| /* |
| * Copyright © 2014-2017 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "intel_guc.h" |
| #include "intel_guc_ads.h" |
| #include "intel_guc_submission.h" |
| #include "i915_drv.h" |
| |
| static void gen8_guc_raise_irq(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| |
| I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER); |
| } |
| |
| static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) |
| { |
| GEM_BUG_ON(!guc->send_regs.base); |
| GEM_BUG_ON(!guc->send_regs.count); |
| GEM_BUG_ON(i >= guc->send_regs.count); |
| |
| return _MMIO(guc->send_regs.base + 4 * i); |
| } |
| |
| void intel_guc_init_send_regs(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| enum forcewake_domains fw_domains = 0; |
| unsigned int i; |
| |
| guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); |
| guc->send_regs.count = SOFT_SCRATCH_COUNT - 1; |
| |
| for (i = 0; i < guc->send_regs.count; i++) { |
| fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, |
| guc_send_reg(guc, i), |
| FW_REG_READ | FW_REG_WRITE); |
| } |
| guc->send_regs.fw_domains = fw_domains; |
| } |
| |
| void intel_guc_init_early(struct intel_guc *guc) |
| { |
| intel_guc_fw_init_early(guc); |
| intel_guc_ct_init_early(&guc->ct); |
| intel_guc_log_init_early(&guc->log); |
| |
| mutex_init(&guc->send_mutex); |
| spin_lock_init(&guc->irq_lock); |
| guc->send = intel_guc_send_nop; |
| guc->handler = intel_guc_to_host_event_handler_nop; |
| guc->notify = gen8_guc_raise_irq; |
| } |
| |
| static int guc_init_wq(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| |
| /* |
| * GuC log buffer flush work item has to do register access to |
| * send the ack to GuC and this work item, if not synced before |
| * suspend, can potentially get executed after the GFX device is |
| * suspended. |
| * By marking the WQ as freezable, we don't have to bother about |
| * flushing of this work item from the suspend hooks, the pending |
| * work item if any will be either executed before the suspend |
| * or scheduled later on resume. This way the handling of work |
| * item can be kept same between system suspend & rpm suspend. |
| */ |
| guc->log.relay.flush_wq = |
| alloc_ordered_workqueue("i915-guc_log", |
| WQ_HIGHPRI | WQ_FREEZABLE); |
| if (!guc->log.relay.flush_wq) { |
| DRM_ERROR("Couldn't allocate workqueue for GuC log\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Even though both sending GuC action, and adding a new workitem to |
| * GuC workqueue are serialized (each with its own locking), since |
| * we're using mutliple engines, it's possible that we're going to |
| * issue a preempt request with two (or more - each for different |
| * engine) workitems in GuC queue. In this situation, GuC may submit |
| * all of them, which will make us very confused. |
| * Our preemption contexts may even already be complete - before we |
| * even had the chance to sent the preempt action to GuC!. Rather |
| * than introducing yet another lock, we can just use ordered workqueue |
| * to make sure we're always sending a single preemption request with a |
| * single workitem. |
| */ |
| if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) && |
| USES_GUC_SUBMISSION(dev_priv)) { |
| guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt", |
| WQ_HIGHPRI); |
| if (!guc->preempt_wq) { |
| destroy_workqueue(guc->log.relay.flush_wq); |
| DRM_ERROR("Couldn't allocate workqueue for GuC " |
| "preemption\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void guc_fini_wq(struct intel_guc *guc) |
| { |
| struct workqueue_struct *wq; |
| |
| wq = fetch_and_zero(&guc->preempt_wq); |
| if (wq) |
| destroy_workqueue(wq); |
| |
| wq = fetch_and_zero(&guc->log.relay.flush_wq); |
| if (wq) |
| destroy_workqueue(wq); |
| } |
| |
| int intel_guc_init_misc(struct intel_guc *guc) |
| { |
| struct drm_i915_private *i915 = guc_to_i915(guc); |
| int ret; |
| |
| ret = guc_init_wq(guc); |
| if (ret) |
| return ret; |
| |
| intel_uc_fw_fetch(i915, &guc->fw); |
| |
| return 0; |
| } |
| |
| void intel_guc_fini_misc(struct intel_guc *guc) |
| { |
| intel_uc_fw_fini(&guc->fw); |
| guc_fini_wq(guc); |
| } |
| |
| static int guc_shared_data_create(struct intel_guc *guc) |
| { |
| struct i915_vma *vma; |
| void *vaddr; |
| |
| vma = intel_guc_allocate_vma(guc, PAGE_SIZE); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) { |
| i915_vma_unpin_and_release(&vma, 0); |
| return PTR_ERR(vaddr); |
| } |
| |
| guc->shared_data = vma; |
| guc->shared_data_vaddr = vaddr; |
| |
| return 0; |
| } |
| |
| static void guc_shared_data_destroy(struct intel_guc *guc) |
| { |
| i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP); |
| } |
| |
| int intel_guc_init(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| int ret; |
| |
| ret = guc_shared_data_create(guc); |
| if (ret) |
| goto err_fetch; |
| GEM_BUG_ON(!guc->shared_data); |
| |
| ret = intel_guc_log_create(&guc->log); |
| if (ret) |
| goto err_shared; |
| |
| ret = intel_guc_ads_create(guc); |
| if (ret) |
| goto err_log; |
| GEM_BUG_ON(!guc->ads_vma); |
| |
| /* We need to notify the guc whenever we change the GGTT */ |
| i915_ggtt_enable_guc(dev_priv); |
| |
| return 0; |
| |
| err_log: |
| intel_guc_log_destroy(&guc->log); |
| err_shared: |
| guc_shared_data_destroy(guc); |
| err_fetch: |
| intel_uc_fw_fini(&guc->fw); |
| return ret; |
| } |
| |
| void intel_guc_fini(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| |
| i915_ggtt_disable_guc(dev_priv); |
| intel_guc_ads_destroy(guc); |
| intel_guc_log_destroy(&guc->log); |
| guc_shared_data_destroy(guc); |
| intel_uc_fw_fini(&guc->fw); |
| } |
| |
| static u32 guc_ctl_debug_flags(struct intel_guc *guc) |
| { |
| u32 level = intel_guc_log_get_level(&guc->log); |
| u32 flags; |
| u32 ads; |
| |
| ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; |
| flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED; |
| |
| if (!GUC_LOG_LEVEL_IS_ENABLED(level)) |
| flags |= GUC_LOG_DEFAULT_DISABLED; |
| |
| if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) |
| flags |= GUC_LOG_DISABLED; |
| else |
| flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << |
| GUC_LOG_VERBOSITY_SHIFT; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_feature_flags(struct intel_guc *guc) |
| { |
| u32 flags = 0; |
| |
| flags |= GUC_CTL_VCS2_ENABLED; |
| |
| if (USES_GUC_SUBMISSION(guc_to_i915(guc))) |
| flags |= GUC_CTL_KERNEL_SUBMISSIONS; |
| else |
| flags |= GUC_CTL_DISABLE_SCHEDULER; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) |
| { |
| u32 flags = 0; |
| |
| if (USES_GUC_SUBMISSION(guc_to_i915(guc))) { |
| u32 ctxnum, base; |
| |
| base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); |
| ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; |
| |
| base >>= PAGE_SHIFT; |
| flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | |
| (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); |
| } |
| return flags; |
| } |
| |
| static u32 guc_ctl_log_params_flags(struct intel_guc *guc) |
| { |
| u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; |
| u32 flags; |
| |
| #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) |
| #define UNIT SZ_1M |
| #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE |
| #else |
| #define UNIT SZ_4K |
| #define FLAG 0 |
| #endif |
| |
| BUILD_BUG_ON(!CRASH_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); |
| BUILD_BUG_ON(!DPC_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); |
| BUILD_BUG_ON(!ISR_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); |
| |
| BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); |
| BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); |
| BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); |
| |
| flags = GUC_LOG_VALID | |
| GUC_LOG_NOTIFY_ON_HALF_FULL | |
| FLAG | |
| ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | |
| ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | |
| ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | |
| (offset << GUC_LOG_BUF_ADDR_SHIFT); |
| |
| #undef UNIT |
| #undef FLAG |
| |
| return flags; |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| void intel_guc_init_params(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 params[GUC_CTL_MAX_DWORDS]; |
| int i; |
| |
| memset(params, 0, sizeof(params)); |
| |
| /* |
| * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one |
| * second. This ARAR is calculated by: |
| * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10 |
| */ |
| params[GUC_CTL_ARAT_HIGH] = 0; |
| params[GUC_CTL_ARAT_LOW] = 100000000; |
| |
| params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER; |
| |
| params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); |
| params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); |
| params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); |
| params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); |
| |
| /* |
| * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and |
| * they are power context saved so it's ok to release forcewake |
| * when we are done here and take it again at xfer time. |
| */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER); |
| |
| I915_WRITE(SOFT_SCRATCH(0), 0); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| I915_WRITE(SOFT_SCRATCH(1 + i), params[i]); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER); |
| } |
| |
| int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len, |
| u32 *response_buf, u32 response_buf_size) |
| { |
| WARN(1, "Unexpected send: action=%#x\n", *action); |
| return -ENODEV; |
| } |
| |
| void intel_guc_to_host_event_handler_nop(struct intel_guc *guc) |
| { |
| WARN(1, "Unexpected event: no suitable handler\n"); |
| } |
| |
| /* |
| * This function implements the MMIO based host to GuC interface. |
| */ |
| int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, |
| u32 *response_buf, u32 response_buf_size) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 status; |
| int i; |
| int ret; |
| |
| GEM_BUG_ON(!len); |
| GEM_BUG_ON(len > guc->send_regs.count); |
| |
| /* We expect only action code */ |
| GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); |
| |
| /* If CT is available, we expect to use MMIO only during init/fini */ |
| GEM_BUG_ON(HAS_GUC_CT(dev_priv) && |
| *action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && |
| *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); |
| |
| mutex_lock(&guc->send_mutex); |
| intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains); |
| |
| for (i = 0; i < len; i++) |
| I915_WRITE(guc_send_reg(guc, i), action[i]); |
| |
| POSTING_READ(guc_send_reg(guc, i - 1)); |
| |
| intel_guc_notify(guc); |
| |
| /* |
| * No GuC command should ever take longer than 10ms. |
| * Fast commands should still complete in 10us. |
| */ |
| ret = __intel_wait_for_register_fw(dev_priv, |
| guc_send_reg(guc, 0), |
| INTEL_GUC_MSG_TYPE_MASK, |
| INTEL_GUC_MSG_TYPE_RESPONSE << |
| INTEL_GUC_MSG_TYPE_SHIFT, |
| 10, 10, &status); |
| /* If GuC explicitly returned an error, convert it to -EIO */ |
| if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) |
| ret = -EIO; |
| |
| if (ret) { |
| DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", |
| action[0], ret, status); |
| goto out; |
| } |
| |
| if (response_buf) { |
| int count = min(response_buf_size, guc->send_regs.count - 1); |
| |
| for (i = 0; i < count; i++) |
| response_buf[i] = I915_READ(guc_send_reg(guc, i + 1)); |
| } |
| |
| /* Use data from the GuC response as our return value */ |
| ret = INTEL_GUC_MSG_TO_DATA(status); |
| |
| out: |
| intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains); |
| mutex_unlock(&guc->send_mutex); |
| |
| return ret; |
| } |
| |
| void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 msg, val; |
| |
| /* |
| * Sample the log buffer flush related bits & clear them out now |
| * itself from the message identity register to minimize the |
| * probability of losing a flush interrupt, when there are back |
| * to back flush interrupts. |
| * There can be a new flush interrupt, for different log buffer |
| * type (like for ISR), whilst Host is handling one (for DPC). |
| * Since same bit is used in message register for ISR & DPC, it |
| * could happen that GuC sets the bit for 2nd interrupt but Host |
| * clears out the bit on handling the 1st interrupt. |
| */ |
| disable_rpm_wakeref_asserts(dev_priv); |
| spin_lock(&guc->irq_lock); |
| val = I915_READ(SOFT_SCRATCH(15)); |
| msg = val & guc->msg_enabled_mask; |
| I915_WRITE(SOFT_SCRATCH(15), val & ~msg); |
| spin_unlock(&guc->irq_lock); |
| enable_rpm_wakeref_asserts(dev_priv); |
| |
| intel_guc_to_host_process_recv_msg(guc, msg); |
| } |
| |
| void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg) |
| { |
| /* Make sure to handle only enabled messages */ |
| msg &= guc->msg_enabled_mask; |
| |
| if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | |
| INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) |
| intel_guc_log_handle_flush_event(&guc->log); |
| } |
| |
| int intel_guc_sample_forcewake(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 action[2]; |
| |
| action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; |
| /* WaRsDisableCoarsePowerGating:skl,cnl */ |
| if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) |
| action[1] = 0; |
| else |
| /* bit 0 and 1 are for Render and Media domain separately */ |
| action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode |
| * @guc: intel_guc structure |
| * @rsa_offset: rsa offset w.r.t ggtt base of huc vma |
| * |
| * Triggers a HuC firmware authentication request to the GuC via intel_guc_send |
| * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by |
| * intel_huc_auth(). |
| * |
| * Return: non-zero code on error |
| */ |
| int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_AUTHENTICATE_HUC, |
| rsa_offset |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * intel_guc_suspend() - notify GuC entering suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_suspend(struct intel_guc *guc) |
| { |
| u32 data[] = { |
| INTEL_GUC_ACTION_ENTER_S_STATE, |
| GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ |
| intel_guc_ggtt_offset(guc, guc->shared_data) |
| }; |
| |
| return intel_guc_send(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| /** |
| * intel_guc_reset_engine() - ask GuC to reset an engine |
| * @guc: intel_guc structure |
| * @engine: engine to be reset |
| */ |
| int intel_guc_reset_engine(struct intel_guc *guc, |
| struct intel_engine_cs *engine) |
| { |
| u32 data[7]; |
| |
| GEM_BUG_ON(!guc->execbuf_client); |
| |
| data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET; |
| data[1] = engine->guc_id; |
| data[2] = 0; |
| data[3] = 0; |
| data[4] = 0; |
| data[5] = guc->execbuf_client->stage_id; |
| data[6] = intel_guc_ggtt_offset(guc, guc->shared_data); |
| |
| return intel_guc_send(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| /** |
| * intel_guc_resume() - notify GuC resuming from suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_resume(struct intel_guc *guc) |
| { |
| u32 data[] = { |
| INTEL_GUC_ACTION_EXIT_S_STATE, |
| GUC_POWER_D0, |
| intel_guc_ggtt_offset(guc, guc->shared_data) |
| }; |
| |
| return intel_guc_send(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| /** |
| * DOC: GuC Address Space |
| * |
| * The layout of GuC address space is shown below: |
| * |
| * :: |
| * |
| * +===========> +====================+ <== FFFF_FFFF |
| * ^ | Reserved | |
| * | +====================+ <== GUC_GGTT_TOP |
| * | | | |
| * | | DRAM | |
| * GuC | | |
| * Address +===> +====================+ <== GuC ggtt_pin_bias |
| * Space ^ | | |
| * | | | | |
| * | GuC | GuC | |
| * | WOPCM | WOPCM | |
| * | Size | | |
| * | | | | |
| * v v | | |
| * +=======+===> +====================+ <== 0000_0000 |
| * |
| * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM |
| * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped |
| * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. |
| */ |
| |
| /** |
| * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * |
| * This is a wrapper to create an object for use with the GuC. In order to |
| * use it inside the GuC, an object needs to be pinned lifetime, so we allocate |
| * both some backing storage and a range inside the Global GTT. We must pin |
| * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that |
| * range is reserved inside GuC. |
| * |
| * Return: A i915_vma if successful, otherwise an ERR_PTR. |
| */ |
| struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| u64 flags; |
| int ret; |
| |
| obj = i915_gem_object_create(dev_priv, size); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); |
| ret = i915_vma_pin(vma, 0, 0, flags); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err; |
| } |
| |
| return vma; |
| |
| err: |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| /** |
| * intel_guc_reserved_gtt_size() |
| * @guc: intel_guc structure |
| * |
| * The GuC WOPCM mapping shadows the lower part of the GGTT, so if we are using |
| * GuC we can't have any objects pinned in that region. This function returns |
| * the size of the shadowed region. |
| * |
| * Returns: |
| * 0 if GuC is not present or not in use. |
| * Otherwise, the GuC WOPCM size. |
| */ |
| u32 intel_guc_reserved_gtt_size(struct intel_guc *guc) |
| { |
| return guc_to_i915(guc)->wopcm.guc.size; |
| } |