| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2015 - 2017 Intel Deutschland GmbH |
| * Copyright(c) 2018 - 2019 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2015 - 2017 Intel Deutschland GmbH |
| * Copyright(c) 2018 - 2019 Intel Corporation |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| *****************************************************************************/ |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include "iwl-trans.h" |
| #include "mvm.h" |
| #include "fw-api.h" |
| |
| static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| u8 *data = skb->data; |
| |
| /* Alignment concerns */ |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); |
| BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); |
| |
| if (rx_status->flag & RX_FLAG_RADIOTAP_HE) |
| data += sizeof(struct ieee80211_radiotap_he); |
| if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) |
| data += sizeof(struct ieee80211_radiotap_he_mu); |
| if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) |
| data += sizeof(struct ieee80211_radiotap_lsig); |
| if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| struct ieee80211_vendor_radiotap *radiotap = (void *)data; |
| |
| data += sizeof(*radiotap) + radiotap->len + radiotap->pad; |
| } |
| |
| return data; |
| } |
| |
| static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, |
| int queue, struct ieee80211_sta *sta) |
| { |
| struct iwl_mvm_sta *mvmsta; |
| struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); |
| struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); |
| struct iwl_mvm_key_pn *ptk_pn; |
| int res; |
| u8 tid, keyidx; |
| u8 pn[IEEE80211_CCMP_PN_LEN]; |
| u8 *extiv; |
| |
| /* do PN checking */ |
| |
| /* multicast and non-data only arrives on default queue */ |
| if (!ieee80211_is_data(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return 0; |
| |
| /* do not check PN for open AP */ |
| if (!(stats->flag & RX_FLAG_DECRYPTED)) |
| return 0; |
| |
| /* |
| * avoid checking for default queue - we don't want to replicate |
| * all the logic that's necessary for checking the PN on fragmented |
| * frames, leave that to mac80211 |
| */ |
| if (queue == 0) |
| return 0; |
| |
| /* if we are here - this for sure is either CCMP or GCMP */ |
| if (IS_ERR_OR_NULL(sta)) { |
| IWL_ERR(mvm, |
| "expected hw-decrypted unicast frame for station\n"); |
| return -1; |
| } |
| |
| mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| |
| extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); |
| keyidx = extiv[3] >> 6; |
| |
| ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); |
| if (!ptk_pn) |
| return -1; |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) |
| tid = ieee80211_get_tid(hdr); |
| else |
| tid = 0; |
| |
| /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ |
| if (tid >= IWL_MAX_TID_COUNT) |
| return -1; |
| |
| /* load pn */ |
| pn[0] = extiv[7]; |
| pn[1] = extiv[6]; |
| pn[2] = extiv[5]; |
| pn[3] = extiv[4]; |
| pn[4] = extiv[1]; |
| pn[5] = extiv[0]; |
| |
| res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); |
| if (res < 0) |
| return -1; |
| if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) |
| return -1; |
| |
| memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); |
| stats->flag |= RX_FLAG_PN_VALIDATED; |
| |
| return 0; |
| } |
| |
| /* iwl_mvm_create_skb Adds the rxb to a new skb */ |
| static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, |
| struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, |
| struct iwl_rx_cmd_buffer *rxb) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| unsigned int headlen, fraglen, pad_len = 0; |
| unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| len -= 2; |
| pad_len = 2; |
| } |
| |
| /* If frame is small enough to fit in skb->head, pull it completely. |
| * If not, only pull ieee80211_hdr (including crypto if present, and |
| * an additional 8 bytes for SNAP/ethertype, see below) so that |
| * splice() or TCP coalesce are more efficient. |
| * |
| * Since, in addition, ieee80211_data_to_8023() always pull in at |
| * least 8 bytes (possibly more for mesh) we can do the same here |
| * to save the cost of doing it later. That still doesn't pull in |
| * the actual IP header since the typical case has a SNAP header. |
| * If the latter changes (there are efforts in the standards group |
| * to do so) we should revisit this and ieee80211_data_to_8023(). |
| */ |
| headlen = (len <= skb_tailroom(skb)) ? len : |
| hdrlen + crypt_len + 8; |
| |
| /* The firmware may align the packet to DWORD. |
| * The padding is inserted after the IV. |
| * After copying the header + IV skip the padding if |
| * present before copying packet data. |
| */ |
| hdrlen += crypt_len; |
| |
| if (WARN_ONCE(headlen < hdrlen, |
| "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", |
| hdrlen, len, crypt_len)) { |
| /* |
| * We warn and trace because we want to be able to see |
| * it in trace-cmd as well. |
| */ |
| IWL_DEBUG_RX(mvm, |
| "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", |
| hdrlen, len, crypt_len); |
| return -EINVAL; |
| } |
| |
| skb_put_data(skb, hdr, hdrlen); |
| skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); |
| |
| fraglen = len - headlen; |
| |
| if (fraglen) { |
| int offset = (void *)hdr + headlen + pad_len - |
| rxb_addr(rxb) + rxb_offset(rxb); |
| |
| skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, |
| fraglen, rxb->truesize); |
| } |
| |
| return 0; |
| } |
| |
| static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_vendor_radiotap *radiotap; |
| const int size = sizeof(*radiotap) + sizeof(__le16); |
| |
| if (!mvm->cur_aid) |
| return; |
| |
| /* ensure alignment */ |
| BUILD_BUG_ON((size + 2) % 4); |
| |
| radiotap = skb_put(skb, size + 2); |
| radiotap->align = 1; |
| /* Intel OUI */ |
| radiotap->oui[0] = 0xf6; |
| radiotap->oui[1] = 0x54; |
| radiotap->oui[2] = 0x25; |
| /* radiotap sniffer config sub-namespace */ |
| radiotap->subns = 1; |
| radiotap->present = 0x1; |
| radiotap->len = size - sizeof(*radiotap); |
| radiotap->pad = 2; |
| |
| /* fill the data now */ |
| memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); |
| /* and clear the padding */ |
| memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); |
| |
| rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; |
| } |
| |
| /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ |
| static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| struct sk_buff *skb, int queue, |
| struct ieee80211_sta *sta, |
| bool csi) |
| { |
| if (iwl_mvm_check_pn(mvm, skb, queue, sta)) |
| kfree_skb(skb); |
| else |
| ieee80211_rx_napi(mvm->hw, sta, skb, napi); |
| } |
| |
| static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, |
| struct ieee80211_rx_status *rx_status, |
| u32 rate_n_flags, int energy_a, |
| int energy_b) |
| { |
| int max_energy; |
| u32 rate_flags = rate_n_flags; |
| |
| energy_a = energy_a ? -energy_a : S8_MIN; |
| energy_b = energy_b ? -energy_b : S8_MIN; |
| max_energy = max(energy_a, energy_b); |
| |
| IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", |
| energy_a, energy_b, max_energy); |
| |
| rx_status->signal = max_energy; |
| rx_status->chains = |
| (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; |
| rx_status->chain_signal[0] = energy_a; |
| rx_status->chain_signal[1] = energy_b; |
| rx_status->chain_signal[2] = S8_MIN; |
| } |
| |
| static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *stats, u16 phy_info, |
| struct iwl_rx_mpdu_desc *desc, |
| u32 pkt_flags, int queue, u8 *crypt_len) |
| { |
| u16 status = le16_to_cpu(desc->status); |
| |
| /* |
| * Drop UNKNOWN frames in aggregation, unless in monitor mode |
| * (where we don't have the keys). |
| * We limit this to aggregation because in TKIP this is a valid |
| * scenario, since we may not have the (correct) TTAK (phase 1 |
| * key) in the firmware. |
| */ |
| if (phy_info & IWL_RX_MPDU_PHY_AMPDU && |
| (status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) |
| return -1; |
| |
| if (!ieee80211_has_protected(hdr->frame_control) || |
| (status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_NONE) |
| return 0; |
| |
| /* TODO: handle packets encrypted with unknown alg */ |
| |
| switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { |
| case IWL_RX_MPDU_STATUS_SEC_CCM: |
| case IWL_RX_MPDU_STATUS_SEC_GCM: |
| BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); |
| /* alg is CCM: check MIC only */ |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) |
| return -1; |
| |
| stats->flag |= RX_FLAG_DECRYPTED; |
| if (pkt_flags & FH_RSCSR_RADA_EN) |
| stats->flag |= RX_FLAG_MIC_STRIPPED; |
| *crypt_len = IEEE80211_CCMP_HDR_LEN; |
| return 0; |
| case IWL_RX_MPDU_STATUS_SEC_TKIP: |
| /* Don't drop the frame and decrypt it in SW */ |
| if (!fw_has_api(&mvm->fw->ucode_capa, |
| IWL_UCODE_TLV_API_DEPRECATE_TTAK) && |
| !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) |
| return 0; |
| |
| if (mvm->trans->trans_cfg->gen2 && |
| !(status & RX_MPDU_RES_STATUS_MIC_OK)) |
| stats->flag |= RX_FLAG_MMIC_ERROR; |
| |
| *crypt_len = IEEE80211_TKIP_IV_LEN; |
| /* fall through */ |
| case IWL_RX_MPDU_STATUS_SEC_WEP: |
| if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) |
| return -1; |
| |
| stats->flag |= RX_FLAG_DECRYPTED; |
| if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_WEP) |
| *crypt_len = IEEE80211_WEP_IV_LEN; |
| |
| if (pkt_flags & FH_RSCSR_RADA_EN) { |
| stats->flag |= RX_FLAG_ICV_STRIPPED; |
| if (mvm->trans->trans_cfg->gen2) |
| stats->flag |= RX_FLAG_MMIC_STRIPPED; |
| } |
| |
| return 0; |
| case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) |
| return -1; |
| stats->flag |= RX_FLAG_DECRYPTED; |
| return 0; |
| default: |
| /* |
| * Sometimes we can get frames that were not decrypted |
| * because the firmware didn't have the keys yet. This can |
| * happen after connection where we can get multicast frames |
| * before the GTK is installed. |
| * Silently drop those frames. |
| * Also drop un-decrypted frames in monitor mode. |
| */ |
| if (!is_multicast_ether_addr(hdr->addr1) && |
| !mvm->monitor_on && net_ratelimit()) |
| IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); |
| } |
| |
| return 0; |
| } |
| |
| static void iwl_mvm_rx_csum(struct ieee80211_sta *sta, |
| struct sk_buff *skb, |
| struct iwl_rx_mpdu_desc *desc) |
| { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); |
| u16 flags = le16_to_cpu(desc->l3l4_flags); |
| u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> |
| IWL_RX_L3_PROTO_POS); |
| |
| if (mvmvif->features & NETIF_F_RXCSUM && |
| flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && |
| (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || |
| l3_prot == IWL_RX_L3_TYPE_IPV6 || |
| l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| |
| /* |
| * returns true if a packet is a duplicate and should be dropped. |
| * Updates AMSDU PN tracking info |
| */ |
| static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_hdr *hdr, |
| struct iwl_rx_mpdu_desc *desc) |
| { |
| struct iwl_mvm_sta *mvm_sta; |
| struct iwl_mvm_rxq_dup_data *dup_data; |
| u8 tid, sub_frame_idx; |
| |
| if (WARN_ON(IS_ERR_OR_NULL(sta))) |
| return false; |
| |
| mvm_sta = iwl_mvm_sta_from_mac80211(sta); |
| dup_data = &mvm_sta->dup_data[queue]; |
| |
| /* |
| * Drop duplicate 802.11 retransmissions |
| * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") |
| */ |
| if (ieee80211_is_ctl(hdr->frame_control) || |
| ieee80211_is_qos_nullfunc(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) { |
| rx_status->flag |= RX_FLAG_DUP_VALIDATED; |
| return false; |
| } |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) |
| /* frame has qos control */ |
| tid = ieee80211_get_tid(hdr); |
| else |
| tid = IWL_MAX_TID_COUNT; |
| |
| /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ |
| sub_frame_idx = desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| |
| if (unlikely(ieee80211_has_retry(hdr->frame_control) && |
| dup_data->last_seq[tid] == hdr->seq_ctrl && |
| dup_data->last_sub_frame[tid] >= sub_frame_idx)) |
| return true; |
| |
| /* Allow same PN as the first subframe for following sub frames */ |
| if (dup_data->last_seq[tid] == hdr->seq_ctrl && |
| sub_frame_idx > dup_data->last_sub_frame[tid] && |
| desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) |
| rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; |
| |
| dup_data->last_seq[tid] = hdr->seq_ctrl; |
| dup_data->last_sub_frame[tid] = sub_frame_idx; |
| |
| rx_status->flag |= RX_FLAG_DUP_VALIDATED; |
| |
| return false; |
| } |
| |
| int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, |
| const u8 *data, u32 count, bool async) |
| { |
| u8 buf[sizeof(struct iwl_rxq_sync_cmd) + |
| sizeof(struct iwl_mvm_rss_sync_notif)]; |
| struct iwl_rxq_sync_cmd *cmd = (void *)buf; |
| u32 data_size = sizeof(*cmd) + count; |
| int ret; |
| |
| /* |
| * size must be a multiple of DWORD |
| * Ensure we don't overflow buf |
| */ |
| if (WARN_ON(count & 3 || |
| count > sizeof(struct iwl_mvm_rss_sync_notif))) |
| return -EINVAL; |
| |
| cmd->rxq_mask = cpu_to_le32(rxq_mask); |
| cmd->count = cpu_to_le32(count); |
| cmd->flags = 0; |
| memcpy(cmd->payload, data, count); |
| |
| ret = iwl_mvm_send_cmd_pdu(mvm, |
| WIDE_ID(DATA_PATH_GROUP, |
| TRIGGER_RX_QUEUES_NOTIF_CMD), |
| async ? CMD_ASYNC : 0, data_size, cmd); |
| |
| return ret; |
| } |
| |
| /* |
| * Returns true if sn2 - buffer_size < sn1 < sn2. |
| * To be used only in order to compare reorder buffer head with NSSN. |
| * We fully trust NSSN unless it is behind us due to reorder timeout. |
| * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. |
| */ |
| static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) |
| { |
| return ieee80211_sn_less(sn1, sn2) && |
| !ieee80211_sn_less(sn1, sn2 - buffer_size); |
| } |
| |
| static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) |
| { |
| struct iwl_mvm_rss_sync_notif notif = { |
| .metadata.type = IWL_MVM_RXQ_NSSN_SYNC, |
| .metadata.sync = 0, |
| .nssn_sync.baid = baid, |
| .nssn_sync.nssn = nssn, |
| }; |
| |
| iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if, sizeof(notif)); |
| } |
| |
| #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) |
| |
| enum iwl_mvm_release_flags { |
| IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), |
| IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), |
| }; |
| |
| static void iwl_mvm_release_frames(struct iwl_mvm *mvm, |
| struct ieee80211_sta *sta, |
| struct napi_struct *napi, |
| struct iwl_mvm_baid_data *baid_data, |
| struct iwl_mvm_reorder_buffer *reorder_buf, |
| u16 nssn, u32 flags) |
| { |
| struct iwl_mvm_reorder_buf_entry *entries = |
| &baid_data->entries[reorder_buf->queue * |
| baid_data->entries_per_queue]; |
| u16 ssn = reorder_buf->head_sn; |
| |
| lockdep_assert_held(&reorder_buf->lock); |
| |
| /* |
| * We keep the NSSN not too far behind, if we are sync'ing it and it |
| * is more than 2048 ahead of us, it must be behind us. Discard it. |
| * This can happen if the queue that hit the 0 / 2048 seqno was lagging |
| * behind and this queue already processed packets. The next if |
| * would have caught cases where this queue would have processed less |
| * than 64 packets, but it may have processed more than 64 packets. |
| */ |
| if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && |
| ieee80211_sn_less(nssn, ssn)) |
| goto set_timer; |
| |
| /* ignore nssn smaller than head sn - this can happen due to timeout */ |
| if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) |
| goto set_timer; |
| |
| while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { |
| int index = ssn % reorder_buf->buf_size; |
| struct sk_buff_head *skb_list = &entries[index].e.frames; |
| struct sk_buff *skb; |
| |
| ssn = ieee80211_sn_inc(ssn); |
| if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && |
| (ssn == 2048 || ssn == 0)) |
| iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); |
| |
| /* |
| * Empty the list. Will have more than one frame for A-MSDU. |
| * Empty list is valid as well since nssn indicates frames were |
| * received. |
| */ |
| while ((skb = __skb_dequeue(skb_list))) { |
| iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, |
| reorder_buf->queue, |
| sta, false); |
| reorder_buf->num_stored--; |
| } |
| } |
| reorder_buf->head_sn = nssn; |
| |
| set_timer: |
| if (reorder_buf->num_stored && !reorder_buf->removed) { |
| u16 index = reorder_buf->head_sn % reorder_buf->buf_size; |
| |
| while (skb_queue_empty(&entries[index].e.frames)) |
| index = (index + 1) % reorder_buf->buf_size; |
| /* modify timer to match next frame's expiration time */ |
| mod_timer(&reorder_buf->reorder_timer, |
| entries[index].e.reorder_time + 1 + |
| RX_REORDER_BUF_TIMEOUT_MQ); |
| } else { |
| del_timer(&reorder_buf->reorder_timer); |
| } |
| } |
| |
| void iwl_mvm_reorder_timer_expired(struct timer_list *t) |
| { |
| struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); |
| struct iwl_mvm_baid_data *baid_data = |
| iwl_mvm_baid_data_from_reorder_buf(buf); |
| struct iwl_mvm_reorder_buf_entry *entries = |
| &baid_data->entries[buf->queue * baid_data->entries_per_queue]; |
| int i; |
| u16 sn = 0, index = 0; |
| bool expired = false; |
| bool cont = false; |
| |
| spin_lock(&buf->lock); |
| |
| if (!buf->num_stored || buf->removed) { |
| spin_unlock(&buf->lock); |
| return; |
| } |
| |
| for (i = 0; i < buf->buf_size ; i++) { |
| index = (buf->head_sn + i) % buf->buf_size; |
| |
| if (skb_queue_empty(&entries[index].e.frames)) { |
| /* |
| * If there is a hole and the next frame didn't expire |
| * we want to break and not advance SN |
| */ |
| cont = false; |
| continue; |
| } |
| if (!cont && |
| !time_after(jiffies, entries[index].e.reorder_time + |
| RX_REORDER_BUF_TIMEOUT_MQ)) |
| break; |
| |
| expired = true; |
| /* continue until next hole after this expired frames */ |
| cont = true; |
| sn = ieee80211_sn_add(buf->head_sn, i + 1); |
| } |
| |
| if (expired) { |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_sta *mvmsta; |
| u8 sta_id = baid_data->sta_id; |
| |
| rcu_read_lock(); |
| sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); |
| mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| |
| /* SN is set to the last expired frame + 1 */ |
| IWL_DEBUG_HT(buf->mvm, |
| "Releasing expired frames for sta %u, sn %d\n", |
| sta_id, sn); |
| iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, |
| sta, baid_data->tid); |
| iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, |
| buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); |
| rcu_read_unlock(); |
| } else { |
| /* |
| * If no frame expired and there are stored frames, index is now |
| * pointing to the first unexpired frame - modify timer |
| * accordingly to this frame. |
| */ |
| mod_timer(&buf->reorder_timer, |
| entries[index].e.reorder_time + |
| 1 + RX_REORDER_BUF_TIMEOUT_MQ); |
| } |
| spin_unlock(&buf->lock); |
| } |
| |
| static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, |
| struct iwl_mvm_delba_data *data) |
| { |
| struct iwl_mvm_baid_data *ba_data; |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_reorder_buffer *reorder_buf; |
| u8 baid = data->baid; |
| |
| if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) |
| return; |
| |
| rcu_read_lock(); |
| |
| ba_data = rcu_dereference(mvm->baid_map[baid]); |
| if (WARN_ON_ONCE(!ba_data)) |
| goto out; |
| |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); |
| if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) |
| goto out; |
| |
| reorder_buf = &ba_data->reorder_buf[queue]; |
| |
| /* release all frames that are in the reorder buffer to the stack */ |
| spin_lock_bh(&reorder_buf->lock); |
| iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, |
| ieee80211_sn_add(reorder_buf->head_sn, |
| reorder_buf->buf_size), |
| 0); |
| spin_unlock_bh(&reorder_buf->lock); |
| del_timer_sync(&reorder_buf->reorder_timer); |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| u8 baid, u16 nssn, int queue, |
| u32 flags) |
| { |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_reorder_buffer *reorder_buf; |
| struct iwl_mvm_baid_data *ba_data; |
| |
| IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", |
| baid, nssn); |
| |
| if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || |
| baid >= ARRAY_SIZE(mvm->baid_map))) |
| return; |
| |
| rcu_read_lock(); |
| |
| ba_data = rcu_dereference(mvm->baid_map[baid]); |
| if (WARN_ON_ONCE(!ba_data)) |
| goto out; |
| |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); |
| if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) |
| goto out; |
| |
| reorder_buf = &ba_data->reorder_buf[queue]; |
| |
| spin_lock_bh(&reorder_buf->lock); |
| iwl_mvm_release_frames(mvm, sta, napi, ba_data, |
| reorder_buf, nssn, flags); |
| spin_unlock_bh(&reorder_buf->lock); |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, |
| struct napi_struct *napi, int queue, |
| const struct iwl_mvm_nssn_sync_data *data) |
| { |
| iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, |
| data->nssn, queue, |
| IWL_MVM_RELEASE_FROM_RSS_SYNC); |
| } |
| |
| void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rxq_sync_notification *notif; |
| struct iwl_mvm_internal_rxq_notif *internal_notif; |
| |
| notif = (void *)pkt->data; |
| internal_notif = (void *)notif->payload; |
| |
| if (internal_notif->sync && |
| mvm->queue_sync_cookie != internal_notif->cookie) { |
| WARN_ONCE(1, "Received expired RX queue sync message\n"); |
| return; |
| } |
| |
| switch (internal_notif->type) { |
| case IWL_MVM_RXQ_EMPTY: |
| break; |
| case IWL_MVM_RXQ_NOTIF_DEL_BA: |
| iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); |
| break; |
| case IWL_MVM_RXQ_NSSN_SYNC: |
| iwl_mvm_nssn_sync(mvm, napi, queue, |
| (void *)internal_notif->data); |
| break; |
| default: |
| WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); |
| } |
| |
| if (internal_notif->sync && |
| !atomic_dec_return(&mvm->queue_sync_counter)) |
| wake_up(&mvm->rx_sync_waitq); |
| } |
| |
| static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, |
| struct ieee80211_sta *sta, int tid, |
| struct iwl_mvm_reorder_buffer *buffer, |
| u32 reorder, u32 gp2, int queue) |
| { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| |
| if (gp2 != buffer->consec_oldsn_ampdu_gp2) { |
| /* we have a new (A-)MPDU ... */ |
| |
| /* |
| * reset counter to 0 if we didn't have any oldsn in |
| * the last A-MPDU (as detected by GP2 being identical) |
| */ |
| if (!buffer->consec_oldsn_prev_drop) |
| buffer->consec_oldsn_drops = 0; |
| |
| /* either way, update our tracking state */ |
| buffer->consec_oldsn_ampdu_gp2 = gp2; |
| } else if (buffer->consec_oldsn_prev_drop) { |
| /* |
| * tracking state didn't change, and we had an old SN |
| * indication before - do nothing in this case, we |
| * already noted this one down and are waiting for the |
| * next A-MPDU (by GP2) |
| */ |
| return; |
| } |
| |
| /* return unless this MPDU has old SN */ |
| if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) |
| return; |
| |
| /* update state */ |
| buffer->consec_oldsn_prev_drop = 1; |
| buffer->consec_oldsn_drops++; |
| |
| /* if limit is reached, send del BA and reset state */ |
| if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { |
| IWL_WARN(mvm, |
| "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", |
| IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, |
| sta->addr, queue, tid); |
| ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); |
| buffer->consec_oldsn_prev_drop = 0; |
| buffer->consec_oldsn_drops = 0; |
| } |
| } |
| |
| /* |
| * Returns true if the MPDU was buffered\dropped, false if it should be passed |
| * to upper layer. |
| */ |
| static bool iwl_mvm_reorder(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| int queue, |
| struct ieee80211_sta *sta, |
| struct sk_buff *skb, |
| struct iwl_rx_mpdu_desc *desc) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); |
| struct iwl_mvm_sta *mvm_sta; |
| struct iwl_mvm_baid_data *baid_data; |
| struct iwl_mvm_reorder_buffer *buffer; |
| struct sk_buff *tail; |
| u32 reorder = le32_to_cpu(desc->reorder_data); |
| bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; |
| bool last_subframe = |
| desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; |
| u8 tid = ieee80211_get_tid(hdr); |
| u8 sub_frame_idx = desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| struct iwl_mvm_reorder_buf_entry *entries; |
| int index; |
| u16 nssn, sn; |
| u8 baid; |
| |
| baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> |
| IWL_RX_MPDU_REORDER_BAID_SHIFT; |
| |
| /* |
| * This also covers the case of receiving a Block Ack Request |
| * outside a BA session; we'll pass it to mac80211 and that |
| * then sends a delBA action frame. |
| * This also covers pure monitor mode, in which case we won't |
| * have any BA sessions. |
| */ |
| if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) |
| return false; |
| |
| /* no sta yet */ |
| if (WARN_ONCE(IS_ERR_OR_NULL(sta), |
| "Got valid BAID without a valid station assigned\n")) |
| return false; |
| |
| mvm_sta = iwl_mvm_sta_from_mac80211(sta); |
| |
| /* not a data packet or a bar */ |
| if (!ieee80211_is_back_req(hdr->frame_control) && |
| (!ieee80211_is_data_qos(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1))) |
| return false; |
| |
| if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) |
| return false; |
| |
| baid_data = rcu_dereference(mvm->baid_map[baid]); |
| if (!baid_data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", |
| baid, reorder); |
| return false; |
| } |
| |
| if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, |
| "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", |
| baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, |
| tid)) |
| return false; |
| |
| nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; |
| sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> |
| IWL_RX_MPDU_REORDER_SN_SHIFT; |
| |
| buffer = &baid_data->reorder_buf[queue]; |
| entries = &baid_data->entries[queue * baid_data->entries_per_queue]; |
| |
| spin_lock_bh(&buffer->lock); |
| |
| if (!buffer->valid) { |
| if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| buffer->valid = true; |
| } |
| |
| if (ieee80211_is_back_req(hdr->frame_control)) { |
| iwl_mvm_release_frames(mvm, sta, napi, baid_data, |
| buffer, nssn, 0); |
| goto drop; |
| } |
| |
| /* |
| * If there was a significant jump in the nssn - adjust. |
| * If the SN is smaller than the NSSN it might need to first go into |
| * the reorder buffer, in which case we just release up to it and the |
| * rest of the function will take care of storing it and releasing up to |
| * the nssn. |
| * This should not happen. This queue has been lagging and it should |
| * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice |
| * and update the other queues. |
| */ |
| if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, |
| buffer->buf_size) || |
| !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { |
| u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; |
| |
| iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, |
| min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); |
| } |
| |
| iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, |
| rx_status->device_timestamp, queue); |
| |
| /* drop any oudated packets */ |
| if (ieee80211_sn_less(sn, buffer->head_sn)) |
| goto drop; |
| |
| /* release immediately if allowed by nssn and no stored frames */ |
| if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { |
| if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, |
| buffer->buf_size) && |
| (!amsdu || last_subframe)) { |
| /* |
| * If we crossed the 2048 or 0 SN, notify all the |
| * queues. This is done in order to avoid having a |
| * head_sn that lags behind for too long. When that |
| * happens, we can get to a situation where the head_sn |
| * is within the interval [nssn - buf_size : nssn] |
| * which will make us think that the nssn is a packet |
| * that we already freed because of the reordering |
| * buffer and we will ignore it. So maintain the |
| * head_sn somewhat updated across all the queues: |
| * when it crosses 0 and 2048. |
| */ |
| if (sn == 2048 || sn == 0) |
| iwl_mvm_sync_nssn(mvm, baid, sn); |
| buffer->head_sn = nssn; |
| } |
| /* No need to update AMSDU last SN - we are moving the head */ |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| |
| /* |
| * release immediately if there are no stored frames, and the sn is |
| * equal to the head. |
| * This can happen due to reorder timer, where NSSN is behind head_sn. |
| * When we released everything, and we got the next frame in the |
| * sequence, according to the NSSN we can't release immediately, |
| * while technically there is no hole and we can move forward. |
| */ |
| if (!buffer->num_stored && sn == buffer->head_sn) { |
| if (!amsdu || last_subframe) { |
| if (sn == 2048 || sn == 0) |
| iwl_mvm_sync_nssn(mvm, baid, sn); |
| buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); |
| } |
| /* No need to update AMSDU last SN - we are moving the head */ |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| |
| index = sn % buffer->buf_size; |
| |
| /* |
| * Check if we already stored this frame |
| * As AMSDU is either received or not as whole, logic is simple: |
| * If we have frames in that position in the buffer and the last frame |
| * originated from AMSDU had a different SN then it is a retransmission. |
| * If it is the same SN then if the subframe index is incrementing it |
| * is the same AMSDU - otherwise it is a retransmission. |
| */ |
| tail = skb_peek_tail(&entries[index].e.frames); |
| if (tail && !amsdu) |
| goto drop; |
| else if (tail && (sn != buffer->last_amsdu || |
| buffer->last_sub_index >= sub_frame_idx)) |
| goto drop; |
| |
| /* put in reorder buffer */ |
| __skb_queue_tail(&entries[index].e.frames, skb); |
| buffer->num_stored++; |
| entries[index].e.reorder_time = jiffies; |
| |
| if (amsdu) { |
| buffer->last_amsdu = sn; |
| buffer->last_sub_index = sub_frame_idx; |
| } |
| |
| /* |
| * We cannot trust NSSN for AMSDU sub-frames that are not the last. |
| * The reason is that NSSN advances on the first sub-frame, and may |
| * cause the reorder buffer to advance before all the sub-frames arrive. |
| * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with |
| * SN 1. NSSN for first sub frame will be 3 with the result of driver |
| * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is |
| * already ahead and it will be dropped. |
| * If the last sub-frame is not on this queue - we will get frame |
| * release notification with up to date NSSN. |
| */ |
| if (!amsdu || last_subframe) |
| iwl_mvm_release_frames(mvm, sta, napi, baid_data, |
| buffer, nssn, |
| IWL_MVM_RELEASE_SEND_RSS_SYNC); |
| |
| spin_unlock_bh(&buffer->lock); |
| return true; |
| |
| drop: |
| kfree_skb(skb); |
| spin_unlock_bh(&buffer->lock); |
| return true; |
| } |
| |
| static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, |
| u32 reorder_data, u8 baid) |
| { |
| unsigned long now = jiffies; |
| unsigned long timeout; |
| struct iwl_mvm_baid_data *data; |
| |
| rcu_read_lock(); |
| |
| data = rcu_dereference(mvm->baid_map[baid]); |
| if (!data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", |
| baid, reorder_data); |
| goto out; |
| } |
| |
| if (!data->timeout) |
| goto out; |
| |
| timeout = data->timeout; |
| /* |
| * Do not update last rx all the time to avoid cache bouncing |
| * between the rx queues. |
| * Update it every timeout. Worst case is the session will |
| * expire after ~ 2 * timeout, which doesn't matter that much. |
| */ |
| if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) |
| /* Update is atomic */ |
| data->last_rx = now; |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void iwl_mvm_flip_address(u8 *addr) |
| { |
| int i; |
| u8 mac_addr[ETH_ALEN]; |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| mac_addr[i] = addr[ETH_ALEN - i - 1]; |
| ether_addr_copy(addr, mac_addr); |
| } |
| |
| struct iwl_mvm_rx_phy_data { |
| enum iwl_rx_phy_info_type info_type; |
| __le32 d0, d1, d2, d3; |
| __le16 d4; |
| }; |
| |
| static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| u32 rate_n_flags, |
| struct ieee80211_radiotap_he_mu *he_mu) |
| { |
| u32 phy_data2 = le32_to_cpu(phy_data->d2); |
| u32 phy_data3 = le32_to_cpu(phy_data->d3); |
| u16 phy_data4 = le16_to_cpu(phy_data->d4); |
| |
| if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags1 |= |
| le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, |
| phy_data4), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); |
| |
| he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, |
| phy_data2); |
| he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, |
| phy_data3); |
| he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, |
| phy_data2); |
| he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, |
| phy_data3); |
| } |
| |
| if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && |
| (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags2 |= |
| le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, |
| phy_data4), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); |
| |
| he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, |
| phy_data2); |
| he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, |
| phy_data3); |
| he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, |
| phy_data2); |
| he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, |
| phy_data3); |
| } |
| } |
| |
| static void |
| iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, |
| u32 rate_n_flags, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status) |
| { |
| /* |
| * Unfortunately, we have to leave the mac80211 data |
| * incorrect for the case that we receive an HE-MU |
| * transmission and *don't* have the HE phy data (due |
| * to the bits being used for TSF). This shouldn't |
| * happen though as management frames where we need |
| * the TSF/timers are not be transmitted in HE-MU. |
| */ |
| u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| u8 offs = 0; |
| |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| switch (ru) { |
| case 0 ... 36: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; |
| offs = ru; |
| break; |
| case 37 ... 52: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; |
| offs = ru - 37; |
| break; |
| case 53 ... 60: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| offs = ru - 53; |
| break; |
| case 61 ... 64: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; |
| offs = ru - 61; |
| break; |
| case 65 ... 66: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; |
| offs = ru - 65; |
| break; |
| case 67: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; |
| break; |
| case 68: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; |
| break; |
| } |
| he->data2 |= le16_encode_bits(offs, |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); |
| if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) |
| he->data2 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); |
| |
| #define CHECK_BW(bw) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) |
| CHECK_BW(20); |
| CHECK_BW(40); |
| CHECK_BW(80); |
| CHECK_BW(160); |
| |
| if (he_mu) |
| he_mu->flags2 |= |
| le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, |
| rate_n_flags), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); |
| else if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| he->data6 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | |
| le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, |
| rate_n_flags), |
| IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); |
| } |
| |
| static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status, |
| u32 rate_n_flags, int queue) |
| { |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_NONE: |
| case IWL_RX_PHY_INFO_TYPE_CCK: |
| case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| return; |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); |
| /* fall through */ |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| /* HE common */ |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); |
| if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && |
| phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_UPLINK), |
| IEEE80211_RADIOTAP_HE_DATA3_UL_DL); |
| } |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), |
| IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), |
| IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA6_TXOP); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_DOPPLER), |
| IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), |
| IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); |
| break; |
| default: |
| /* nothing here */ |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); |
| he_mu->flags2 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); |
| iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); |
| /* fall through */ |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); |
| /* fall through */ |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, |
| he, he_mu, rx_status); |
| break; |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_BEAM_CHNG), |
| IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); |
| break; |
| default: |
| /* nothing */ |
| break; |
| } |
| } |
| |
| static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| u32 rate_n_flags, u16 phy_info, int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_he *he = NULL; |
| struct ieee80211_radiotap_he_mu *he_mu = NULL; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| u8 stbc, ltf; |
| static const struct ieee80211_radiotap_he known = { |
| .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), |
| .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), |
| }; |
| static const struct ieee80211_radiotap_he_mu mu_known = { |
| .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), |
| .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), |
| }; |
| |
| he = skb_put_data(skb, &known, sizeof(known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE; |
| |
| if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || |
| phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { |
| he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; |
| } |
| |
| /* report the AMPDU-EOF bit on single frames */ |
| if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, |
| rate_n_flags, queue); |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && |
| (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; |
| |
| /* toggle is switched whenever new aggregation starts */ |
| if (toggle_bit != mvm->ampdu_toggle) { |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| } |
| |
| if (he_type == RATE_MCS_HE_TYPE_EXT_SU && |
| rate_n_flags & RATE_MCS_HE_106T_MSK) { |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| } |
| |
| /* actually data is filled in mac80211 */ |
| if (he_type == RATE_MCS_HE_TYPE_SU || |
| he_type == RATE_MCS_HE_TYPE_EXT_SU) |
| he->data1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; |
| rx_status->nss = |
| ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> |
| RATE_VHT_MCS_NSS_POS) + 1; |
| rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; |
| rx_status->encoding = RX_ENC_HE; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_BF; |
| |
| rx_status->he_dcm = |
| !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); |
| |
| #define CHECK_TYPE(F) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ |
| (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) |
| |
| CHECK_TYPE(SU); |
| CHECK_TYPE(EXT_SU); |
| CHECK_TYPE(MU); |
| CHECK_TYPE(TRIG); |
| |
| he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); |
| |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); |
| |
| switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> |
| RATE_MCS_HE_GI_LTF_POS) { |
| case 0: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| if (he_type == RATE_MCS_HE_TYPE_MU) |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| else |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; |
| break; |
| case 1: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| break; |
| case 2: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| } else { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| } |
| break; |
| case 3: |
| if ((he_type == RATE_MCS_HE_TYPE_SU || |
| he_type == RATE_MCS_HE_TYPE_EXT_SU) && |
| rate_n_flags & RATE_MCS_SGI_MSK) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| break; |
| } |
| |
| he->data5 |= le16_encode_bits(ltf, |
| IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); |
| } |
| |
| static void iwl_mvm_decode_lsig(struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_lsig *lsig; |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| lsig = skb_put(skb, sizeof(*lsig)); |
| lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); |
| lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_LSIG_LEN_MASK), |
| IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); |
| rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct ieee80211_rx_status *rx_status; |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| struct ieee80211_hdr *hdr; |
| u32 len = le16_to_cpu(desc->mpdu_len); |
| u32 rate_n_flags, gp2_on_air_rise; |
| u16 phy_info = le16_to_cpu(desc->phy_info); |
| struct ieee80211_sta *sta = NULL; |
| struct sk_buff *skb; |
| u8 crypt_len = 0, channel, energy_a, energy_b; |
| size_t desc_size; |
| struct iwl_mvm_rx_phy_data phy_data = { |
| .d4 = desc->phy_data4, |
| .info_type = IWL_RX_PHY_INFO_TYPE_NONE, |
| }; |
| bool csi = false; |
| |
| if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) |
| return; |
| |
| if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) { |
| rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); |
| channel = desc->v3.channel; |
| gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); |
| energy_a = desc->v3.energy_a; |
| energy_b = desc->v3.energy_b; |
| desc_size = sizeof(*desc); |
| |
| phy_data.d0 = desc->v3.phy_data0; |
| phy_data.d1 = desc->v3.phy_data1; |
| phy_data.d2 = desc->v3.phy_data2; |
| phy_data.d3 = desc->v3.phy_data3; |
| } else { |
| rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); |
| channel = desc->v1.channel; |
| gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); |
| energy_a = desc->v1.energy_a; |
| energy_b = desc->v1.energy_b; |
| desc_size = IWL_RX_DESC_SIZE_V1; |
| |
| phy_data.d0 = desc->v1.phy_data0; |
| phy_data.d1 = desc->v1.phy_data1; |
| phy_data.d2 = desc->v1.phy_data2; |
| phy_data.d3 = desc->v1.phy_data3; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| phy_data.info_type = |
| le32_get_bits(phy_data.d1, |
| IWL_RX_PHY_DATA1_INFO_TYPE_MASK); |
| |
| hdr = (void *)(pkt->data + desc_size); |
| /* Dont use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mvm, "alloc_skb failed\n"); |
| return; |
| } |
| |
| if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| /* |
| * If the device inserted padding it means that (it thought) |
| * the 802.11 header wasn't a multiple of 4 bytes long. In |
| * this case, reserve two bytes at the start of the SKB to |
| * align the payload properly in case we end up copying it. |
| */ |
| skb_reserve(skb, 2); |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ |
| switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { |
| case RATE_MCS_CHAN_WIDTH_20: |
| break; |
| case RATE_MCS_CHAN_WIDTH_40: |
| rx_status->bw = RATE_INFO_BW_40; |
| break; |
| case RATE_MCS_CHAN_WIDTH_80: |
| rx_status->bw = RATE_INFO_BW_80; |
| break; |
| case RATE_MCS_CHAN_WIDTH_160: |
| rx_status->bw = RATE_INFO_BW_160; |
| break; |
| } |
| |
| if (rate_n_flags & RATE_MCS_HE_MSK) |
| iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, |
| phy_info, queue); |
| |
| iwl_mvm_decode_lsig(skb, &phy_data); |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, |
| le32_to_cpu(pkt->len_n_flags), queue, |
| &crypt_len)) { |
| kfree_skb(skb); |
| return; |
| } |
| |
| /* |
| * Keep packets with CRC errors (and with overrun) for monitor mode |
| * (otherwise the firmware discards them) but mark them as bad. |
| */ |
| if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) || |
| !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { |
| IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", |
| le16_to_cpu(desc->status)); |
| rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; |
| } |
| /* set the preamble flag if appropriate */ |
| if (rate_n_flags & RATE_MCS_CCK_MSK && |
| phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; |
| |
| if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { |
| u64 tsf_on_air_rise; |
| |
| if (mvm->trans->trans_cfg->device_family >= |
| IWL_DEVICE_FAMILY_22560) |
| tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); |
| else |
| tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); |
| |
| rx_status->mactime = tsf_on_air_rise; |
| /* TSF as indicated by the firmware is at INA time */ |
| rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; |
| } |
| |
| rx_status->device_timestamp = gp2_on_air_rise; |
| rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : |
| NL80211_BAND_2GHZ; |
| rx_status->freq = ieee80211_channel_to_frequency(channel, |
| rx_status->band); |
| iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, |
| energy_b); |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; |
| |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| /* |
| * Toggle is switched whenever new aggregation starts. Make |
| * sure ampdu_reference is never 0 so we can later use it to |
| * see if the frame was really part of an A-MPDU or not. |
| */ |
| if (toggle_bit != mvm->ampdu_toggle) { |
| mvm->ampdu_ref++; |
| if (mvm->ampdu_ref == 0) |
| mvm->ampdu_ref++; |
| mvm->ampdu_toggle = toggle_bit; |
| } |
| rx_status->ampdu_reference = mvm->ampdu_ref; |
| } |
| |
| if (unlikely(mvm->monitor_on)) |
| iwl_mvm_add_rtap_sniffer_config(mvm, skb); |
| |
| rcu_read_lock(); |
| |
| if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { |
| u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK; |
| |
| if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) { |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); |
| if (IS_ERR(sta)) |
| sta = NULL; |
| } |
| } else if (!is_multicast_ether_addr(hdr->addr2)) { |
| /* |
| * This is fine since we prevent two stations with the same |
| * address from being added. |
| */ |
| sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); |
| } |
| |
| if (sta) { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| struct ieee80211_vif *tx_blocked_vif = |
| rcu_dereference(mvm->csa_tx_blocked_vif); |
| u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & |
| IWL_RX_MPDU_REORDER_BAID_MASK) >> |
| IWL_RX_MPDU_REORDER_BAID_SHIFT); |
| struct iwl_fw_dbg_trigger_tlv *trig; |
| struct ieee80211_vif *vif = mvmsta->vif; |
| |
| if (!mvm->tcm.paused && len >= sizeof(*hdr) && |
| !is_multicast_ether_addr(hdr->addr1) && |
| ieee80211_is_data(hdr->frame_control) && |
| time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) |
| schedule_delayed_work(&mvm->tcm.work, 0); |
| |
| /* |
| * We have tx blocked stations (with CS bit). If we heard |
| * frames from a blocked station on a new channel we can |
| * TX to it again. |
| */ |
| if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { |
| struct iwl_mvm_vif *mvmvif = |
| iwl_mvm_vif_from_mac80211(tx_blocked_vif); |
| |
| if (mvmvif->csa_target_freq == rx_status->freq) |
| iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, |
| false); |
| } |
| |
| rs_update_last_rssi(mvm, mvmsta, rx_status); |
| |
| trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, |
| ieee80211_vif_to_wdev(vif), |
| FW_DBG_TRIGGER_RSSI); |
| |
| if (trig && ieee80211_is_beacon(hdr->frame_control)) { |
| struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; |
| s32 rssi; |
| |
| rssi_trig = (void *)trig->data; |
| rssi = le32_to_cpu(rssi_trig->rssi); |
| |
| if (rx_status->signal < rssi) |
| iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, |
| NULL); |
| } |
| |
| if (ieee80211_is_data(hdr->frame_control)) |
| iwl_mvm_rx_csum(sta, skb, desc); |
| |
| if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| /* |
| * Our hardware de-aggregates AMSDUs but copies the mac header |
| * as it to the de-aggregated MPDUs. We need to turn off the |
| * AMSDU bit in the QoS control ourselves. |
| * In addition, HW reverses addr3 and addr4 - reverse it back. |
| */ |
| if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && |
| !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { |
| u8 *qc = ieee80211_get_qos_ctl(hdr); |
| |
| *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; |
| |
| if (mvm->trans->trans_cfg->device_family == |
| IWL_DEVICE_FAMILY_9000) { |
| iwl_mvm_flip_address(hdr->addr3); |
| |
| if (ieee80211_has_a4(hdr->frame_control)) |
| iwl_mvm_flip_address(hdr->addr4); |
| } |
| } |
| if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { |
| u32 reorder_data = le32_to_cpu(desc->reorder_data); |
| |
| iwl_mvm_agg_rx_received(mvm, reorder_data, baid); |
| } |
| } |
| |
| if (!(rate_n_flags & RATE_MCS_CCK_MSK) && |
| rate_n_flags & RATE_MCS_SGI_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; |
| if (rate_n_flags & RATE_HT_MCS_GF_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_LDPC; |
| if (rate_n_flags & RATE_MCS_HT_MSK) { |
| u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> |
| RATE_MCS_STBC_POS; |
| rx_status->encoding = RX_ENC_HT; |
| rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| } else if (rate_n_flags & RATE_MCS_VHT_MSK) { |
| u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> |
| RATE_MCS_STBC_POS; |
| rx_status->nss = |
| ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> |
| RATE_VHT_MCS_NSS_POS) + 1; |
| rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; |
| rx_status->encoding = RX_ENC_VHT; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_BF; |
| } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { |
| int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, |
| rx_status->band); |
| |
| if (WARN(rate < 0 || rate > 0xFF, |
| "Invalid rate flags 0x%x, band %d,\n", |
| rate_n_flags, rx_status->band)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| rx_status->rate_idx = rate; |
| } |
| |
| /* management stuff on default queue */ |
| if (!queue) { |
| if (unlikely((ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control)) && |
| mvm->sched_scan_pass_all == |
| SCHED_SCAN_PASS_ALL_ENABLED)) |
| mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; |
| |
| if (unlikely(ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control))) |
| rx_status->boottime_ns = ktime_get_boottime_ns(); |
| } |
| |
| if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) |
| iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, |
| sta, csi); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct ieee80211_rx_status *rx_status; |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_no_data *desc = (void *)pkt->data; |
| u32 rate_n_flags = le32_to_cpu(desc->rate); |
| u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); |
| u32 rssi = le32_to_cpu(desc->rssi); |
| u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; |
| u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; |
| struct ieee80211_sta *sta = NULL; |
| struct sk_buff *skb; |
| u8 channel, energy_a, energy_b; |
| struct iwl_mvm_rx_phy_data phy_data = { |
| .d0 = desc->phy_info[0], |
| .info_type = IWL_RX_PHY_INFO_TYPE_NONE, |
| }; |
| |
| if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) |
| return; |
| |
| energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; |
| energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; |
| channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; |
| |
| phy_data.info_type = |
| le32_get_bits(desc->phy_info[1], |
| IWL_RX_PHY_DATA1_INFO_TYPE_MASK); |
| |
| /* Dont use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mvm, "alloc_skb failed\n"); |
| return; |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* 0-length PSDU */ |
| rx_status->flag |= RX_FLAG_NO_PSDU; |
| |
| switch (info_type) { |
| case RX_NO_DATA_INFO_TYPE_NDP: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; |
| break; |
| case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: |
| case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; |
| break; |
| default: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; |
| break; |
| } |
| |
| /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ |
| switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { |
| case RATE_MCS_CHAN_WIDTH_20: |
| break; |
| case RATE_MCS_CHAN_WIDTH_40: |
| rx_status->bw = RATE_INFO_BW_40; |
| break; |
| case RATE_MCS_CHAN_WIDTH_80: |
| rx_status->bw = RATE_INFO_BW_80; |
| break; |
| case RATE_MCS_CHAN_WIDTH_160: |
| rx_status->bw = RATE_INFO_BW_160; |
| break; |
| } |
| |
| if (rate_n_flags & RATE_MCS_HE_MSK) |
| iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, |
| phy_info, queue); |
| |
| iwl_mvm_decode_lsig(skb, &phy_data); |
| |
| rx_status->device_timestamp = gp2_on_air_rise; |
| rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : |
| NL80211_BAND_2GHZ; |
| rx_status->freq = ieee80211_channel_to_frequency(channel, |
| rx_status->band); |
| iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, |
| energy_b); |
| |
| rcu_read_lock(); |
| |
| if (!(rate_n_flags & RATE_MCS_CCK_MSK) && |
| rate_n_flags & RATE_MCS_SGI_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; |
| if (rate_n_flags & RATE_HT_MCS_GF_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_LDPC; |
| if (rate_n_flags & RATE_MCS_HT_MSK) { |
| u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> |
| RATE_MCS_STBC_POS; |
| rx_status->encoding = RX_ENC_HT; |
| rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| } else if (rate_n_flags & RATE_MCS_VHT_MSK) { |
| u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> |
| RATE_MCS_STBC_POS; |
| rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; |
| rx_status->encoding = RX_ENC_VHT; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_BF; |
| /* |
| * take the nss from the rx_vec since the rate_n_flags has |
| * only 2 bits for the nss which gives a max of 4 ss but |
| * there may be up to 8 spatial streams |
| */ |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; |
| } else if (rate_n_flags & RATE_MCS_HE_MSK) { |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; |
| } else { |
| int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, |
| rx_status->band); |
| |
| if (WARN(rate < 0 || rate > 0xFF, |
| "Invalid rate flags 0x%x, band %d,\n", |
| rate_n_flags, rx_status->band)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| rx_status->rate_idx = rate; |
| } |
| |
| ieee80211_rx_napi(mvm->hw, sta, skb, napi); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_frame_release *release = (void *)pkt->data; |
| |
| iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, |
| le16_to_cpu(release->nssn), |
| queue, 0); |
| } |
| |
| void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_bar_frame_release *release = (void *)pkt->data; |
| unsigned int baid = le32_get_bits(release->ba_info, |
| IWL_BAR_FRAME_RELEASE_BAID_MASK); |
| unsigned int nssn = le32_get_bits(release->ba_info, |
| IWL_BAR_FRAME_RELEASE_NSSN_MASK); |
| unsigned int sta_id = le32_get_bits(release->sta_tid, |
| IWL_BAR_FRAME_RELEASE_STA_MASK); |
| unsigned int tid = le32_get_bits(release->sta_tid, |
| IWL_BAR_FRAME_RELEASE_TID_MASK); |
| struct iwl_mvm_baid_data *baid_data; |
| |
| if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || |
| baid >= ARRAY_SIZE(mvm->baid_map))) |
| return; |
| |
| rcu_read_lock(); |
| baid_data = rcu_dereference(mvm->baid_map[baid]); |
| if (!baid_data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID %d but not allocated, invalid BAR release!\n", |
| baid); |
| goto out; |
| } |
| |
| if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, |
| "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", |
| baid, baid_data->sta_id, baid_data->tid, sta_id, |
| tid)) |
| goto out; |
| |
| iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); |
| out: |
| rcu_read_unlock(); |
| } |