| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 ARM Ltd. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/cpu.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/prctl.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/string.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/thread_info.h> |
| #include <linux/types.h> |
| #include <linux/uio.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/mte.h> |
| #include <asm/ptrace.h> |
| #include <asm/sysreg.h> |
| |
| static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); |
| |
| #ifdef CONFIG_KASAN_HW_TAGS |
| /* |
| * The asynchronous and asymmetric MTE modes have the same behavior for |
| * store operations. This flag is set when either of these modes is enabled. |
| */ |
| DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); |
| EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); |
| #endif |
| |
| static void mte_sync_page_tags(struct page *page, pte_t old_pte, |
| bool check_swap, bool pte_is_tagged) |
| { |
| if (check_swap && is_swap_pte(old_pte)) { |
| swp_entry_t entry = pte_to_swp_entry(old_pte); |
| |
| if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) |
| return; |
| } |
| |
| if (!pte_is_tagged) |
| return; |
| |
| page_kasan_tag_reset(page); |
| /* |
| * We need smp_wmb() in between setting the flags and clearing the |
| * tags because if another thread reads page->flags and builds a |
| * tagged address out of it, there is an actual dependency to the |
| * memory access, but on the current thread we do not guarantee that |
| * the new page->flags are visible before the tags were updated. |
| */ |
| smp_wmb(); |
| mte_clear_page_tags(page_address(page)); |
| } |
| |
| void mte_sync_tags(pte_t old_pte, pte_t pte) |
| { |
| struct page *page = pte_page(pte); |
| long i, nr_pages = compound_nr(page); |
| bool check_swap = nr_pages == 1; |
| bool pte_is_tagged = pte_tagged(pte); |
| |
| /* Early out if there's nothing to do */ |
| if (!check_swap && !pte_is_tagged) |
| return; |
| |
| /* if PG_mte_tagged is set, tags have already been initialised */ |
| for (i = 0; i < nr_pages; i++, page++) { |
| if (!test_and_set_bit(PG_mte_tagged, &page->flags)) |
| mte_sync_page_tags(page, old_pte, check_swap, |
| pte_is_tagged); |
| } |
| } |
| |
| int memcmp_pages(struct page *page1, struct page *page2) |
| { |
| char *addr1, *addr2; |
| int ret; |
| |
| addr1 = page_address(page1); |
| addr2 = page_address(page2); |
| ret = memcmp(addr1, addr2, PAGE_SIZE); |
| |
| if (!system_supports_mte() || ret) |
| return ret; |
| |
| /* |
| * If the page content is identical but at least one of the pages is |
| * tagged, return non-zero to avoid KSM merging. If only one of the |
| * pages is tagged, set_pte_at() may zero or change the tags of the |
| * other page via mte_sync_tags(). |
| */ |
| if (test_bit(PG_mte_tagged, &page1->flags) || |
| test_bit(PG_mte_tagged, &page2->flags)) |
| return addr1 != addr2; |
| |
| return ret; |
| } |
| |
| static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) |
| { |
| /* Enable MTE Sync Mode for EL1. */ |
| sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf); |
| isb(); |
| |
| pr_info_once("MTE: enabled in %s mode at EL1\n", mode); |
| } |
| |
| #ifdef CONFIG_KASAN_HW_TAGS |
| void mte_enable_kernel_sync(void) |
| { |
| /* |
| * Make sure we enter this function when no PE has set |
| * async mode previously. |
| */ |
| WARN_ONCE(system_uses_mte_async_or_asymm_mode(), |
| "MTE async mode enabled system wide!"); |
| |
| __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC); |
| } |
| |
| void mte_enable_kernel_async(void) |
| { |
| __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC); |
| |
| /* |
| * MTE async mode is set system wide by the first PE that |
| * executes this function. |
| * |
| * Note: If in future KASAN acquires a runtime switching |
| * mode in between sync and async, this strategy needs |
| * to be reviewed. |
| */ |
| if (!system_uses_mte_async_or_asymm_mode()) |
| static_branch_enable(&mte_async_or_asymm_mode); |
| } |
| |
| void mte_enable_kernel_asymm(void) |
| { |
| if (cpus_have_cap(ARM64_MTE_ASYMM)) { |
| __mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM); |
| |
| /* |
| * MTE asymm mode behaves as async mode for store |
| * operations. The mode is set system wide by the |
| * first PE that executes this function. |
| * |
| * Note: If in future KASAN acquires a runtime switching |
| * mode in between sync and async, this strategy needs |
| * to be reviewed. |
| */ |
| if (!system_uses_mte_async_or_asymm_mode()) |
| static_branch_enable(&mte_async_or_asymm_mode); |
| } else { |
| /* |
| * If the CPU does not support MTE asymmetric mode the |
| * kernel falls back on synchronous mode which is the |
| * default for kasan=on. |
| */ |
| mte_enable_kernel_sync(); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_KASAN_HW_TAGS |
| void mte_check_tfsr_el1(void) |
| { |
| u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); |
| |
| if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { |
| /* |
| * Note: isb() is not required after this direct write |
| * because there is no indirect read subsequent to it |
| * (per ARM DDI 0487F.c table D13-1). |
| */ |
| write_sysreg_s(0, SYS_TFSR_EL1); |
| |
| kasan_report_async(); |
| } |
| } |
| #endif |
| |
| /* |
| * This is where we actually resolve the system and process MTE mode |
| * configuration into an actual value in SCTLR_EL1 that affects |
| * userspace. |
| */ |
| static void mte_update_sctlr_user(struct task_struct *task) |
| { |
| /* |
| * This must be called with preemption disabled and can only be called |
| * on the current or next task since the CPU must match where the thread |
| * is going to run. The caller is responsible for calling |
| * update_sctlr_el1() later in the same preemption disabled block. |
| */ |
| unsigned long sctlr = task->thread.sctlr_user; |
| unsigned long mte_ctrl = task->thread.mte_ctrl; |
| unsigned long pref, resolved_mte_tcf; |
| |
| pref = __this_cpu_read(mte_tcf_preferred); |
| /* |
| * If there is no overlap between the system preferred and |
| * program requested values go with what was requested. |
| */ |
| resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; |
| sctlr &= ~SCTLR_EL1_TCF0_MASK; |
| /* |
| * Pick an actual setting. The order in which we check for |
| * set bits and map into register values determines our |
| * default order. |
| */ |
| if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) |
| sctlr |= SCTLR_EL1_TCF0_ASYMM; |
| else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) |
| sctlr |= SCTLR_EL1_TCF0_ASYNC; |
| else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) |
| sctlr |= SCTLR_EL1_TCF0_SYNC; |
| task->thread.sctlr_user = sctlr; |
| } |
| |
| static void mte_update_gcr_excl(struct task_struct *task) |
| { |
| /* |
| * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by |
| * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. |
| */ |
| if (kasan_hw_tags_enabled()) |
| return; |
| |
| write_sysreg_s( |
| ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & |
| SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, |
| SYS_GCR_EL1); |
| } |
| |
| void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, |
| __le32 *updptr, int nr_inst) |
| { |
| BUG_ON(nr_inst != 1); /* Branch -> NOP */ |
| |
| if (kasan_hw_tags_enabled()) |
| *updptr = cpu_to_le32(aarch64_insn_gen_nop()); |
| } |
| |
| void mte_thread_init_user(void) |
| { |
| if (!system_supports_mte()) |
| return; |
| |
| /* clear any pending asynchronous tag fault */ |
| dsb(ish); |
| write_sysreg_s(0, SYS_TFSRE0_EL1); |
| clear_thread_flag(TIF_MTE_ASYNC_FAULT); |
| /* disable tag checking and reset tag generation mask */ |
| set_mte_ctrl(current, 0); |
| } |
| |
| void mte_thread_switch(struct task_struct *next) |
| { |
| if (!system_supports_mte()) |
| return; |
| |
| mte_update_sctlr_user(next); |
| mte_update_gcr_excl(next); |
| |
| /* TCO may not have been disabled on exception entry for the current task. */ |
| mte_disable_tco_entry(next); |
| |
| /* |
| * Check if an async tag exception occurred at EL1. |
| * |
| * Note: On the context switch path we rely on the dsb() present |
| * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 |
| * are synchronized before this point. |
| */ |
| isb(); |
| mte_check_tfsr_el1(); |
| } |
| |
| void mte_suspend_enter(void) |
| { |
| if (!system_supports_mte()) |
| return; |
| |
| /* |
| * The barriers are required to guarantee that the indirect writes |
| * to TFSR_EL1 are synchronized before we report the state. |
| */ |
| dsb(nsh); |
| isb(); |
| |
| /* Report SYS_TFSR_EL1 before suspend entry */ |
| mte_check_tfsr_el1(); |
| } |
| |
| long set_mte_ctrl(struct task_struct *task, unsigned long arg) |
| { |
| u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & |
| SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; |
| |
| if (!system_supports_mte()) |
| return 0; |
| |
| if (arg & PR_MTE_TCF_ASYNC) |
| mte_ctrl |= MTE_CTRL_TCF_ASYNC; |
| if (arg & PR_MTE_TCF_SYNC) |
| mte_ctrl |= MTE_CTRL_TCF_SYNC; |
| |
| /* |
| * If the system supports it and both sync and async modes are |
| * specified then implicitly enable asymmetric mode. |
| * Userspace could see a mix of both sync and async anyway due |
| * to differing or changing defaults on CPUs. |
| */ |
| if (cpus_have_cap(ARM64_MTE_ASYMM) && |
| (arg & PR_MTE_TCF_ASYNC) && |
| (arg & PR_MTE_TCF_SYNC)) |
| mte_ctrl |= MTE_CTRL_TCF_ASYMM; |
| |
| task->thread.mte_ctrl = mte_ctrl; |
| if (task == current) { |
| preempt_disable(); |
| mte_update_sctlr_user(task); |
| mte_update_gcr_excl(task); |
| update_sctlr_el1(task->thread.sctlr_user); |
| preempt_enable(); |
| } |
| |
| return 0; |
| } |
| |
| long get_mte_ctrl(struct task_struct *task) |
| { |
| unsigned long ret; |
| u64 mte_ctrl = task->thread.mte_ctrl; |
| u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & |
| SYS_GCR_EL1_EXCL_MASK; |
| |
| if (!system_supports_mte()) |
| return 0; |
| |
| ret = incl << PR_MTE_TAG_SHIFT; |
| if (mte_ctrl & MTE_CTRL_TCF_ASYNC) |
| ret |= PR_MTE_TCF_ASYNC; |
| if (mte_ctrl & MTE_CTRL_TCF_SYNC) |
| ret |= PR_MTE_TCF_SYNC; |
| |
| return ret; |
| } |
| |
| /* |
| * Access MTE tags in another process' address space as given in mm. Update |
| * the number of tags copied. Return 0 if any tags copied, error otherwise. |
| * Inspired by __access_remote_vm(). |
| */ |
| static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, |
| struct iovec *kiov, unsigned int gup_flags) |
| { |
| struct vm_area_struct *vma; |
| void __user *buf = kiov->iov_base; |
| size_t len = kiov->iov_len; |
| int ret; |
| int write = gup_flags & FOLL_WRITE; |
| |
| if (!access_ok(buf, len)) |
| return -EFAULT; |
| |
| if (mmap_read_lock_killable(mm)) |
| return -EIO; |
| |
| while (len) { |
| unsigned long tags, offset; |
| void *maddr; |
| struct page *page = NULL; |
| |
| ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, |
| &vma, NULL); |
| if (ret <= 0) |
| break; |
| |
| /* |
| * Only copy tags if the page has been mapped as PROT_MTE |
| * (PG_mte_tagged set). Otherwise the tags are not valid and |
| * not accessible to user. Moreover, an mprotect(PROT_MTE) |
| * would cause the existing tags to be cleared if the page |
| * was never mapped with PROT_MTE. |
| */ |
| if (!(vma->vm_flags & VM_MTE)) { |
| ret = -EOPNOTSUPP; |
| put_page(page); |
| break; |
| } |
| WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); |
| |
| /* limit access to the end of the page */ |
| offset = offset_in_page(addr); |
| tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); |
| |
| maddr = page_address(page); |
| if (write) { |
| tags = mte_copy_tags_from_user(maddr + offset, buf, tags); |
| set_page_dirty_lock(page); |
| } else { |
| tags = mte_copy_tags_to_user(buf, maddr + offset, tags); |
| } |
| put_page(page); |
| |
| /* error accessing the tracer's buffer */ |
| if (!tags) |
| break; |
| |
| len -= tags; |
| buf += tags; |
| addr += tags * MTE_GRANULE_SIZE; |
| } |
| mmap_read_unlock(mm); |
| |
| /* return an error if no tags copied */ |
| kiov->iov_len = buf - kiov->iov_base; |
| if (!kiov->iov_len) { |
| /* check for error accessing the tracee's address space */ |
| if (ret <= 0) |
| return -EIO; |
| else |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Copy MTE tags in another process' address space at 'addr' to/from tracer's |
| * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). |
| */ |
| static int access_remote_tags(struct task_struct *tsk, unsigned long addr, |
| struct iovec *kiov, unsigned int gup_flags) |
| { |
| struct mm_struct *mm; |
| int ret; |
| |
| mm = get_task_mm(tsk); |
| if (!mm) |
| return -EPERM; |
| |
| if (!tsk->ptrace || (current != tsk->parent) || |
| ((get_dumpable(mm) != SUID_DUMP_USER) && |
| !ptracer_capable(tsk, mm->user_ns))) { |
| mmput(mm); |
| return -EPERM; |
| } |
| |
| ret = __access_remote_tags(mm, addr, kiov, gup_flags); |
| mmput(mm); |
| |
| return ret; |
| } |
| |
| int mte_ptrace_copy_tags(struct task_struct *child, long request, |
| unsigned long addr, unsigned long data) |
| { |
| int ret; |
| struct iovec kiov; |
| struct iovec __user *uiov = (void __user *)data; |
| unsigned int gup_flags = FOLL_FORCE; |
| |
| if (!system_supports_mte()) |
| return -EIO; |
| |
| if (get_user(kiov.iov_base, &uiov->iov_base) || |
| get_user(kiov.iov_len, &uiov->iov_len)) |
| return -EFAULT; |
| |
| if (request == PTRACE_POKEMTETAGS) |
| gup_flags |= FOLL_WRITE; |
| |
| /* align addr to the MTE tag granule */ |
| addr &= MTE_GRANULE_MASK; |
| |
| ret = access_remote_tags(child, addr, &kiov, gup_flags); |
| if (!ret) |
| ret = put_user(kiov.iov_len, &uiov->iov_len); |
| |
| return ret; |
| } |
| |
| static ssize_t mte_tcf_preferred_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| switch (per_cpu(mte_tcf_preferred, dev->id)) { |
| case MTE_CTRL_TCF_ASYNC: |
| return sysfs_emit(buf, "async\n"); |
| case MTE_CTRL_TCF_SYNC: |
| return sysfs_emit(buf, "sync\n"); |
| case MTE_CTRL_TCF_ASYMM: |
| return sysfs_emit(buf, "asymm\n"); |
| default: |
| return sysfs_emit(buf, "???\n"); |
| } |
| } |
| |
| static ssize_t mte_tcf_preferred_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| u64 tcf; |
| |
| if (sysfs_streq(buf, "async")) |
| tcf = MTE_CTRL_TCF_ASYNC; |
| else if (sysfs_streq(buf, "sync")) |
| tcf = MTE_CTRL_TCF_SYNC; |
| else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) |
| tcf = MTE_CTRL_TCF_ASYMM; |
| else |
| return -EINVAL; |
| |
| device_lock(dev); |
| per_cpu(mte_tcf_preferred, dev->id) = tcf; |
| device_unlock(dev); |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(mte_tcf_preferred); |
| |
| static int register_mte_tcf_preferred_sysctl(void) |
| { |
| unsigned int cpu; |
| |
| if (!system_supports_mte()) |
| return 0; |
| |
| for_each_possible_cpu(cpu) { |
| per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; |
| device_create_file(get_cpu_device(cpu), |
| &dev_attr_mte_tcf_preferred); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(register_mte_tcf_preferred_sysctl); |