| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 Google LLC |
| */ |
| |
| #include <ufs/ufshcd.h> |
| #include "ufshcd-crypto.h" |
| |
| /* Blk-crypto modes supported by UFS crypto */ |
| static const struct ufs_crypto_alg_entry { |
| enum ufs_crypto_alg ufs_alg; |
| enum ufs_crypto_key_size ufs_key_size; |
| } ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { |
| [BLK_ENCRYPTION_MODE_AES_256_XTS] = { |
| .ufs_alg = UFS_CRYPTO_ALG_AES_XTS, |
| .ufs_key_size = UFS_CRYPTO_KEY_SIZE_256, |
| }, |
| }; |
| |
| static int ufshcd_program_key(struct ufs_hba *hba, |
| const union ufs_crypto_cfg_entry *cfg, int slot) |
| { |
| int i; |
| u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg); |
| int err = 0; |
| |
| ufshcd_hold(hba, false); |
| |
| if (hba->vops && hba->vops->program_key) { |
| err = hba->vops->program_key(hba, cfg, slot); |
| goto out; |
| } |
| |
| /* Ensure that CFGE is cleared before programming the key */ |
| ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| for (i = 0; i < 16; i++) { |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]), |
| slot_offset + i * sizeof(cfg->reg_val[0])); |
| } |
| /* Write dword 17 */ |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]), |
| slot_offset + 17 * sizeof(cfg->reg_val[0])); |
| /* Dword 16 must be written last */ |
| ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]), |
| slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| out: |
| ufshcd_release(hba); |
| return err; |
| } |
| |
| static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct ufs_hba *hba = |
| container_of(profile, struct ufs_hba, crypto_profile); |
| const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array; |
| const struct ufs_crypto_alg_entry *alg = |
| &ufs_crypto_algs[key->crypto_cfg.crypto_mode]; |
| u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; |
| int i; |
| int cap_idx = -1; |
| union ufs_crypto_cfg_entry cfg = {}; |
| int err; |
| |
| BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0); |
| for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) { |
| if (ccap_array[i].algorithm_id == alg->ufs_alg && |
| ccap_array[i].key_size == alg->ufs_key_size && |
| (ccap_array[i].sdus_mask & data_unit_mask)) { |
| cap_idx = i; |
| break; |
| } |
| } |
| |
| if (WARN_ON(cap_idx < 0)) |
| return -EOPNOTSUPP; |
| |
| cfg.data_unit_size = data_unit_mask; |
| cfg.crypto_cap_idx = cap_idx; |
| cfg.config_enable = UFS_CRYPTO_CONFIGURATION_ENABLE; |
| |
| if (ccap_array[cap_idx].algorithm_id == UFS_CRYPTO_ALG_AES_XTS) { |
| /* In XTS mode, the blk_crypto_key's size is already doubled */ |
| memcpy(cfg.crypto_key, key->raw, key->size/2); |
| memcpy(cfg.crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2, |
| key->raw + key->size/2, key->size/2); |
| } else { |
| memcpy(cfg.crypto_key, key->raw, key->size); |
| } |
| |
| err = ufshcd_program_key(hba, &cfg, slot); |
| |
| memzero_explicit(&cfg, sizeof(cfg)); |
| return err; |
| } |
| |
| static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot) |
| { |
| /* |
| * Clear the crypto cfg on the device. Clearing CFGE |
| * might not be sufficient, so just clear the entire cfg. |
| */ |
| union ufs_crypto_cfg_entry cfg = {}; |
| |
| return ufshcd_program_key(hba, &cfg, slot); |
| } |
| |
| static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct ufs_hba *hba = |
| container_of(profile, struct ufs_hba, crypto_profile); |
| |
| return ufshcd_clear_keyslot(hba, slot); |
| } |
| |
| bool ufshcd_crypto_enable(struct ufs_hba *hba) |
| { |
| if (!(hba->caps & UFSHCD_CAP_CRYPTO)) |
| return false; |
| |
| /* Reset might clear all keys, so reprogram all the keys. */ |
| blk_crypto_reprogram_all_keys(&hba->crypto_profile); |
| return true; |
| } |
| |
| static const struct blk_crypto_ll_ops ufshcd_crypto_ops = { |
| .keyslot_program = ufshcd_crypto_keyslot_program, |
| .keyslot_evict = ufshcd_crypto_keyslot_evict, |
| }; |
| |
| static enum blk_crypto_mode_num |
| ufshcd_find_blk_crypto_mode(union ufs_crypto_cap_entry cap) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) { |
| BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0); |
| if (ufs_crypto_algs[i].ufs_alg == cap.algorithm_id && |
| ufs_crypto_algs[i].ufs_key_size == cap.key_size) { |
| return i; |
| } |
| } |
| return BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| /** |
| * ufshcd_hba_init_crypto_capabilities - Read crypto capabilities, init crypto |
| * fields in hba |
| * @hba: Per adapter instance |
| * |
| * Return: 0 if crypto was initialized or is not supported, else a -errno value. |
| */ |
| int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba) |
| { |
| int cap_idx; |
| int err = 0; |
| enum blk_crypto_mode_num blk_mode_num; |
| |
| /* |
| * Don't use crypto if either the hardware doesn't advertise the |
| * standard crypto capability bit *or* if the vendor specific driver |
| * hasn't advertised that crypto is supported. |
| */ |
| if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) || |
| !(hba->caps & UFSHCD_CAP_CRYPTO)) |
| goto out; |
| |
| hba->crypto_capabilities.reg_val = |
| cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); |
| hba->crypto_cfg_register = |
| (u32)hba->crypto_capabilities.config_array_ptr * 0x100; |
| hba->crypto_cap_array = |
| devm_kcalloc(hba->dev, hba->crypto_capabilities.num_crypto_cap, |
| sizeof(hba->crypto_cap_array[0]), GFP_KERNEL); |
| if (!hba->crypto_cap_array) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* The actual number of configurations supported is (CFGC+1) */ |
| err = devm_blk_crypto_profile_init( |
| hba->dev, &hba->crypto_profile, |
| hba->crypto_capabilities.config_count + 1); |
| if (err) |
| goto out; |
| |
| hba->crypto_profile.ll_ops = ufshcd_crypto_ops; |
| /* UFS only supports 8 bytes for any DUN */ |
| hba->crypto_profile.max_dun_bytes_supported = 8; |
| hba->crypto_profile.dev = hba->dev; |
| |
| /* |
| * Cache all the UFS crypto capabilities and advertise the supported |
| * crypto modes and data unit sizes to the block layer. |
| */ |
| for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; |
| cap_idx++) { |
| hba->crypto_cap_array[cap_idx].reg_val = |
| cpu_to_le32(ufshcd_readl(hba, |
| REG_UFS_CRYPTOCAP + |
| cap_idx * sizeof(__le32))); |
| blk_mode_num = ufshcd_find_blk_crypto_mode( |
| hba->crypto_cap_array[cap_idx]); |
| if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID) |
| hba->crypto_profile.modes_supported[blk_mode_num] |= |
| hba->crypto_cap_array[cap_idx].sdus_mask * 512; |
| } |
| |
| return 0; |
| |
| out: |
| /* Indicate that init failed by clearing UFSHCD_CAP_CRYPTO */ |
| hba->caps &= ~UFSHCD_CAP_CRYPTO; |
| return err; |
| } |
| |
| /** |
| * ufshcd_init_crypto - Initialize crypto hardware |
| * @hba: Per adapter instance |
| */ |
| void ufshcd_init_crypto(struct ufs_hba *hba) |
| { |
| int slot; |
| |
| if (!(hba->caps & UFSHCD_CAP_CRYPTO)) |
| return; |
| |
| /* Clear all keyslots - the number of keyslots is (CFGC + 1) */ |
| for (slot = 0; slot < hba->crypto_capabilities.config_count + 1; slot++) |
| ufshcd_clear_keyslot(hba, slot); |
| } |
| |
| void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q) |
| { |
| if (hba->caps & UFSHCD_CAP_CRYPTO) |
| blk_crypto_register(&hba->crypto_profile, q); |
| } |