blob: 0e3a9b38bef210793cc9841f09d6e3d54c474932 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2015 Intel Corporation.
*
* Authors: David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/mmu_notifier.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/rculist.h>
#include <linux/pci.h>
#include <linux/pci-ats.h>
#include <linux/dmar.h>
#include <linux/interrupt.h>
#include <linux/mm_types.h>
#include <linux/xarray.h>
#include <asm/page.h>
#include <asm/fpu/api.h>
#include "iommu.h"
#include "pasid.h"
#include "perf.h"
#include "../iommu-pages.h"
#include "trace.h"
static irqreturn_t prq_event_thread(int irq, void *d);
int intel_svm_enable_prq(struct intel_iommu *iommu)
{
struct iopf_queue *iopfq;
int irq, ret;
iommu->prq = iommu_alloc_pages_node(iommu->node, GFP_KERNEL, PRQ_ORDER);
if (!iommu->prq) {
pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
iommu->name);
return -ENOMEM;
}
irq = dmar_alloc_hwirq(IOMMU_IRQ_ID_OFFSET_PRQ + iommu->seq_id, iommu->node, iommu);
if (irq <= 0) {
pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
iommu->name);
ret = -EINVAL;
goto free_prq;
}
iommu->pr_irq = irq;
snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name),
"dmar%d-iopfq", iommu->seq_id);
iopfq = iopf_queue_alloc(iommu->iopfq_name);
if (!iopfq) {
pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name);
ret = -ENOMEM;
goto free_hwirq;
}
iommu->iopf_queue = iopfq;
snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);
ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
iommu->prq_name, iommu);
if (ret) {
pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
iommu->name);
goto free_iopfq;
}
dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);
init_completion(&iommu->prq_complete);
return 0;
free_iopfq:
iopf_queue_free(iommu->iopf_queue);
iommu->iopf_queue = NULL;
free_hwirq:
dmar_free_hwirq(irq);
iommu->pr_irq = 0;
free_prq:
iommu_free_pages(iommu->prq, PRQ_ORDER);
iommu->prq = NULL;
return ret;
}
int intel_svm_finish_prq(struct intel_iommu *iommu)
{
dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);
if (iommu->pr_irq) {
free_irq(iommu->pr_irq, iommu);
dmar_free_hwirq(iommu->pr_irq);
iommu->pr_irq = 0;
}
if (iommu->iopf_queue) {
iopf_queue_free(iommu->iopf_queue);
iommu->iopf_queue = NULL;
}
iommu_free_pages(iommu->prq, PRQ_ORDER);
iommu->prq = NULL;
return 0;
}
void intel_svm_check(struct intel_iommu *iommu)
{
if (!pasid_supported(iommu))
return;
if (cpu_feature_enabled(X86_FEATURE_GBPAGES) &&
!cap_fl1gp_support(iommu->cap)) {
pr_err("%s SVM disabled, incompatible 1GB page capability\n",
iommu->name);
return;
}
if (cpu_feature_enabled(X86_FEATURE_LA57) &&
!cap_fl5lp_support(iommu->cap)) {
pr_err("%s SVM disabled, incompatible paging mode\n",
iommu->name);
return;
}
iommu->flags |= VTD_FLAG_SVM_CAPABLE;
}
/* Pages have been freed at this point */
static void intel_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct dmar_domain *domain = container_of(mn, struct dmar_domain, notifier);
if (start == 0 && end == ULONG_MAX) {
cache_tag_flush_all(domain);
return;
}
/*
* The mm_types defines vm_end as the first byte after the end address,
* different from IOMMU subsystem using the last address of an address
* range.
*/
cache_tag_flush_range(domain, start, end - 1, 0);
}
static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct dmar_domain *domain = container_of(mn, struct dmar_domain, notifier);
struct dev_pasid_info *dev_pasid;
struct device_domain_info *info;
unsigned long flags;
/* This might end up being called from exit_mmap(), *before* the page
* tables are cleared. And __mmu_notifier_release() will delete us from
* the list of notifiers so that our invalidate_range() callback doesn't
* get called when the page tables are cleared. So we need to protect
* against hardware accessing those page tables.
*
* We do it by clearing the entry in the PASID table and then flushing
* the IOTLB and the PASID table caches. This might upset hardware;
* perhaps we'll want to point the PASID to a dummy PGD (like the zero
* page) so that we end up taking a fault that the hardware really
* *has* to handle gracefully without affecting other processes.
*/
spin_lock_irqsave(&domain->lock, flags);
list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
info = dev_iommu_priv_get(dev_pasid->dev);
intel_pasid_tear_down_entry(info->iommu, dev_pasid->dev,
dev_pasid->pasid, true);
}
spin_unlock_irqrestore(&domain->lock, flags);
}
static void intel_mm_free_notifier(struct mmu_notifier *mn)
{
kfree(container_of(mn, struct dmar_domain, notifier));
}
static const struct mmu_notifier_ops intel_mmuops = {
.release = intel_mm_release,
.arch_invalidate_secondary_tlbs = intel_arch_invalidate_secondary_tlbs,
.free_notifier = intel_mm_free_notifier,
};
static int intel_svm_set_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t pasid)
{
struct device_domain_info *info = dev_iommu_priv_get(dev);
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
struct intel_iommu *iommu = info->iommu;
struct mm_struct *mm = domain->mm;
struct dev_pasid_info *dev_pasid;
unsigned long sflags;
unsigned long flags;
int ret = 0;
dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
if (!dev_pasid)
return -ENOMEM;
dev_pasid->dev = dev;
dev_pasid->pasid = pasid;
ret = cache_tag_assign_domain(to_dmar_domain(domain), dev, pasid);
if (ret)
goto free_dev_pasid;
/* Setup the pasid table: */
sflags = cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0;
ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, pasid,
FLPT_DEFAULT_DID, sflags);
if (ret)
goto unassign_tag;
spin_lock_irqsave(&dmar_domain->lock, flags);
list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
spin_unlock_irqrestore(&dmar_domain->lock, flags);
return 0;
unassign_tag:
cache_tag_unassign_domain(to_dmar_domain(domain), dev, pasid);
free_dev_pasid:
kfree(dev_pasid);
return ret;
}
/* Page request queue descriptor */
struct page_req_dsc {
union {
struct {
u64 type:8;
u64 pasid_present:1;
u64 rsvd:7;
u64 rid:16;
u64 pasid:20;
u64 exe_req:1;
u64 pm_req:1;
u64 rsvd2:10;
};
u64 qw_0;
};
union {
struct {
u64 rd_req:1;
u64 wr_req:1;
u64 lpig:1;
u64 prg_index:9;
u64 addr:52;
};
u64 qw_1;
};
u64 qw_2;
u64 qw_3;
};
static bool is_canonical_address(u64 addr)
{
int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
long saddr = (long) addr;
return (((saddr << shift) >> shift) == saddr);
}
/**
* intel_drain_pasid_prq - Drain page requests and responses for a pasid
* @dev: target device
* @pasid: pasid for draining
*
* Drain all pending page requests and responses related to @pasid in both
* software and hardware. This is supposed to be called after the device
* driver has stopped DMA, the pasid entry has been cleared, and both IOTLB
* and DevTLB have been invalidated.
*
* It waits until all pending page requests for @pasid in the page fault
* queue are completed by the prq handling thread. Then follow the steps
* described in VT-d spec CH7.10 to drain all page requests and page
* responses pending in the hardware.
*/
void intel_drain_pasid_prq(struct device *dev, u32 pasid)
{
struct device_domain_info *info;
struct dmar_domain *domain;
struct intel_iommu *iommu;
struct qi_desc desc[3];
struct pci_dev *pdev;
int head, tail;
u16 sid, did;
int qdep;
info = dev_iommu_priv_get(dev);
if (WARN_ON(!info || !dev_is_pci(dev)))
return;
if (!info->pri_enabled)
return;
iommu = info->iommu;
domain = info->domain;
pdev = to_pci_dev(dev);
sid = PCI_DEVID(info->bus, info->devfn);
did = domain_id_iommu(domain, iommu);
qdep = pci_ats_queue_depth(pdev);
/*
* Check and wait until all pending page requests in the queue are
* handled by the prq handling thread.
*/
prq_retry:
reinit_completion(&iommu->prq_complete);
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
while (head != tail) {
struct page_req_dsc *req;
req = &iommu->prq[head / sizeof(*req)];
if (!req->pasid_present || req->pasid != pasid) {
head = (head + sizeof(*req)) & PRQ_RING_MASK;
continue;
}
wait_for_completion(&iommu->prq_complete);
goto prq_retry;
}
iopf_queue_flush_dev(dev);
/*
* Perform steps described in VT-d spec CH7.10 to drain page
* requests and responses in hardware.
*/
memset(desc, 0, sizeof(desc));
desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
QI_IWD_FENCE |
QI_IWD_TYPE;
desc[1].qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
QI_EIOTLB_TYPE;
desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) |
QI_DEV_EIOTLB_SID(sid) |
QI_DEV_EIOTLB_QDEP(qdep) |
QI_DEIOTLB_TYPE |
QI_DEV_IOTLB_PFSID(info->pfsid);
qi_retry:
reinit_completion(&iommu->prq_complete);
qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN);
if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
wait_for_completion(&iommu->prq_complete);
goto qi_retry;
}
}
static int prq_to_iommu_prot(struct page_req_dsc *req)
{
int prot = 0;
if (req->rd_req)
prot |= IOMMU_FAULT_PERM_READ;
if (req->wr_req)
prot |= IOMMU_FAULT_PERM_WRITE;
if (req->exe_req)
prot |= IOMMU_FAULT_PERM_EXEC;
if (req->pm_req)
prot |= IOMMU_FAULT_PERM_PRIV;
return prot;
}
static void intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev,
struct page_req_dsc *desc)
{
struct iopf_fault event = { };
/* Fill in event data for device specific processing */
event.fault.type = IOMMU_FAULT_PAGE_REQ;
event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT;
event.fault.prm.pasid = desc->pasid;
event.fault.prm.grpid = desc->prg_index;
event.fault.prm.perm = prq_to_iommu_prot(desc);
if (desc->lpig)
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
if (desc->pasid_present) {
event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
}
iommu_report_device_fault(dev, &event);
}
static void handle_bad_prq_event(struct intel_iommu *iommu,
struct page_req_dsc *req, int result)
{
struct qi_desc desc = { };
pr_err("%s: Invalid page request: %08llx %08llx\n",
iommu->name, ((unsigned long long *)req)[0],
((unsigned long long *)req)[1]);
if (!req->lpig)
return;
desc.qw0 = QI_PGRP_PASID(req->pasid) |
QI_PGRP_DID(req->rid) |
QI_PGRP_PASID_P(req->pasid_present) |
QI_PGRP_RESP_CODE(result) |
QI_PGRP_RESP_TYPE;
desc.qw1 = QI_PGRP_IDX(req->prg_index) |
QI_PGRP_LPIG(req->lpig);
qi_submit_sync(iommu, &desc, 1, 0);
}
static irqreturn_t prq_event_thread(int irq, void *d)
{
struct intel_iommu *iommu = d;
struct page_req_dsc *req;
int head, tail, handled;
struct device *dev;
u64 address;
/*
* Clear PPR bit before reading head/tail registers, to ensure that
* we get a new interrupt if needed.
*/
writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
handled = (head != tail);
while (head != tail) {
req = &iommu->prq[head / sizeof(*req)];
address = (u64)req->addr << VTD_PAGE_SHIFT;
if (unlikely(!req->pasid_present)) {
pr_err("IOMMU: %s: Page request without PASID\n",
iommu->name);
bad_req:
handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
goto prq_advance;
}
if (unlikely(!is_canonical_address(address))) {
pr_err("IOMMU: %s: Address is not canonical\n",
iommu->name);
goto bad_req;
}
if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) {
pr_err("IOMMU: %s: Page request in Privilege Mode\n",
iommu->name);
goto bad_req;
}
if (unlikely(req->exe_req && req->rd_req)) {
pr_err("IOMMU: %s: Execution request not supported\n",
iommu->name);
goto bad_req;
}
/* Drop Stop Marker message. No need for a response. */
if (unlikely(req->lpig && !req->rd_req && !req->wr_req))
goto prq_advance;
/*
* If prq is to be handled outside iommu driver via receiver of
* the fault notifiers, we skip the page response here.
*/
mutex_lock(&iommu->iopf_lock);
dev = device_rbtree_find(iommu, req->rid);
if (!dev) {
mutex_unlock(&iommu->iopf_lock);
goto bad_req;
}
intel_svm_prq_report(iommu, dev, req);
trace_prq_report(iommu, dev, req->qw_0, req->qw_1,
req->qw_2, req->qw_3,
iommu->prq_seq_number++);
mutex_unlock(&iommu->iopf_lock);
prq_advance:
head = (head + sizeof(*req)) & PRQ_RING_MASK;
}
dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);
/*
* Clear the page request overflow bit and wake up all threads that
* are waiting for the completion of this handling.
*/
if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n",
iommu->name);
head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
if (head == tail) {
iopf_queue_discard_partial(iommu->iopf_queue);
writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG);
pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared",
iommu->name);
}
}
if (!completion_done(&iommu->prq_complete))
complete(&iommu->prq_complete);
return IRQ_RETVAL(handled);
}
void intel_svm_page_response(struct device *dev, struct iopf_fault *evt,
struct iommu_page_response *msg)
{
struct device_domain_info *info = dev_iommu_priv_get(dev);
struct intel_iommu *iommu = info->iommu;
u8 bus = info->bus, devfn = info->devfn;
struct iommu_fault_page_request *prm;
struct qi_desc desc;
bool pasid_present;
bool last_page;
u16 sid;
prm = &evt->fault.prm;
sid = PCI_DEVID(bus, devfn);
pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) |
QI_PGRP_PASID_P(pasid_present) |
QI_PGRP_RESP_CODE(msg->code) |
QI_PGRP_RESP_TYPE;
desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page);
desc.qw2 = 0;
desc.qw3 = 0;
qi_submit_sync(iommu, &desc, 1, 0);
}
static void intel_svm_domain_free(struct iommu_domain *domain)
{
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
/* dmar_domain free is deferred to the mmu free_notifier callback. */
mmu_notifier_put(&dmar_domain->notifier);
}
static const struct iommu_domain_ops intel_svm_domain_ops = {
.set_dev_pasid = intel_svm_set_dev_pasid,
.free = intel_svm_domain_free
};
struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
struct mm_struct *mm)
{
struct dmar_domain *domain;
int ret;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return ERR_PTR(-ENOMEM);
domain->domain.ops = &intel_svm_domain_ops;
domain->use_first_level = true;
INIT_LIST_HEAD(&domain->dev_pasids);
INIT_LIST_HEAD(&domain->cache_tags);
spin_lock_init(&domain->cache_lock);
spin_lock_init(&domain->lock);
domain->notifier.ops = &intel_mmuops;
ret = mmu_notifier_register(&domain->notifier, mm);
if (ret) {
kfree(domain);
return ERR_PTR(ret);
}
return &domain->domain;
}