat(&compat))) { |
| score = of_flat_dt_match(dt_root, compat); |
| if (score > 0 && score < best_score) { |
| best_data = data; |
| best_score = score; |
| } |
| } |
| if (!best_data) { |
| const char *prop; |
| int size; |
| |
| pr_err("\n unrecognized device tree list:\n[ "); |
| |
| prop = of_get_flat_dt_prop(dt_root, "compatible", &size); |
| if (prop) { |
| while (size > 0) { |
| printk("'%s' ", prop); |
| size -= strlen(prop) + 1; |
| prop += strlen(prop) + 1; |
| } |
| } |
| printk("]\n\n"); |
| return NULL; |
| } |
| |
| pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); |
| |
| return best_data; |
| } |
| |
| static void __early_init_dt_declare_initrd(unsigned long start, |
| unsigned long end) |
| { |
| /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is |
| * enabled since __va() is called too early. ARM64 does make use |
| * of phys_initrd_start/phys_initrd_size so we can skip this |
| * conversion. |
| */ |
| if (!IS_ENABLED(CONFIG_ARM64)) { |
| initrd_start = (unsigned long)__va(start); |
| initrd_end = (unsigned long)__va(end); |
| initrd_below_start_ok = 1; |
| } |
| } |
| |
| /** |
| * early_init_dt_check_for_initrd - Decode initrd location from flat tree |
| * @node: reference to node containing initrd location ('chosen') |
| */ |
| static void __init early_init_dt_check_for_initrd(unsigned long node) |
| { |
| u64 start, end; |
| int len; |
| const __be32 *prop; |
| |
| if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) |
| return; |
| |
| pr_debug("Looking for initrd properties... "); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); |
| if (!prop) |
| return; |
| start = of_read_number(prop, len/4); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); |
| if (!prop) |
| return; |
| end = of_read_number(prop, len/4); |
| if (start > end) |
| return; |
| |
| __early_init_dt_declare_initrd(start, end); |
| phys_initrd_start = start; |
| phys_initrd_size = end - start; |
| |
| pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end); |
| } |
| |
| /** |
| * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat |
| * tree |
| * @node: reference to node containing elfcorehdr location ('chosen') |
| */ |
| static void __init early_init_dt_check_for_elfcorehdr(unsigned long node) |
| { |
| const __be32 *prop; |
| int len; |
| |
| if (!IS_ENABLED(CONFIG_CRASH_DUMP)) |
| return; |
| |
| pr_debug("Looking for elfcorehdr property... "); |
| |
| prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); |
| if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells))) |
| return; |
| |
| elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| |
| pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n", |
| elfcorehdr_addr, elfcorehdr_size); |
| } |
| |
| static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND; |
| |
| /* |
| * The main usage of linux,usable-memory-range is for crash dump kernel. |
| * Originally, the number of usable-memory regions is one. Now there may |
| * be two regions, low region and high region. |
| * To make compatibility with existing user-space and older kdump, the low |
| * region is always the last range of linux,usable-memory-range if exist. |
| */ |
| #define MAX_USABLE_RANGES 2 |
| |
| /** |
| * early_init_dt_check_for_usable_mem_range - Decode usable memory range |
| * location from flat tree |
| */ |
| void __init early_init_dt_check_for_usable_mem_range(void) |
| { |
| struct memblock_region rgn[MAX_USABLE_RANGES] = {0}; |
| const __be32 *prop, *endp; |
| int len, i; |
| unsigned long node = chosen_node_offset; |
| |
| if ((long)node < 0) |
| return; |
| |
| pr_debug("Looking for usable-memory-range property... "); |
| |
| prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); |
| if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells))) |
| return; |
| |
| endp = prop + (len / sizeof(__be32)); |
| for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) { |
| rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop); |
| rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop); |
| |
| pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n", |
| i, &rgn[i].base, &rgn[i].size); |
| } |
| |
| memblock_cap_memory_range(rgn[0].base, rgn[0].size); |
| for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++) |
| memblock_add(rgn[i].base, rgn[i].size); |
| } |
| |
| #ifdef CONFIG_SERIAL_EARLYCON |
| |
| int __init early_init_dt_scan_chosen_stdout(void) |
| { |
| int offset; |
| const char *p, *q, *options = NULL; |
| int l; |
| const struct earlycon_id *match; |
| const void *fdt = initial_boot_params; |
| int ret; |
| |
| offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) |
| offset = fdt_path_offset(fdt, "/chosen@0"); |
| if (offset < 0) |
| return -ENOENT; |
| |
| p = fdt_getprop(fdt, offset, "stdout-path", &l); |
| if (!p) |
| p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); |
| if (!p || !l) |
| return -ENOENT; |
| |
| q = strchrnul(p, ':'); |
| if (*q != '\0') |
| options = q + 1; |
| l = q - p; |
| |
| /* Get the node specified by stdout-path */ |
| offset = fdt_path_offset_namelen(fdt, p, l); |
| if (offset < 0) { |
| pr_warn("earlycon: stdout-path %.*s not found\n", l, p); |
| return 0; |
| } |
| |
| for (match = __earlycon_table; match < __earlycon_table_end; match++) { |
| if (!match->compatible[0]) |
| continue; |
| |
| if (fdt_node_check_compatible(fdt, offset, match->compatible)) |
| continue; |
| |
| ret = of_setup_earlycon(match, offset, options); |
| if (!ret || ret == -EALREADY) |
| return 0; |
| } |
| return -ENODEV; |
| } |
| #endif |
| |
| /* |
| * early_init_dt_scan_root - fetch the top level address and size cells |
| */ |
| int __init early_init_dt_scan_root(void) |
| { |
| const __be32 *prop; |
| const void *fdt = initial_boot_params; |
| int node = fdt_path_offset(fdt, "/"); |
| |
| if (node < 0) |
| return -ENODEV; |
| |
| dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| |
| prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| if (prop) |
| dt_root_size_cells = be32_to_cpup(prop); |
| pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); |
| |
| prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| if (prop) |
| dt_root_addr_cells = be32_to_cpup(prop); |
| pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); |
| |
| return 0; |
| } |
| |
| u64 __init dt_mem_next_cell(int s, const __be32 **cellp) |
| { |
| const __be32 *p = *cellp; |
| |
| *cellp = p + s; |
| return of_read_number(p, s); |
| } |
| |
| /* |
| * early_init_dt_scan_memory - Look for and parse memory nodes |
| */ |
| int __init early_init_dt_scan_memory(void) |
| { |
| int node, found_memory = 0; |
| const void *fdt = initial_boot_params; |
| |
| fdt_for_each_subnode(node, fdt, 0) { |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const __be32 *reg, *endp; |
| int l; |
| bool hotpluggable; |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL || strcmp(type, "memory") != 0) |
| continue; |
| |
| if (!of_fdt_device_is_available(fdt, node)) |
| continue; |
| |
| reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| if (reg == NULL) |
| reg = of_get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| continue; |
| |
| endp = reg + (l / sizeof(__be32)); |
| hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); |
| |
| pr_debug("memory scan node %s, reg size %d,\n", |
| fdt_get_name(fdt, node, NULL), l); |
| |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| u64 base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| pr_debug(" - %llx, %llx\n", base, size); |
| |
| early_init_dt_add_memory_arch(base, size); |
| |
| found_memory = 1; |
| |
| if (!hotpluggable) |
| continue; |
| |
| if (memblock_mark_hotplug(base, size)) |
| pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", |
| base, base + size); |
| } |
| } |
| return found_memory; |
| } |
| |
| /* |
| * Convert configs to something easy to use in C code |
| */ |
| #if defined(CONFIG_CMDLINE_FORCE) |
| static const int overwrite_incoming_cmdline = 1; |
| static const int read_dt_cmdline; |
| static const int concat_cmdline; |
| #elif defined(CONFIG_CMDLINE_EXTEND) |
| static const int overwrite_incoming_cmdline; |
| static const int read_dt_cmdline = 1; |
| static const int concat_cmdline = 1; |
| #else /* CMDLINE_FROM_BOOTLOADER */ |
| static const int overwrite_incoming_cmdline; |
| static const int read_dt_cmdline = 1; |
| static const int concat_cmdline; |
| #endif |
| #ifdef CONFIG_CMDLINE |
| static const char *config_cmdline = CONFIG_CMDLINE; |
| #else |
| static const char *config_cmdline = ""; |
| #endif |
| |
| int __init early_init_dt_scan_chosen(char *cmdline) |
| { |
| int l = 0, node; |
| const char *p = NULL; |
| const void *rng_seed; |
| const void *fdt = initial_boot_params; |
| |
| node = fdt_path_offset(fdt, "/chosen"); |
| if (node < 0) |
| node = fdt_path_offset(fdt, "/chosen@0"); |
| if (node < 0) |
| /* Handle the cmdline config options even if no /chosen node */ |
| goto handle_cmdline; |
| |
| chosen_node_offset = node; |
| |
| early_init_dt_check_for_initrd(node); |
| early_init_dt_check_for_elfcorehdr(node); |
| |
| rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); |
| if (rng_seed && l > 0) { |
| add_bootloader_randomness(rng_seed, l); |
| |
| /* try to clear seed so it won't be found. */ |
| fdt_nop_property(initial_boot_params, node, "rng-seed"); |
| |
| /* update CRC check value */ |
| of_fdt_crc32 = crc32_be(~0, initial_boot_params, |
| fdt_totalsize(initial_boot_params)); |
| } |
| |
| /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */ |
| if (overwrite_incoming_cmdline || !cmdline[0]) |
| strscpy(cmdline, config_cmdline, COMMAND_LINE_SIZE); |
| |
| /* Retrieve command line unless forcing */ |
| if (read_dt_cmdline) |
| p = of_get_flat_dt_prop(node, "bootargs", &l); |
| if (p != NULL && l > 0) { |
| if (concat_cmdline) { |
| int cmdline_len; |
| int copy_len; |
| strlcat(cmdline, " ", COMMAND_LINE_SIZE); |
| cmdline_len = strlen(cmdline); |
| copy_len = COMMAND_LINE_SIZE - cmdline_len - 1; |
| copy_len = min((int)l, copy_len); |
| strncpy(cmdline + cmdline_len, p, copy_len); |
| cmdline[cmdline_len + copy_len] = '\0'; |
| } else { |
| strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE)); |
| } |
| } |
| |
| handle_cmdline: |
| pr_debug("Command line is: %s\n", (char *)cmdline); |
| |
| return 0; |
| } |
| |
| #ifndef MIN_MEMBLOCK_ADDR |
| #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) |
| #endif |
| #ifndef MAX_MEMBLOCK_ADDR |
| #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) |
| #endif |
| |
| void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) |
| { |
| const u64 phys_offset = MIN_MEMBLOCK_ADDR; |
| |
| if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { |
| pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| |
| if (!PAGE_ALIGNED(base)) { |
| size -= PAGE_SIZE - (base & ~PAGE_MASK); |
| base = PAGE_ALIGN(base); |
| } |
| size &= PAGE_MASK; |
| |
| if (base > MAX_MEMBLOCK_ADDR) { |
| pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| |
| if (base + size - 1 > MAX_MEMBLOCK_ADDR) { |
| pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
| ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); |
| size = MAX_MEMBLOCK_ADDR - base + 1; |
| } |
| |
| if (base + size < phys_offset) { |
| pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
| base, base + size); |
| return; |
| } |
| if (base < phys_offset) { |
| pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
| base, phys_offset); |
| size -= phys_offset - base; |
| base = phys_offset; |
| } |
| memblock_add(base, size); |
| } |
| |
| static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) |
| { |
| void *ptr = memblock_alloc(size, align); |
| |
| if (!ptr) |
| panic("%s: Failed to allocate %llu bytes align=0x%llx\n", |
| __func__, size, align); |
| |
| return ptr; |
| } |
| |
| bool __init early_init_dt_verify(void *params) |
| { |
| if (!params) |
| return false; |
| |
| /* check device tree validity */ |
| if (fdt_check_header(params)) |
| return false; |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| of_fdt_crc32 = crc32_be(~0, initial_boot_params, |
| fdt_totalsize(initial_boot_params)); |
| return true; |
| } |
| |
| |
| void __init early_init_dt_scan_nodes(void) |
| { |
| int rc; |
| |
| /* Initialize {size,address}-cells info */ |
| early_init_dt_scan_root(); |
| |
| /* Retrieve various information from the /chosen node */ |
| rc = early_init_dt_scan_chosen(boot_command_line); |
| if (rc) |
| pr_warn("No chosen node found, continuing without\n"); |
| |
| /* Setup memory, calling early_init_dt_add_memory_arch */ |
| early_init_dt_scan_memory(); |
| |
| /* Handle linux,usable-memory-range property */ |
| early_init_dt_check_for_usable_mem_range(); |
| } |
| |
| bool __init early_init_dt_scan(void *params) |
| { |
| bool status; |
| |
| status = early_init_dt_verify(params); |
| if (!status) |
| return false; |
| |
| early_init_dt_scan_nodes(); |
| return true; |
| } |
| |
| /** |
| * unflatten_device_tree - create tree of device_nodes from flat blob |
| * |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. |
| */ |
| void __init unflatten_device_tree(void) |
| { |
| __unflatten_device_tree(initial_boot_params, NULL, &of_root, |
| early_init_dt_alloc_memory_arch, false); |
| |
| /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ |
| of_alias_scan(early_init_dt_alloc_memory_arch); |
| |
| unittest_unflatten_overlay_base(); |
| } |
| |
| /** |
| * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob |
| * |
| * Copies and unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used. This should only be used when the FDT memory has not been |
| * reserved such is the case when the FDT is built-in to the kernel init |
| * section. If the FDT memory is reserved already then unflatten_device_tree |
| * should be used instead. |
| */ |
| void __init unflatten_and_copy_device_tree(void) |
| { |
| int size; |
| void *dt; |
| |
| if (!initial_boot_params) { |
| pr_warn("No valid device tree found, continuing without\n"); |
| return; |
| } |
| |
| size = fdt_totalsize(initial_boot_params); |
| dt = early_init_dt_alloc_memory_arch(size, |
| roundup_pow_of_two(FDT_V17_SIZE)); |
| |
| if (dt) { |
| memcpy(dt, initial_boot_params, size); |
| initial_boot_params = dt; |
| } |
| unflatten_device_tree(); |
| } |
| |
| #ifdef CONFIG_SYSFS |
| static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, |
| char *buf, loff_t off, size_t count) |
| { |
| memcpy(buf, initial_boot_params + off, count); |
| return count; |
| } |
| |
| static int __init of_fdt_raw_init(void) |
| { |
| static struct bin_attribute of_fdt_raw_attr = |
| __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); |
| |
| if (!initial_boot_params) |
| return 0; |
| |
| if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, |
| fdt_totalsize(initial_boot_params))) { |
| pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); |
| return 0; |
| } |
| of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); |
| return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); |
| } |
| late_initcall(of_fdt_raw_init); |
| #endif |
| |
| #endif /* CONFIG_OF_EARLY_FLATTREE */ |