| /* | 
 |  *  linux/kernel/sys.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  */ | 
 |  | 
 | #include <linux/export.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/highuid.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/resource.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/device.h> | 
 | #include <linux/key.h> | 
 | #include <linux/times.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/security.h> | 
 | #include <linux/dcookies.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/getcpu.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/seccomp.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/fs_struct.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/version.h> | 
 | #include <linux/ctype.h> | 
 |  | 
 | #include <linux/compat.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/user_namespace.h> | 
 | #include <linux/binfmts.h> | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/uidgid.h> | 
 | #include <linux/cred.h> | 
 |  | 
 | #include <linux/kmsg_dump.h> | 
 | /* Move somewhere else to avoid recompiling? */ | 
 | #include <generated/utsrelease.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 | #include <asm/unistd.h> | 
 |  | 
 | #ifndef SET_UNALIGN_CTL | 
 | # define SET_UNALIGN_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_UNALIGN_CTL | 
 | # define GET_UNALIGN_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef SET_FPEMU_CTL | 
 | # define SET_FPEMU_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_FPEMU_CTL | 
 | # define GET_FPEMU_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef SET_FPEXC_CTL | 
 | # define SET_FPEXC_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_FPEXC_CTL | 
 | # define GET_FPEXC_CTL(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_ENDIAN | 
 | # define GET_ENDIAN(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef SET_ENDIAN | 
 | # define SET_ENDIAN(a, b)	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_TSC_CTL | 
 | # define GET_TSC_CTL(a)		(-EINVAL) | 
 | #endif | 
 | #ifndef SET_TSC_CTL | 
 | # define SET_TSC_CTL(a)		(-EINVAL) | 
 | #endif | 
 | #ifndef MPX_ENABLE_MANAGEMENT | 
 | # define MPX_ENABLE_MANAGEMENT()	(-EINVAL) | 
 | #endif | 
 | #ifndef MPX_DISABLE_MANAGEMENT | 
 | # define MPX_DISABLE_MANAGEMENT()	(-EINVAL) | 
 | #endif | 
 | #ifndef GET_FP_MODE | 
 | # define GET_FP_MODE(a)		(-EINVAL) | 
 | #endif | 
 | #ifndef SET_FP_MODE | 
 | # define SET_FP_MODE(a,b)	(-EINVAL) | 
 | #endif | 
 |  | 
 | /* | 
 |  * this is where the system-wide overflow UID and GID are defined, for | 
 |  * architectures that now have 32-bit UID/GID but didn't in the past | 
 |  */ | 
 |  | 
 | int overflowuid = DEFAULT_OVERFLOWUID; | 
 | int overflowgid = DEFAULT_OVERFLOWGID; | 
 |  | 
 | EXPORT_SYMBOL(overflowuid); | 
 | EXPORT_SYMBOL(overflowgid); | 
 |  | 
 | /* | 
 |  * the same as above, but for filesystems which can only store a 16-bit | 
 |  * UID and GID. as such, this is needed on all architectures | 
 |  */ | 
 |  | 
 | int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; | 
 | int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; | 
 |  | 
 | EXPORT_SYMBOL(fs_overflowuid); | 
 | EXPORT_SYMBOL(fs_overflowgid); | 
 |  | 
 | /* | 
 |  * Returns true if current's euid is same as p's uid or euid, | 
 |  * or has CAP_SYS_NICE to p's user_ns. | 
 |  * | 
 |  * Called with rcu_read_lock, creds are safe | 
 |  */ | 
 | static bool set_one_prio_perm(struct task_struct *p) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *pcred = __task_cred(p); | 
 |  | 
 | 	if (uid_eq(pcred->uid,  cred->euid) || | 
 | 	    uid_eq(pcred->euid, cred->euid)) | 
 | 		return true; | 
 | 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * set the priority of a task | 
 |  * - the caller must hold the RCU read lock | 
 |  */ | 
 | static int set_one_prio(struct task_struct *p, int niceval, int error) | 
 | { | 
 | 	int no_nice; | 
 |  | 
 | 	if (!set_one_prio_perm(p)) { | 
 | 		error = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 | 	if (niceval < task_nice(p) && !can_nice(p, niceval)) { | 
 | 		error = -EACCES; | 
 | 		goto out; | 
 | 	} | 
 | 	no_nice = security_task_setnice(p, niceval); | 
 | 	if (no_nice) { | 
 | 		error = no_nice; | 
 | 		goto out; | 
 | 	} | 
 | 	if (error == -ESRCH) | 
 | 		error = 0; | 
 | 	set_user_nice(p, niceval); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	struct user_struct *user; | 
 | 	const struct cred *cred = current_cred(); | 
 | 	int error = -EINVAL; | 
 | 	struct pid *pgrp; | 
 | 	kuid_t uid; | 
 |  | 
 | 	if (which > PRIO_USER || which < PRIO_PROCESS) | 
 | 		goto out; | 
 |  | 
 | 	/* normalize: avoid signed division (rounding problems) */ | 
 | 	error = -ESRCH; | 
 | 	if (niceval < MIN_NICE) | 
 | 		niceval = MIN_NICE; | 
 | 	if (niceval > MAX_NICE) | 
 | 		niceval = MAX_NICE; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	read_lock(&tasklist_lock); | 
 | 	switch (which) { | 
 | 	case PRIO_PROCESS: | 
 | 		if (who) | 
 | 			p = find_task_by_vpid(who); | 
 | 		else | 
 | 			p = current; | 
 | 		if (p) | 
 | 			error = set_one_prio(p, niceval, error); | 
 | 		break; | 
 | 	case PRIO_PGRP: | 
 | 		if (who) | 
 | 			pgrp = find_vpid(who); | 
 | 		else | 
 | 			pgrp = task_pgrp(current); | 
 | 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | 
 | 			error = set_one_prio(p, niceval, error); | 
 | 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | 
 | 		break; | 
 | 	case PRIO_USER: | 
 | 		uid = make_kuid(cred->user_ns, who); | 
 | 		user = cred->user; | 
 | 		if (!who) | 
 | 			uid = cred->uid; | 
 | 		else if (!uid_eq(uid, cred->uid)) { | 
 | 			user = find_user(uid); | 
 | 			if (!user) | 
 | 				goto out_unlock;	/* No processes for this user */ | 
 | 		} | 
 | 		do_each_thread(g, p) { | 
 | 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) | 
 | 				error = set_one_prio(p, niceval, error); | 
 | 		} while_each_thread(g, p); | 
 | 		if (!uid_eq(uid, cred->uid)) | 
 | 			free_uid(user);		/* For find_user() */ | 
 | 		break; | 
 | 	} | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	rcu_read_unlock(); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Ugh. To avoid negative return values, "getpriority()" will | 
 |  * not return the normal nice-value, but a negated value that | 
 |  * has been offset by 20 (ie it returns 40..1 instead of -20..19) | 
 |  * to stay compatible. | 
 |  */ | 
 | SYSCALL_DEFINE2(getpriority, int, which, int, who) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	struct user_struct *user; | 
 | 	const struct cred *cred = current_cred(); | 
 | 	long niceval, retval = -ESRCH; | 
 | 	struct pid *pgrp; | 
 | 	kuid_t uid; | 
 |  | 
 | 	if (which > PRIO_USER || which < PRIO_PROCESS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	read_lock(&tasklist_lock); | 
 | 	switch (which) { | 
 | 	case PRIO_PROCESS: | 
 | 		if (who) | 
 | 			p = find_task_by_vpid(who); | 
 | 		else | 
 | 			p = current; | 
 | 		if (p) { | 
 | 			niceval = nice_to_rlimit(task_nice(p)); | 
 | 			if (niceval > retval) | 
 | 				retval = niceval; | 
 | 		} | 
 | 		break; | 
 | 	case PRIO_PGRP: | 
 | 		if (who) | 
 | 			pgrp = find_vpid(who); | 
 | 		else | 
 | 			pgrp = task_pgrp(current); | 
 | 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | 
 | 			niceval = nice_to_rlimit(task_nice(p)); | 
 | 			if (niceval > retval) | 
 | 				retval = niceval; | 
 | 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | 
 | 		break; | 
 | 	case PRIO_USER: | 
 | 		uid = make_kuid(cred->user_ns, who); | 
 | 		user = cred->user; | 
 | 		if (!who) | 
 | 			uid = cred->uid; | 
 | 		else if (!uid_eq(uid, cred->uid)) { | 
 | 			user = find_user(uid); | 
 | 			if (!user) | 
 | 				goto out_unlock;	/* No processes for this user */ | 
 | 		} | 
 | 		do_each_thread(g, p) { | 
 | 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { | 
 | 				niceval = nice_to_rlimit(task_nice(p)); | 
 | 				if (niceval > retval) | 
 | 					retval = niceval; | 
 | 			} | 
 | 		} while_each_thread(g, p); | 
 | 		if (!uid_eq(uid, cred->uid)) | 
 | 			free_uid(user);		/* for find_user() */ | 
 | 		break; | 
 | 	} | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Unprivileged users may change the real gid to the effective gid | 
 |  * or vice versa.  (BSD-style) | 
 |  * | 
 |  * If you set the real gid at all, or set the effective gid to a value not | 
 |  * equal to the real gid, then the saved gid is set to the new effective gid. | 
 |  * | 
 |  * This makes it possible for a setgid program to completely drop its | 
 |  * privileges, which is often a useful assertion to make when you are doing | 
 |  * a security audit over a program. | 
 |  * | 
 |  * The general idea is that a program which uses just setregid() will be | 
 |  * 100% compatible with BSD.  A program which uses just setgid() will be | 
 |  * 100% compatible with POSIX with saved IDs. | 
 |  * | 
 |  * SMP: There are not races, the GIDs are checked only by filesystem | 
 |  *      operations (as far as semantic preservation is concerned). | 
 |  */ | 
 | #ifdef CONFIG_MULTIUSER | 
 | SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kgid_t krgid, kegid; | 
 |  | 
 | 	krgid = make_kgid(ns, rgid); | 
 | 	kegid = make_kgid(ns, egid); | 
 |  | 
 | 	if ((rgid != (gid_t) -1) && !gid_valid(krgid)) | 
 | 		return -EINVAL; | 
 | 	if ((egid != (gid_t) -1) && !gid_valid(kegid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (rgid != (gid_t) -1) { | 
 | 		if (gid_eq(old->gid, krgid) || | 
 | 		    gid_eq(old->egid, krgid) || | 
 | 		    ns_capable(old->user_ns, CAP_SETGID)) | 
 | 			new->gid = krgid; | 
 | 		else | 
 | 			goto error; | 
 | 	} | 
 | 	if (egid != (gid_t) -1) { | 
 | 		if (gid_eq(old->gid, kegid) || | 
 | 		    gid_eq(old->egid, kegid) || | 
 | 		    gid_eq(old->sgid, kegid) || | 
 | 		    ns_capable(old->user_ns, CAP_SETGID)) | 
 | 			new->egid = kegid; | 
 | 		else | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (rgid != (gid_t) -1 || | 
 | 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) | 
 | 		new->sgid = new->egid; | 
 | 	new->fsgid = new->egid; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * setgid() is implemented like SysV w/ SAVED_IDS | 
 |  * | 
 |  * SMP: Same implicit races as above. | 
 |  */ | 
 | SYSCALL_DEFINE1(setgid, gid_t, gid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kgid_t kgid; | 
 |  | 
 | 	kgid = make_kgid(ns, gid); | 
 | 	if (!gid_valid(kgid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (ns_capable(old->user_ns, CAP_SETGID)) | 
 | 		new->gid = new->egid = new->sgid = new->fsgid = kgid; | 
 | 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) | 
 | 		new->egid = new->fsgid = kgid; | 
 | 	else | 
 | 		goto error; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * change the user struct in a credentials set to match the new UID | 
 |  */ | 
 | static int set_user(struct cred *new) | 
 | { | 
 | 	struct user_struct *new_user; | 
 |  | 
 | 	new_user = alloc_uid(new->uid); | 
 | 	if (!new_user) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * We don't fail in case of NPROC limit excess here because too many | 
 | 	 * poorly written programs don't check set*uid() return code, assuming | 
 | 	 * it never fails if called by root.  We may still enforce NPROC limit | 
 | 	 * for programs doing set*uid()+execve() by harmlessly deferring the | 
 | 	 * failure to the execve() stage. | 
 | 	 */ | 
 | 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && | 
 | 			new_user != INIT_USER) | 
 | 		current->flags |= PF_NPROC_EXCEEDED; | 
 | 	else | 
 | 		current->flags &= ~PF_NPROC_EXCEEDED; | 
 |  | 
 | 	free_uid(new->user); | 
 | 	new->user = new_user; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Unprivileged users may change the real uid to the effective uid | 
 |  * or vice versa.  (BSD-style) | 
 |  * | 
 |  * If you set the real uid at all, or set the effective uid to a value not | 
 |  * equal to the real uid, then the saved uid is set to the new effective uid. | 
 |  * | 
 |  * This makes it possible for a setuid program to completely drop its | 
 |  * privileges, which is often a useful assertion to make when you are doing | 
 |  * a security audit over a program. | 
 |  * | 
 |  * The general idea is that a program which uses just setreuid() will be | 
 |  * 100% compatible with BSD.  A program which uses just setuid() will be | 
 |  * 100% compatible with POSIX with saved IDs. | 
 |  */ | 
 | SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kuid_t kruid, keuid; | 
 |  | 
 | 	kruid = make_kuid(ns, ruid); | 
 | 	keuid = make_kuid(ns, euid); | 
 |  | 
 | 	if ((ruid != (uid_t) -1) && !uid_valid(kruid)) | 
 | 		return -EINVAL; | 
 | 	if ((euid != (uid_t) -1) && !uid_valid(keuid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (ruid != (uid_t) -1) { | 
 | 		new->uid = kruid; | 
 | 		if (!uid_eq(old->uid, kruid) && | 
 | 		    !uid_eq(old->euid, kruid) && | 
 | 		    !ns_capable(old->user_ns, CAP_SETUID)) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (euid != (uid_t) -1) { | 
 | 		new->euid = keuid; | 
 | 		if (!uid_eq(old->uid, keuid) && | 
 | 		    !uid_eq(old->euid, keuid) && | 
 | 		    !uid_eq(old->suid, keuid) && | 
 | 		    !ns_capable(old->user_ns, CAP_SETUID)) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (!uid_eq(new->uid, old->uid)) { | 
 | 		retval = set_user(new); | 
 | 		if (retval < 0) | 
 | 			goto error; | 
 | 	} | 
 | 	if (ruid != (uid_t) -1 || | 
 | 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) | 
 | 		new->suid = new->euid; | 
 | 	new->fsuid = new->euid; | 
 |  | 
 | 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE); | 
 | 	if (retval < 0) | 
 | 		goto error; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * setuid() is implemented like SysV with SAVED_IDS | 
 |  * | 
 |  * Note that SAVED_ID's is deficient in that a setuid root program | 
 |  * like sendmail, for example, cannot set its uid to be a normal | 
 |  * user and then switch back, because if you're root, setuid() sets | 
 |  * the saved uid too.  If you don't like this, blame the bright people | 
 |  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid() | 
 |  * will allow a root program to temporarily drop privileges and be able to | 
 |  * regain them by swapping the real and effective uid. | 
 |  */ | 
 | SYSCALL_DEFINE1(setuid, uid_t, uid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kuid_t kuid; | 
 |  | 
 | 	kuid = make_kuid(ns, uid); | 
 | 	if (!uid_valid(kuid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (ns_capable(old->user_ns, CAP_SETUID)) { | 
 | 		new->suid = new->uid = kuid; | 
 | 		if (!uid_eq(kuid, old->uid)) { | 
 | 			retval = set_user(new); | 
 | 			if (retval < 0) | 
 | 				goto error; | 
 | 		} | 
 | 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	new->fsuid = new->euid = kuid; | 
 |  | 
 | 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID); | 
 | 	if (retval < 0) | 
 | 		goto error; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This function implements a generic ability to update ruid, euid, | 
 |  * and suid.  This allows you to implement the 4.4 compatible seteuid(). | 
 |  */ | 
 | SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kuid_t kruid, keuid, ksuid; | 
 |  | 
 | 	kruid = make_kuid(ns, ruid); | 
 | 	keuid = make_kuid(ns, euid); | 
 | 	ksuid = make_kuid(ns, suid); | 
 |  | 
 | 	if ((ruid != (uid_t) -1) && !uid_valid(kruid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((euid != (uid_t) -1) && !uid_valid(keuid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((suid != (uid_t) -1) && !uid_valid(ksuid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (!ns_capable(old->user_ns, CAP_SETUID)) { | 
 | 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) && | 
 | 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) | 
 | 			goto error; | 
 | 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) && | 
 | 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) | 
 | 			goto error; | 
 | 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) && | 
 | 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (ruid != (uid_t) -1) { | 
 | 		new->uid = kruid; | 
 | 		if (!uid_eq(kruid, old->uid)) { | 
 | 			retval = set_user(new); | 
 | 			if (retval < 0) | 
 | 				goto error; | 
 | 		} | 
 | 	} | 
 | 	if (euid != (uid_t) -1) | 
 | 		new->euid = keuid; | 
 | 	if (suid != (uid_t) -1) | 
 | 		new->suid = ksuid; | 
 | 	new->fsuid = new->euid; | 
 |  | 
 | 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES); | 
 | 	if (retval < 0) | 
 | 		goto error; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) | 
 | { | 
 | 	const struct cred *cred = current_cred(); | 
 | 	int retval; | 
 | 	uid_t ruid, euid, suid; | 
 |  | 
 | 	ruid = from_kuid_munged(cred->user_ns, cred->uid); | 
 | 	euid = from_kuid_munged(cred->user_ns, cred->euid); | 
 | 	suid = from_kuid_munged(cred->user_ns, cred->suid); | 
 |  | 
 | 	retval = put_user(ruid, ruidp); | 
 | 	if (!retval) { | 
 | 		retval = put_user(euid, euidp); | 
 | 		if (!retval) | 
 | 			return put_user(suid, suidp); | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Same as above, but for rgid, egid, sgid. | 
 |  */ | 
 | SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) | 
 | { | 
 | 	struct user_namespace *ns = current_user_ns(); | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	int retval; | 
 | 	kgid_t krgid, kegid, ksgid; | 
 |  | 
 | 	krgid = make_kgid(ns, rgid); | 
 | 	kegid = make_kgid(ns, egid); | 
 | 	ksgid = make_kgid(ns, sgid); | 
 |  | 
 | 	if ((rgid != (gid_t) -1) && !gid_valid(krgid)) | 
 | 		return -EINVAL; | 
 | 	if ((egid != (gid_t) -1) && !gid_valid(kegid)) | 
 | 		return -EINVAL; | 
 | 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 | 	old = current_cred(); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (!ns_capable(old->user_ns, CAP_SETGID)) { | 
 | 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) && | 
 | 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) | 
 | 			goto error; | 
 | 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) && | 
 | 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) | 
 | 			goto error; | 
 | 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) && | 
 | 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (rgid != (gid_t) -1) | 
 | 		new->gid = krgid; | 
 | 	if (egid != (gid_t) -1) | 
 | 		new->egid = kegid; | 
 | 	if (sgid != (gid_t) -1) | 
 | 		new->sgid = ksgid; | 
 | 	new->fsgid = new->egid; | 
 |  | 
 | 	return commit_creds(new); | 
 |  | 
 | error: | 
 | 	abort_creds(new); | 
 | 	return retval; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) | 
 | { | 
 | 	const struct cred *cred = current_cred(); | 
 | 	int retval; | 
 | 	gid_t rgid, egid, sgid; | 
 |  | 
 | 	rgid = from_kgid_munged(cred->user_ns, cred->gid); | 
 | 	egid = from_kgid_munged(cred->user_ns, cred->egid); | 
 | 	sgid = from_kgid_munged(cred->user_ns, cred->sgid); | 
 |  | 
 | 	retval = put_user(rgid, rgidp); | 
 | 	if (!retval) { | 
 | 		retval = put_user(egid, egidp); | 
 | 		if (!retval) | 
 | 			retval = put_user(sgid, sgidp); | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This | 
 |  * is used for "access()" and for the NFS daemon (letting nfsd stay at | 
 |  * whatever uid it wants to). It normally shadows "euid", except when | 
 |  * explicitly set by setfsuid() or for access.. | 
 |  */ | 
 | SYSCALL_DEFINE1(setfsuid, uid_t, uid) | 
 | { | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	uid_t old_fsuid; | 
 | 	kuid_t kuid; | 
 |  | 
 | 	old = current_cred(); | 
 | 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); | 
 |  | 
 | 	kuid = make_kuid(old->user_ns, uid); | 
 | 	if (!uid_valid(kuid)) | 
 | 		return old_fsuid; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return old_fsuid; | 
 |  | 
 | 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  || | 
 | 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || | 
 | 	    ns_capable(old->user_ns, CAP_SETUID)) { | 
 | 		if (!uid_eq(kuid, old->fsuid)) { | 
 | 			new->fsuid = kuid; | 
 | 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) | 
 | 				goto change_okay; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	abort_creds(new); | 
 | 	return old_fsuid; | 
 |  | 
 | change_okay: | 
 | 	commit_creds(new); | 
 | 	return old_fsuid; | 
 | } | 
 |  | 
 | /* | 
 |  * Samma på svenska.. | 
 |  */ | 
 | SYSCALL_DEFINE1(setfsgid, gid_t, gid) | 
 | { | 
 | 	const struct cred *old; | 
 | 	struct cred *new; | 
 | 	gid_t old_fsgid; | 
 | 	kgid_t kgid; | 
 |  | 
 | 	old = current_cred(); | 
 | 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); | 
 |  | 
 | 	kgid = make_kgid(old->user_ns, gid); | 
 | 	if (!gid_valid(kgid)) | 
 | 		return old_fsgid; | 
 |  | 
 | 	new = prepare_creds(); | 
 | 	if (!new) | 
 | 		return old_fsgid; | 
 |  | 
 | 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  || | 
 | 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || | 
 | 	    ns_capable(old->user_ns, CAP_SETGID)) { | 
 | 		if (!gid_eq(kgid, old->fsgid)) { | 
 | 			new->fsgid = kgid; | 
 | 			goto change_okay; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	abort_creds(new); | 
 | 	return old_fsgid; | 
 |  | 
 | change_okay: | 
 | 	commit_creds(new); | 
 | 	return old_fsgid; | 
 | } | 
 | #endif /* CONFIG_MULTIUSER */ | 
 |  | 
 | /** | 
 |  * sys_getpid - return the thread group id of the current process | 
 |  * | 
 |  * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
 |  * the pid are identical unless CLONE_THREAD was specified on clone() in | 
 |  * which case the tgid is the same in all threads of the same group. | 
 |  * | 
 |  * This is SMP safe as current->tgid does not change. | 
 |  */ | 
 | SYSCALL_DEFINE0(getpid) | 
 | { | 
 | 	return task_tgid_vnr(current); | 
 | } | 
 |  | 
 | /* Thread ID - the internal kernel "pid" */ | 
 | SYSCALL_DEFINE0(gettid) | 
 | { | 
 | 	return task_pid_vnr(current); | 
 | } | 
 |  | 
 | /* | 
 |  * Accessing ->real_parent is not SMP-safe, it could | 
 |  * change from under us. However, we can use a stale | 
 |  * value of ->real_parent under rcu_read_lock(), see | 
 |  * release_task()->call_rcu(delayed_put_task_struct). | 
 |  */ | 
 | SYSCALL_DEFINE0(getppid) | 
 | { | 
 | 	int pid; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pid = task_tgid_vnr(rcu_dereference(current->real_parent)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return pid; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE0(getuid) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return from_kuid_munged(current_user_ns(), current_uid()); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE0(geteuid) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return from_kuid_munged(current_user_ns(), current_euid()); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE0(getgid) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return from_kgid_munged(current_user_ns(), current_gid()); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE0(getegid) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return from_kgid_munged(current_user_ns(), current_egid()); | 
 | } | 
 |  | 
 | void do_sys_times(struct tms *tms) | 
 | { | 
 | 	cputime_t tgutime, tgstime, cutime, cstime; | 
 |  | 
 | 	thread_group_cputime_adjusted(current, &tgutime, &tgstime); | 
 | 	cutime = current->signal->cutime; | 
 | 	cstime = current->signal->cstime; | 
 | 	tms->tms_utime = cputime_to_clock_t(tgutime); | 
 | 	tms->tms_stime = cputime_to_clock_t(tgstime); | 
 | 	tms->tms_cutime = cputime_to_clock_t(cutime); | 
 | 	tms->tms_cstime = cputime_to_clock_t(cstime); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(times, struct tms __user *, tbuf) | 
 | { | 
 | 	if (tbuf) { | 
 | 		struct tms tmp; | 
 |  | 
 | 		do_sys_times(&tmp); | 
 | 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	force_successful_syscall_return(); | 
 | 	return (long) jiffies_64_to_clock_t(get_jiffies_64()); | 
 | } | 
 |  | 
 | /* | 
 |  * This needs some heavy checking ... | 
 |  * I just haven't the stomach for it. I also don't fully | 
 |  * understand sessions/pgrp etc. Let somebody who does explain it. | 
 |  * | 
 |  * OK, I think I have the protection semantics right.... this is really | 
 |  * only important on a multi-user system anyway, to make sure one user | 
 |  * can't send a signal to a process owned by another.  -TYT, 12/12/91 | 
 |  * | 
 |  * !PF_FORKNOEXEC check to conform completely to POSIX. | 
 |  */ | 
 | SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct task_struct *group_leader = current->group_leader; | 
 | 	struct pid *pgrp; | 
 | 	int err; | 
 |  | 
 | 	if (!pid) | 
 | 		pid = task_pid_vnr(group_leader); | 
 | 	if (!pgid) | 
 | 		pgid = pid; | 
 | 	if (pgid < 0) | 
 | 		return -EINVAL; | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* From this point forward we keep holding onto the tasklist lock | 
 | 	 * so that our parent does not change from under us. -DaveM | 
 | 	 */ | 
 | 	write_lock_irq(&tasklist_lock); | 
 |  | 
 | 	err = -ESRCH; | 
 | 	p = find_task_by_vpid(pid); | 
 | 	if (!p) | 
 | 		goto out; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (!thread_group_leader(p)) | 
 | 		goto out; | 
 |  | 
 | 	if (same_thread_group(p->real_parent, group_leader)) { | 
 | 		err = -EPERM; | 
 | 		if (task_session(p) != task_session(group_leader)) | 
 | 			goto out; | 
 | 		err = -EACCES; | 
 | 		if (!(p->flags & PF_FORKNOEXEC)) | 
 | 			goto out; | 
 | 	} else { | 
 | 		err = -ESRCH; | 
 | 		if (p != group_leader) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	err = -EPERM; | 
 | 	if (p->signal->leader) | 
 | 		goto out; | 
 |  | 
 | 	pgrp = task_pid(p); | 
 | 	if (pgid != pid) { | 
 | 		struct task_struct *g; | 
 |  | 
 | 		pgrp = find_vpid(pgid); | 
 | 		g = pid_task(pgrp, PIDTYPE_PGID); | 
 | 		if (!g || task_session(g) != task_session(group_leader)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	err = security_task_setpgid(p, pgid); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (task_pgrp(p) != pgrp) | 
 | 		change_pid(p, PIDTYPE_PGID, pgrp); | 
 |  | 
 | 	err = 0; | 
 | out: | 
 | 	/* All paths lead to here, thus we are safe. -DaveM */ | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	rcu_read_unlock(); | 
 | 	return err; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(getpgid, pid_t, pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct pid *grp; | 
 | 	int retval; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!pid) | 
 | 		grp = task_pgrp(current); | 
 | 	else { | 
 | 		retval = -ESRCH; | 
 | 		p = find_task_by_vpid(pid); | 
 | 		if (!p) | 
 | 			goto out; | 
 | 		grp = task_pgrp(p); | 
 | 		if (!grp) | 
 | 			goto out; | 
 |  | 
 | 		retval = security_task_getpgid(p); | 
 | 		if (retval) | 
 | 			goto out; | 
 | 	} | 
 | 	retval = pid_vnr(grp); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_GETPGRP | 
 |  | 
 | SYSCALL_DEFINE0(getpgrp) | 
 | { | 
 | 	return sys_getpgid(0); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | SYSCALL_DEFINE1(getsid, pid_t, pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct pid *sid; | 
 | 	int retval; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!pid) | 
 | 		sid = task_session(current); | 
 | 	else { | 
 | 		retval = -ESRCH; | 
 | 		p = find_task_by_vpid(pid); | 
 | 		if (!p) | 
 | 			goto out; | 
 | 		sid = task_session(p); | 
 | 		if (!sid) | 
 | 			goto out; | 
 |  | 
 | 		retval = security_task_getsid(p); | 
 | 		if (retval) | 
 | 			goto out; | 
 | 	} | 
 | 	retval = pid_vnr(sid); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void set_special_pids(struct pid *pid) | 
 | { | 
 | 	struct task_struct *curr = current->group_leader; | 
 |  | 
 | 	if (task_session(curr) != pid) | 
 | 		change_pid(curr, PIDTYPE_SID, pid); | 
 |  | 
 | 	if (task_pgrp(curr) != pid) | 
 | 		change_pid(curr, PIDTYPE_PGID, pid); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE0(setsid) | 
 | { | 
 | 	struct task_struct *group_leader = current->group_leader; | 
 | 	struct pid *sid = task_pid(group_leader); | 
 | 	pid_t session = pid_vnr(sid); | 
 | 	int err = -EPERM; | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	/* Fail if I am already a session leader */ | 
 | 	if (group_leader->signal->leader) | 
 | 		goto out; | 
 |  | 
 | 	/* Fail if a process group id already exists that equals the | 
 | 	 * proposed session id. | 
 | 	 */ | 
 | 	if (pid_task(sid, PIDTYPE_PGID)) | 
 | 		goto out; | 
 |  | 
 | 	group_leader->signal->leader = 1; | 
 | 	set_special_pids(sid); | 
 |  | 
 | 	proc_clear_tty(group_leader); | 
 |  | 
 | 	err = session; | 
 | out: | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	if (err > 0) { | 
 | 		proc_sid_connector(group_leader); | 
 | 		sched_autogroup_create_attach(group_leader); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | DECLARE_RWSEM(uts_sem); | 
 |  | 
 | #ifdef COMPAT_UTS_MACHINE | 
 | #define override_architecture(name) \ | 
 | 	(personality(current->personality) == PER_LINUX32 && \ | 
 | 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ | 
 | 		      sizeof(COMPAT_UTS_MACHINE))) | 
 | #else | 
 | #define override_architecture(name)	0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Work around broken programs that cannot handle "Linux 3.0". | 
 |  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 | 
 |  * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60. | 
 |  */ | 
 | static int override_release(char __user *release, size_t len) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (current->personality & UNAME26) { | 
 | 		const char *rest = UTS_RELEASE; | 
 | 		char buf[65] = { 0 }; | 
 | 		int ndots = 0; | 
 | 		unsigned v; | 
 | 		size_t copy; | 
 |  | 
 | 		while (*rest) { | 
 | 			if (*rest == '.' && ++ndots >= 3) | 
 | 				break; | 
 | 			if (!isdigit(*rest) && *rest != '.') | 
 | 				break; | 
 | 			rest++; | 
 | 		} | 
 | 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60; | 
 | 		copy = clamp_t(size_t, len, 1, sizeof(buf)); | 
 | 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); | 
 | 		ret = copy_to_user(release, buf, copy + 1); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) | 
 | { | 
 | 	int errno = 0; | 
 |  | 
 | 	down_read(&uts_sem); | 
 | 	if (copy_to_user(name, utsname(), sizeof *name)) | 
 | 		errno = -EFAULT; | 
 | 	up_read(&uts_sem); | 
 |  | 
 | 	if (!errno && override_release(name->release, sizeof(name->release))) | 
 | 		errno = -EFAULT; | 
 | 	if (!errno && override_architecture(name)) | 
 | 		errno = -EFAULT; | 
 | 	return errno; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_OLD_UNAME | 
 | /* | 
 |  * Old cruft | 
 |  */ | 
 | SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	if (!name) | 
 | 		return -EFAULT; | 
 |  | 
 | 	down_read(&uts_sem); | 
 | 	if (copy_to_user(name, utsname(), sizeof(*name))) | 
 | 		error = -EFAULT; | 
 | 	up_read(&uts_sem); | 
 |  | 
 | 	if (!error && override_release(name->release, sizeof(name->release))) | 
 | 		error = -EFAULT; | 
 | 	if (!error && override_architecture(name)) | 
 | 		error = -EFAULT; | 
 | 	return error; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if (!name) | 
 | 		return -EFAULT; | 
 | 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	down_read(&uts_sem); | 
 | 	error = __copy_to_user(&name->sysname, &utsname()->sysname, | 
 | 			       __OLD_UTS_LEN); | 
 | 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN); | 
 | 	error |= __copy_to_user(&name->nodename, &utsname()->nodename, | 
 | 				__OLD_UTS_LEN); | 
 | 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN); | 
 | 	error |= __copy_to_user(&name->release, &utsname()->release, | 
 | 				__OLD_UTS_LEN); | 
 | 	error |= __put_user(0, name->release + __OLD_UTS_LEN); | 
 | 	error |= __copy_to_user(&name->version, &utsname()->version, | 
 | 				__OLD_UTS_LEN); | 
 | 	error |= __put_user(0, name->version + __OLD_UTS_LEN); | 
 | 	error |= __copy_to_user(&name->machine, &utsname()->machine, | 
 | 				__OLD_UTS_LEN); | 
 | 	error |= __put_user(0, name->machine + __OLD_UTS_LEN); | 
 | 	up_read(&uts_sem); | 
 |  | 
 | 	if (!error && override_architecture(name)) | 
 | 		error = -EFAULT; | 
 | 	if (!error && override_release(name->release, sizeof(name->release))) | 
 | 		error = -EFAULT; | 
 | 	return error ? -EFAULT : 0; | 
 | } | 
 | #endif | 
 |  | 
 | SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) | 
 | { | 
 | 	int errno; | 
 | 	char tmp[__NEW_UTS_LEN]; | 
 |  | 
 | 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (len < 0 || len > __NEW_UTS_LEN) | 
 | 		return -EINVAL; | 
 | 	down_write(&uts_sem); | 
 | 	errno = -EFAULT; | 
 | 	if (!copy_from_user(tmp, name, len)) { | 
 | 		struct new_utsname *u = utsname(); | 
 |  | 
 | 		memcpy(u->nodename, tmp, len); | 
 | 		memset(u->nodename + len, 0, sizeof(u->nodename) - len); | 
 | 		errno = 0; | 
 | 		uts_proc_notify(UTS_PROC_HOSTNAME); | 
 | 	} | 
 | 	up_write(&uts_sem); | 
 | 	return errno; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_GETHOSTNAME | 
 |  | 
 | SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) | 
 | { | 
 | 	int i, errno; | 
 | 	struct new_utsname *u; | 
 |  | 
 | 	if (len < 0) | 
 | 		return -EINVAL; | 
 | 	down_read(&uts_sem); | 
 | 	u = utsname(); | 
 | 	i = 1 + strlen(u->nodename); | 
 | 	if (i > len) | 
 | 		i = len; | 
 | 	errno = 0; | 
 | 	if (copy_to_user(name, u->nodename, i)) | 
 | 		errno = -EFAULT; | 
 | 	up_read(&uts_sem); | 
 | 	return errno; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Only setdomainname; getdomainname can be implemented by calling | 
 |  * uname() | 
 |  */ | 
 | SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) | 
 | { | 
 | 	int errno; | 
 | 	char tmp[__NEW_UTS_LEN]; | 
 |  | 
 | 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	if (len < 0 || len > __NEW_UTS_LEN) | 
 | 		return -EINVAL; | 
 |  | 
 | 	down_write(&uts_sem); | 
 | 	errno = -EFAULT; | 
 | 	if (!copy_from_user(tmp, name, len)) { | 
 | 		struct new_utsname *u = utsname(); | 
 |  | 
 | 		memcpy(u->domainname, tmp, len); | 
 | 		memset(u->domainname + len, 0, sizeof(u->domainname) - len); | 
 | 		errno = 0; | 
 | 		uts_proc_notify(UTS_PROC_DOMAINNAME); | 
 | 	} | 
 | 	up_write(&uts_sem); | 
 | 	return errno; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) | 
 | { | 
 | 	struct rlimit value; | 
 | 	int ret; | 
 |  | 
 | 	ret = do_prlimit(current, resource, NULL, &value); | 
 | 	if (!ret) | 
 | 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT | 
 |  | 
 | /* | 
 |  *	Back compatibility for getrlimit. Needed for some apps. | 
 |  */ | 
 | SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, | 
 | 		struct rlimit __user *, rlim) | 
 | { | 
 | 	struct rlimit x; | 
 | 	if (resource >= RLIM_NLIMITS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	task_lock(current->group_leader); | 
 | 	x = current->signal->rlim[resource]; | 
 | 	task_unlock(current->group_leader); | 
 | 	if (x.rlim_cur > 0x7FFFFFFF) | 
 | 		x.rlim_cur = 0x7FFFFFFF; | 
 | 	if (x.rlim_max > 0x7FFFFFFF) | 
 | 		x.rlim_max = 0x7FFFFFFF; | 
 | 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static inline bool rlim64_is_infinity(__u64 rlim64) | 
 | { | 
 | #if BITS_PER_LONG < 64 | 
 | 	return rlim64 >= ULONG_MAX; | 
 | #else | 
 | 	return rlim64 == RLIM64_INFINITY; | 
 | #endif | 
 | } | 
 |  | 
 | static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) | 
 | { | 
 | 	if (rlim->rlim_cur == RLIM_INFINITY) | 
 | 		rlim64->rlim_cur = RLIM64_INFINITY; | 
 | 	else | 
 | 		rlim64->rlim_cur = rlim->rlim_cur; | 
 | 	if (rlim->rlim_max == RLIM_INFINITY) | 
 | 		rlim64->rlim_max = RLIM64_INFINITY; | 
 | 	else | 
 | 		rlim64->rlim_max = rlim->rlim_max; | 
 | } | 
 |  | 
 | static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) | 
 | { | 
 | 	if (rlim64_is_infinity(rlim64->rlim_cur)) | 
 | 		rlim->rlim_cur = RLIM_INFINITY; | 
 | 	else | 
 | 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; | 
 | 	if (rlim64_is_infinity(rlim64->rlim_max)) | 
 | 		rlim->rlim_max = RLIM_INFINITY; | 
 | 	else | 
 | 		rlim->rlim_max = (unsigned long)rlim64->rlim_max; | 
 | } | 
 |  | 
 | /* make sure you are allowed to change @tsk limits before calling this */ | 
 | int do_prlimit(struct task_struct *tsk, unsigned int resource, | 
 | 		struct rlimit *new_rlim, struct rlimit *old_rlim) | 
 | { | 
 | 	struct rlimit *rlim; | 
 | 	int retval = 0; | 
 |  | 
 | 	if (resource >= RLIM_NLIMITS) | 
 | 		return -EINVAL; | 
 | 	if (new_rlim) { | 
 | 		if (new_rlim->rlim_cur > new_rlim->rlim_max) | 
 | 			return -EINVAL; | 
 | 		if (resource == RLIMIT_NOFILE && | 
 | 				new_rlim->rlim_max > sysctl_nr_open) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	/* protect tsk->signal and tsk->sighand from disappearing */ | 
 | 	read_lock(&tasklist_lock); | 
 | 	if (!tsk->sighand) { | 
 | 		retval = -ESRCH; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rlim = tsk->signal->rlim + resource; | 
 | 	task_lock(tsk->group_leader); | 
 | 	if (new_rlim) { | 
 | 		/* Keep the capable check against init_user_ns until | 
 | 		   cgroups can contain all limits */ | 
 | 		if (new_rlim->rlim_max > rlim->rlim_max && | 
 | 				!capable(CAP_SYS_RESOURCE)) | 
 | 			retval = -EPERM; | 
 | 		if (!retval) | 
 | 			retval = security_task_setrlimit(tsk->group_leader, | 
 | 					resource, new_rlim); | 
 | 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { | 
 | 			/* | 
 | 			 * The caller is asking for an immediate RLIMIT_CPU | 
 | 			 * expiry.  But we use the zero value to mean "it was | 
 | 			 * never set".  So let's cheat and make it one second | 
 | 			 * instead | 
 | 			 */ | 
 | 			new_rlim->rlim_cur = 1; | 
 | 		} | 
 | 	} | 
 | 	if (!retval) { | 
 | 		if (old_rlim) | 
 | 			*old_rlim = *rlim; | 
 | 		if (new_rlim) | 
 | 			*rlim = *new_rlim; | 
 | 	} | 
 | 	task_unlock(tsk->group_leader); | 
 |  | 
 | 	/* | 
 | 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error | 
 | 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a | 
 | 	 * very long-standing error, and fixing it now risks breakage of | 
 | 	 * applications, so we live with it | 
 | 	 */ | 
 | 	 if (!retval && new_rlim && resource == RLIMIT_CPU && | 
 | 			 new_rlim->rlim_cur != RLIM_INFINITY) | 
 | 		update_rlimit_cpu(tsk, new_rlim->rlim_cur); | 
 | out: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* rcu lock must be held */ | 
 | static int check_prlimit_permission(struct task_struct *task) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *tcred; | 
 |  | 
 | 	if (current == task) | 
 | 		return 0; | 
 |  | 
 | 	tcred = __task_cred(task); | 
 | 	if (uid_eq(cred->uid, tcred->euid) && | 
 | 	    uid_eq(cred->uid, tcred->suid) && | 
 | 	    uid_eq(cred->uid, tcred->uid)  && | 
 | 	    gid_eq(cred->gid, tcred->egid) && | 
 | 	    gid_eq(cred->gid, tcred->sgid) && | 
 | 	    gid_eq(cred->gid, tcred->gid)) | 
 | 		return 0; | 
 | 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) | 
 | 		return 0; | 
 |  | 
 | 	return -EPERM; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, | 
 | 		const struct rlimit64 __user *, new_rlim, | 
 | 		struct rlimit64 __user *, old_rlim) | 
 | { | 
 | 	struct rlimit64 old64, new64; | 
 | 	struct rlimit old, new; | 
 | 	struct task_struct *tsk; | 
 | 	int ret; | 
 |  | 
 | 	if (new_rlim) { | 
 | 		if (copy_from_user(&new64, new_rlim, sizeof(new64))) | 
 | 			return -EFAULT; | 
 | 		rlim64_to_rlim(&new64, &new); | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	tsk = pid ? find_task_by_vpid(pid) : current; | 
 | 	if (!tsk) { | 
 | 		rcu_read_unlock(); | 
 | 		return -ESRCH; | 
 | 	} | 
 | 	ret = check_prlimit_permission(tsk); | 
 | 	if (ret) { | 
 | 		rcu_read_unlock(); | 
 | 		return ret; | 
 | 	} | 
 | 	get_task_struct(tsk); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, | 
 | 			old_rlim ? &old : NULL); | 
 |  | 
 | 	if (!ret && old_rlim) { | 
 | 		rlim_to_rlim64(&old, &old64); | 
 | 		if (copy_to_user(old_rlim, &old64, sizeof(old64))) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 |  | 
 | 	put_task_struct(tsk); | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) | 
 | { | 
 | 	struct rlimit new_rlim; | 
 |  | 
 | 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) | 
 | 		return -EFAULT; | 
 | 	return do_prlimit(current, resource, &new_rlim, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * It would make sense to put struct rusage in the task_struct, | 
 |  * except that would make the task_struct be *really big*.  After | 
 |  * task_struct gets moved into malloc'ed memory, it would | 
 |  * make sense to do this.  It will make moving the rest of the information | 
 |  * a lot simpler!  (Which we're not doing right now because we're not | 
 |  * measuring them yet). | 
 |  * | 
 |  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have | 
 |  * races with threads incrementing their own counters.  But since word | 
 |  * reads are atomic, we either get new values or old values and we don't | 
 |  * care which for the sums.  We always take the siglock to protect reading | 
 |  * the c* fields from p->signal from races with exit.c updating those | 
 |  * fields when reaping, so a sample either gets all the additions of a | 
 |  * given child after it's reaped, or none so this sample is before reaping. | 
 |  * | 
 |  * Locking: | 
 |  * We need to take the siglock for CHILDEREN, SELF and BOTH | 
 |  * for  the cases current multithreaded, non-current single threaded | 
 |  * non-current multithreaded.  Thread traversal is now safe with | 
 |  * the siglock held. | 
 |  * Strictly speaking, we donot need to take the siglock if we are current and | 
 |  * single threaded,  as no one else can take our signal_struct away, no one | 
 |  * else can  reap the  children to update signal->c* counters, and no one else | 
 |  * can race with the signal-> fields. If we do not take any lock, the | 
 |  * signal-> fields could be read out of order while another thread was just | 
 |  * exiting. So we should  place a read memory barrier when we avoid the lock. | 
 |  * On the writer side,  write memory barrier is implied in  __exit_signal | 
 |  * as __exit_signal releases  the siglock spinlock after updating the signal-> | 
 |  * fields. But we don't do this yet to keep things simple. | 
 |  * | 
 |  */ | 
 |  | 
 | static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) | 
 | { | 
 | 	r->ru_nvcsw += t->nvcsw; | 
 | 	r->ru_nivcsw += t->nivcsw; | 
 | 	r->ru_minflt += t->min_flt; | 
 | 	r->ru_majflt += t->maj_flt; | 
 | 	r->ru_inblock += task_io_get_inblock(t); | 
 | 	r->ru_oublock += task_io_get_oublock(t); | 
 | } | 
 |  | 
 | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | 
 | { | 
 | 	struct task_struct *t; | 
 | 	unsigned long flags; | 
 | 	cputime_t tgutime, tgstime, utime, stime; | 
 | 	unsigned long maxrss = 0; | 
 |  | 
 | 	memset((char *)r, 0, sizeof (*r)); | 
 | 	utime = stime = 0; | 
 |  | 
 | 	if (who == RUSAGE_THREAD) { | 
 | 		task_cputime_adjusted(current, &utime, &stime); | 
 | 		accumulate_thread_rusage(p, r); | 
 | 		maxrss = p->signal->maxrss; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!lock_task_sighand(p, &flags)) | 
 | 		return; | 
 |  | 
 | 	switch (who) { | 
 | 	case RUSAGE_BOTH: | 
 | 	case RUSAGE_CHILDREN: | 
 | 		utime = p->signal->cutime; | 
 | 		stime = p->signal->cstime; | 
 | 		r->ru_nvcsw = p->signal->cnvcsw; | 
 | 		r->ru_nivcsw = p->signal->cnivcsw; | 
 | 		r->ru_minflt = p->signal->cmin_flt; | 
 | 		r->ru_majflt = p->signal->cmaj_flt; | 
 | 		r->ru_inblock = p->signal->cinblock; | 
 | 		r->ru_oublock = p->signal->coublock; | 
 | 		maxrss = p->signal->cmaxrss; | 
 |  | 
 | 		if (who == RUSAGE_CHILDREN) | 
 | 			break; | 
 |  | 
 | 	case RUSAGE_SELF: | 
 | 		thread_group_cputime_adjusted(p, &tgutime, &tgstime); | 
 | 		utime += tgutime; | 
 | 		stime += tgstime; | 
 | 		r->ru_nvcsw += p->signal->nvcsw; | 
 | 		r->ru_nivcsw += p->signal->nivcsw; | 
 | 		r->ru_minflt += p->signal->min_flt; | 
 | 		r->ru_majflt += p->signal->maj_flt; | 
 | 		r->ru_inblock += p->signal->inblock; | 
 | 		r->ru_oublock += p->signal->oublock; | 
 | 		if (maxrss < p->signal->maxrss) | 
 | 			maxrss = p->signal->maxrss; | 
 | 		t = p; | 
 | 		do { | 
 | 			accumulate_thread_rusage(t, r); | 
 | 		} while_each_thread(p, t); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	unlock_task_sighand(p, &flags); | 
 |  | 
 | out: | 
 | 	cputime_to_timeval(utime, &r->ru_utime); | 
 | 	cputime_to_timeval(stime, &r->ru_stime); | 
 |  | 
 | 	if (who != RUSAGE_CHILDREN) { | 
 | 		struct mm_struct *mm = get_task_mm(p); | 
 |  | 
 | 		if (mm) { | 
 | 			setmax_mm_hiwater_rss(&maxrss, mm); | 
 | 			mmput(mm); | 
 | 		} | 
 | 	} | 
 | 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | 
 | } | 
 |  | 
 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 
 | { | 
 | 	struct rusage r; | 
 |  | 
 | 	k_getrusage(p, who, &r); | 
 | 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) | 
 | { | 
 | 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && | 
 | 	    who != RUSAGE_THREAD) | 
 | 		return -EINVAL; | 
 | 	return getrusage(current, who, ru); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) | 
 | { | 
 | 	struct rusage r; | 
 |  | 
 | 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && | 
 | 	    who != RUSAGE_THREAD) | 
 | 		return -EINVAL; | 
 |  | 
 | 	k_getrusage(current, who, &r); | 
 | 	return put_compat_rusage(&r, ru); | 
 | } | 
 | #endif | 
 |  | 
 | SYSCALL_DEFINE1(umask, int, mask) | 
 | { | 
 | 	mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) | 
 | { | 
 | 	struct fd exe; | 
 | 	struct file *old_exe, *exe_file; | 
 | 	struct inode *inode; | 
 | 	int err; | 
 |  | 
 | 	exe = fdget(fd); | 
 | 	if (!exe.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	inode = file_inode(exe.file); | 
 |  | 
 | 	/* | 
 | 	 * Because the original mm->exe_file points to executable file, make | 
 | 	 * sure that this one is executable as well, to avoid breaking an | 
 | 	 * overall picture. | 
 | 	 */ | 
 | 	err = -EACCES; | 
 | 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) | 
 | 		goto exit; | 
 |  | 
 | 	err = inode_permission(inode, MAY_EXEC); | 
 | 	if (err) | 
 | 		goto exit; | 
 |  | 
 | 	/* | 
 | 	 * Forbid mm->exe_file change if old file still mapped. | 
 | 	 */ | 
 | 	exe_file = get_mm_exe_file(mm); | 
 | 	err = -EBUSY; | 
 | 	if (exe_file) { | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		down_read(&mm->mmap_sem); | 
 | 		for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 			if (!vma->vm_file) | 
 | 				continue; | 
 | 			if (path_equal(&vma->vm_file->f_path, | 
 | 				       &exe_file->f_path)) | 
 | 				goto exit_err; | 
 | 		} | 
 |  | 
 | 		up_read(&mm->mmap_sem); | 
 | 		fput(exe_file); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The symlink can be changed only once, just to disallow arbitrary | 
 | 	 * transitions malicious software might bring in. This means one | 
 | 	 * could make a snapshot over all processes running and monitor | 
 | 	 * /proc/pid/exe changes to notice unusual activity if needed. | 
 | 	 */ | 
 | 	err = -EPERM; | 
 | 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags)) | 
 | 		goto exit; | 
 |  | 
 | 	err = 0; | 
 | 	/* set the new file, lockless */ | 
 | 	get_file(exe.file); | 
 | 	old_exe = xchg(&mm->exe_file, exe.file); | 
 | 	if (old_exe) | 
 | 		fput(old_exe); | 
 | exit: | 
 | 	fdput(exe); | 
 | 	return err; | 
 | exit_err: | 
 | 	up_read(&mm->mmap_sem); | 
 | 	fput(exe_file); | 
 | 	goto exit; | 
 | } | 
 |  | 
 | /* | 
 |  * WARNING: we don't require any capability here so be very careful | 
 |  * in what is allowed for modification from userspace. | 
 |  */ | 
 | static int validate_prctl_map(struct prctl_mm_map *prctl_map) | 
 | { | 
 | 	unsigned long mmap_max_addr = TASK_SIZE; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	int error = -EINVAL, i; | 
 |  | 
 | 	static const unsigned char offsets[] = { | 
 | 		offsetof(struct prctl_mm_map, start_code), | 
 | 		offsetof(struct prctl_mm_map, end_code), | 
 | 		offsetof(struct prctl_mm_map, start_data), | 
 | 		offsetof(struct prctl_mm_map, end_data), | 
 | 		offsetof(struct prctl_mm_map, start_brk), | 
 | 		offsetof(struct prctl_mm_map, brk), | 
 | 		offsetof(struct prctl_mm_map, start_stack), | 
 | 		offsetof(struct prctl_mm_map, arg_start), | 
 | 		offsetof(struct prctl_mm_map, arg_end), | 
 | 		offsetof(struct prctl_mm_map, env_start), | 
 | 		offsetof(struct prctl_mm_map, env_end), | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the members are not somewhere outside | 
 | 	 * of allowed address space. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(offsets); i++) { | 
 | 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]); | 
 |  | 
 | 		if ((unsigned long)val >= mmap_max_addr || | 
 | 		    (unsigned long)val < mmap_min_addr) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure the pairs are ordered. | 
 | 	 */ | 
 | #define __prctl_check_order(__m1, __op, __m2)				\ | 
 | 	((unsigned long)prctl_map->__m1 __op				\ | 
 | 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL | 
 | 	error  = __prctl_check_order(start_code, <, end_code); | 
 | 	error |= __prctl_check_order(start_data, <, end_data); | 
 | 	error |= __prctl_check_order(start_brk, <=, brk); | 
 | 	error |= __prctl_check_order(arg_start, <=, arg_end); | 
 | 	error |= __prctl_check_order(env_start, <=, env_end); | 
 | 	if (error) | 
 | 		goto out; | 
 | #undef __prctl_check_order | 
 |  | 
 | 	error = -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * @brk should be after @end_data in traditional maps. | 
 | 	 */ | 
 | 	if (prctl_map->start_brk <= prctl_map->end_data || | 
 | 	    prctl_map->brk <= prctl_map->end_data) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Neither we should allow to override limits if they set. | 
 | 	 */ | 
 | 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, | 
 | 			      prctl_map->start_brk, prctl_map->end_data, | 
 | 			      prctl_map->start_data)) | 
 | 			goto out; | 
 |  | 
 | 	/* | 
 | 	 * Someone is trying to cheat the auxv vector. | 
 | 	 */ | 
 | 	if (prctl_map->auxv_size) { | 
 | 		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finally, make sure the caller has the rights to | 
 | 	 * change /proc/pid/exe link: only local root should | 
 | 	 * be allowed to. | 
 | 	 */ | 
 | 	if (prctl_map->exe_fd != (u32)-1) { | 
 | 		struct user_namespace *ns = current_user_ns(); | 
 | 		const struct cred *cred = current_cred(); | 
 |  | 
 | 		if (!uid_eq(cred->uid, make_kuid(ns, 0)) || | 
 | 		    !gid_eq(cred->gid, make_kgid(ns, 0))) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	error = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
 | static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) | 
 | { | 
 | 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; | 
 | 	unsigned long user_auxv[AT_VECTOR_SIZE]; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	int error; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); | 
 | 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); | 
 |  | 
 | 	if (opt == PR_SET_MM_MAP_SIZE) | 
 | 		return put_user((unsigned int)sizeof(prctl_map), | 
 | 				(unsigned int __user *)addr); | 
 |  | 
 | 	if (data_size != sizeof(prctl_map)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	error = validate_prctl_map(&prctl_map); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (prctl_map.auxv_size) { | 
 | 		memset(user_auxv, 0, sizeof(user_auxv)); | 
 | 		if (copy_from_user(user_auxv, | 
 | 				   (const void __user *)prctl_map.auxv, | 
 | 				   prctl_map.auxv_size)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		/* Last entry must be AT_NULL as specification requires */ | 
 | 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; | 
 | 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; | 
 | 	} | 
 |  | 
 | 	if (prctl_map.exe_fd != (u32)-1) { | 
 | 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 |  | 
 | 	/* | 
 | 	 * We don't validate if these members are pointing to | 
 | 	 * real present VMAs because application may have correspond | 
 | 	 * VMAs already unmapped and kernel uses these members for statistics | 
 | 	 * output in procfs mostly, except | 
 | 	 * | 
 | 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups | 
 | 	 *    for VMAs when updating these memvers so anything wrong written | 
 | 	 *    here cause kernel to swear at userspace program but won't lead | 
 | 	 *    to any problem in kernel itself | 
 | 	 */ | 
 |  | 
 | 	mm->start_code	= prctl_map.start_code; | 
 | 	mm->end_code	= prctl_map.end_code; | 
 | 	mm->start_data	= prctl_map.start_data; | 
 | 	mm->end_data	= prctl_map.end_data; | 
 | 	mm->start_brk	= prctl_map.start_brk; | 
 | 	mm->brk		= prctl_map.brk; | 
 | 	mm->start_stack	= prctl_map.start_stack; | 
 | 	mm->arg_start	= prctl_map.arg_start; | 
 | 	mm->arg_end	= prctl_map.arg_end; | 
 | 	mm->env_start	= prctl_map.env_start; | 
 | 	mm->env_end	= prctl_map.env_end; | 
 |  | 
 | 	/* | 
 | 	 * Note this update of @saved_auxv is lockless thus | 
 | 	 * if someone reads this member in procfs while we're | 
 | 	 * updating -- it may get partly updated results. It's | 
 | 	 * known and acceptable trade off: we leave it as is to | 
 | 	 * not introduce additional locks here making the kernel | 
 | 	 * more complex. | 
 | 	 */ | 
 | 	if (prctl_map.auxv_size) | 
 | 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); | 
 |  | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_CHECKPOINT_RESTORE */ | 
 |  | 
 | static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, | 
 | 			  unsigned long len) | 
 | { | 
 | 	/* | 
 | 	 * This doesn't move the auxiliary vector itself since it's pinned to | 
 | 	 * mm_struct, but it permits filling the vector with new values.  It's | 
 | 	 * up to the caller to provide sane values here, otherwise userspace | 
 | 	 * tools which use this vector might be unhappy. | 
 | 	 */ | 
 | 	unsigned long user_auxv[AT_VECTOR_SIZE]; | 
 |  | 
 | 	if (len > sizeof(user_auxv)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(user_auxv, (const void __user *)addr, len)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Make sure the last entry is always AT_NULL */ | 
 | 	user_auxv[AT_VECTOR_SIZE - 2] = 0; | 
 | 	user_auxv[AT_VECTOR_SIZE - 1] = 0; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); | 
 |  | 
 | 	task_lock(current); | 
 | 	memcpy(mm->saved_auxv, user_auxv, len); | 
 | 	task_unlock(current); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prctl_set_mm(int opt, unsigned long addr, | 
 | 			unsigned long arg4, unsigned long arg5) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct prctl_mm_map prctl_map; | 
 | 	struct vm_area_struct *vma; | 
 | 	int error; | 
 |  | 
 | 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && | 
 | 			      opt != PR_SET_MM_MAP && | 
 | 			      opt != PR_SET_MM_MAP_SIZE))) | 
 | 		return -EINVAL; | 
 |  | 
 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
 | 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) | 
 | 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4); | 
 | #endif | 
 |  | 
 | 	if (!capable(CAP_SYS_RESOURCE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (opt == PR_SET_MM_EXE_FILE) | 
 | 		return prctl_set_mm_exe_file(mm, (unsigned int)addr); | 
 |  | 
 | 	if (opt == PR_SET_MM_AUXV) | 
 | 		return prctl_set_auxv(mm, addr, arg4); | 
 |  | 
 | 	if (addr >= TASK_SIZE || addr < mmap_min_addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	error = -EINVAL; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	vma = find_vma(mm, addr); | 
 |  | 
 | 	prctl_map.start_code	= mm->start_code; | 
 | 	prctl_map.end_code	= mm->end_code; | 
 | 	prctl_map.start_data	= mm->start_data; | 
 | 	prctl_map.end_data	= mm->end_data; | 
 | 	prctl_map.start_brk	= mm->start_brk; | 
 | 	prctl_map.brk		= mm->brk; | 
 | 	prctl_map.start_stack	= mm->start_stack; | 
 | 	prctl_map.arg_start	= mm->arg_start; | 
 | 	prctl_map.arg_end	= mm->arg_end; | 
 | 	prctl_map.env_start	= mm->env_start; | 
 | 	prctl_map.env_end	= mm->env_end; | 
 | 	prctl_map.auxv		= NULL; | 
 | 	prctl_map.auxv_size	= 0; | 
 | 	prctl_map.exe_fd	= -1; | 
 |  | 
 | 	switch (opt) { | 
 | 	case PR_SET_MM_START_CODE: | 
 | 		prctl_map.start_code = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_END_CODE: | 
 | 		prctl_map.end_code = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_START_DATA: | 
 | 		prctl_map.start_data = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_END_DATA: | 
 | 		prctl_map.end_data = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_START_STACK: | 
 | 		prctl_map.start_stack = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_START_BRK: | 
 | 		prctl_map.start_brk = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_BRK: | 
 | 		prctl_map.brk = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_ARG_START: | 
 | 		prctl_map.arg_start = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_ARG_END: | 
 | 		prctl_map.arg_end = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_ENV_START: | 
 | 		prctl_map.env_start = addr; | 
 | 		break; | 
 | 	case PR_SET_MM_ENV_END: | 
 | 		prctl_map.env_end = addr; | 
 | 		break; | 
 | 	default: | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	error = validate_prctl_map(&prctl_map); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	switch (opt) { | 
 | 	/* | 
 | 	 * If command line arguments and environment | 
 | 	 * are placed somewhere else on stack, we can | 
 | 	 * set them up here, ARG_START/END to setup | 
 | 	 * command line argumets and ENV_START/END | 
 | 	 * for environment. | 
 | 	 */ | 
 | 	case PR_SET_MM_START_STACK: | 
 | 	case PR_SET_MM_ARG_START: | 
 | 	case PR_SET_MM_ARG_END: | 
 | 	case PR_SET_MM_ENV_START: | 
 | 	case PR_SET_MM_ENV_END: | 
 | 		if (!vma) { | 
 | 			error = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mm->start_code	= prctl_map.start_code; | 
 | 	mm->end_code	= prctl_map.end_code; | 
 | 	mm->start_data	= prctl_map.start_data; | 
 | 	mm->end_data	= prctl_map.end_data; | 
 | 	mm->start_brk	= prctl_map.start_brk; | 
 | 	mm->brk		= prctl_map.brk; | 
 | 	mm->start_stack	= prctl_map.start_stack; | 
 | 	mm->arg_start	= prctl_map.arg_start; | 
 | 	mm->arg_end	= prctl_map.arg_end; | 
 | 	mm->env_start	= prctl_map.env_start; | 
 | 	mm->env_end	= prctl_map.env_end; | 
 |  | 
 | 	error = 0; | 
 | out: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return error; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
 | static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) | 
 | { | 
 | 	return put_user(me->clear_child_tid, tid_addr); | 
 | } | 
 | #else | 
 | static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | 
 | 		unsigned long, arg4, unsigned long, arg5) | 
 | { | 
 | 	struct task_struct *me = current; | 
 | 	unsigned char comm[sizeof(me->comm)]; | 
 | 	long error; | 
 |  | 
 | 	error = security_task_prctl(option, arg2, arg3, arg4, arg5); | 
 | 	if (error != -ENOSYS) | 
 | 		return error; | 
 |  | 
 | 	error = 0; | 
 | 	switch (option) { | 
 | 	case PR_SET_PDEATHSIG: | 
 | 		if (!valid_signal(arg2)) { | 
 | 			error = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		me->pdeath_signal = arg2; | 
 | 		break; | 
 | 	case PR_GET_PDEATHSIG: | 
 | 		error = put_user(me->pdeath_signal, (int __user *)arg2); | 
 | 		break; | 
 | 	case PR_GET_DUMPABLE: | 
 | 		error = get_dumpable(me->mm); | 
 | 		break; | 
 | 	case PR_SET_DUMPABLE: | 
 | 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { | 
 | 			error = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		set_dumpable(me->mm, arg2); | 
 | 		break; | 
 |  | 
 | 	case PR_SET_UNALIGN: | 
 | 		error = SET_UNALIGN_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_UNALIGN: | 
 | 		error = GET_UNALIGN_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_SET_FPEMU: | 
 | 		error = SET_FPEMU_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_FPEMU: | 
 | 		error = GET_FPEMU_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_SET_FPEXC: | 
 | 		error = SET_FPEXC_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_FPEXC: | 
 | 		error = GET_FPEXC_CTL(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_TIMING: | 
 | 		error = PR_TIMING_STATISTICAL; | 
 | 		break; | 
 | 	case PR_SET_TIMING: | 
 | 		if (arg2 != PR_TIMING_STATISTICAL) | 
 | 			error = -EINVAL; | 
 | 		break; | 
 | 	case PR_SET_NAME: | 
 | 		comm[sizeof(me->comm) - 1] = 0; | 
 | 		if (strncpy_from_user(comm, (char __user *)arg2, | 
 | 				      sizeof(me->comm) - 1) < 0) | 
 | 			return -EFAULT; | 
 | 		set_task_comm(me, comm); | 
 | 		proc_comm_connector(me); | 
 | 		break; | 
 | 	case PR_GET_NAME: | 
 | 		get_task_comm(comm, me); | 
 | 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) | 
 | 			return -EFAULT; | 
 | 		break; | 
 | 	case PR_GET_ENDIAN: | 
 | 		error = GET_ENDIAN(me, arg2); | 
 | 		break; | 
 | 	case PR_SET_ENDIAN: | 
 | 		error = SET_ENDIAN(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_SECCOMP: | 
 | 		error = prctl_get_seccomp(); | 
 | 		break; | 
 | 	case PR_SET_SECCOMP: | 
 | 		error = prctl_set_seccomp(arg2, (char __user *)arg3); | 
 | 		break; | 
 | 	case PR_GET_TSC: | 
 | 		error = GET_TSC_CTL(arg2); | 
 | 		break; | 
 | 	case PR_SET_TSC: | 
 | 		error = SET_TSC_CTL(arg2); | 
 | 		break; | 
 | 	case PR_TASK_PERF_EVENTS_DISABLE: | 
 | 		error = perf_event_task_disable(); | 
 | 		break; | 
 | 	case PR_TASK_PERF_EVENTS_ENABLE: | 
 | 		error = perf_event_task_enable(); | 
 | 		break; | 
 | 	case PR_GET_TIMERSLACK: | 
 | 		error = current->timer_slack_ns; | 
 | 		break; | 
 | 	case PR_SET_TIMERSLACK: | 
 | 		if (arg2 <= 0) | 
 | 			current->timer_slack_ns = | 
 | 					current->default_timer_slack_ns; | 
 | 		else | 
 | 			current->timer_slack_ns = arg2; | 
 | 		break; | 
 | 	case PR_MCE_KILL: | 
 | 		if (arg4 | arg5) | 
 | 			return -EINVAL; | 
 | 		switch (arg2) { | 
 | 		case PR_MCE_KILL_CLEAR: | 
 | 			if (arg3 != 0) | 
 | 				return -EINVAL; | 
 | 			current->flags &= ~PF_MCE_PROCESS; | 
 | 			break; | 
 | 		case PR_MCE_KILL_SET: | 
 | 			current->flags |= PF_MCE_PROCESS; | 
 | 			if (arg3 == PR_MCE_KILL_EARLY) | 
 | 				current->flags |= PF_MCE_EARLY; | 
 | 			else if (arg3 == PR_MCE_KILL_LATE) | 
 | 				current->flags &= ~PF_MCE_EARLY; | 
 | 			else if (arg3 == PR_MCE_KILL_DEFAULT) | 
 | 				current->flags &= | 
 | 						~(PF_MCE_EARLY|PF_MCE_PROCESS); | 
 | 			else | 
 | 				return -EINVAL; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case PR_MCE_KILL_GET: | 
 | 		if (arg2 | arg3 | arg4 | arg5) | 
 | 			return -EINVAL; | 
 | 		if (current->flags & PF_MCE_PROCESS) | 
 | 			error = (current->flags & PF_MCE_EARLY) ? | 
 | 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; | 
 | 		else | 
 | 			error = PR_MCE_KILL_DEFAULT; | 
 | 		break; | 
 | 	case PR_SET_MM: | 
 | 		error = prctl_set_mm(arg2, arg3, arg4, arg5); | 
 | 		break; | 
 | 	case PR_GET_TID_ADDRESS: | 
 | 		error = prctl_get_tid_address(me, (int __user **)arg2); | 
 | 		break; | 
 | 	case PR_SET_CHILD_SUBREAPER: | 
 | 		me->signal->is_child_subreaper = !!arg2; | 
 | 		break; | 
 | 	case PR_GET_CHILD_SUBREAPER: | 
 | 		error = put_user(me->signal->is_child_subreaper, | 
 | 				 (int __user *)arg2); | 
 | 		break; | 
 | 	case PR_SET_NO_NEW_PRIVS: | 
 | 		if (arg2 != 1 || arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 |  | 
 | 		task_set_no_new_privs(current); | 
 | 		break; | 
 | 	case PR_GET_NO_NEW_PRIVS: | 
 | 		if (arg2 || arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 | 		return task_no_new_privs(current) ? 1 : 0; | 
 | 	case PR_GET_THP_DISABLE: | 
 | 		if (arg2 || arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 | 		error = !!(me->mm->def_flags & VM_NOHUGEPAGE); | 
 | 		break; | 
 | 	case PR_SET_THP_DISABLE: | 
 | 		if (arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 | 		down_write(&me->mm->mmap_sem); | 
 | 		if (arg2) | 
 | 			me->mm->def_flags |= VM_NOHUGEPAGE; | 
 | 		else | 
 | 			me->mm->def_flags &= ~VM_NOHUGEPAGE; | 
 | 		up_write(&me->mm->mmap_sem); | 
 | 		break; | 
 | 	case PR_MPX_ENABLE_MANAGEMENT: | 
 | 		if (arg2 || arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 | 		error = MPX_ENABLE_MANAGEMENT(); | 
 | 		break; | 
 | 	case PR_MPX_DISABLE_MANAGEMENT: | 
 | 		if (arg2 || arg3 || arg4 || arg5) | 
 | 			return -EINVAL; | 
 | 		error = MPX_DISABLE_MANAGEMENT(); | 
 | 		break; | 
 | 	case PR_SET_FP_MODE: | 
 | 		error = SET_FP_MODE(me, arg2); | 
 | 		break; | 
 | 	case PR_GET_FP_MODE: | 
 | 		error = GET_FP_MODE(me); | 
 | 		break; | 
 | 	default: | 
 | 		error = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, | 
 | 		struct getcpu_cache __user *, unused) | 
 | { | 
 | 	int err = 0; | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (cpup) | 
 | 		err |= put_user(cpu, cpup); | 
 | 	if (nodep) | 
 | 		err |= put_user(cpu_to_node(cpu), nodep); | 
 | 	return err ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * do_sysinfo - fill in sysinfo struct | 
 |  * @info: pointer to buffer to fill | 
 |  */ | 
 | static int do_sysinfo(struct sysinfo *info) | 
 | { | 
 | 	unsigned long mem_total, sav_total; | 
 | 	unsigned int mem_unit, bitcount; | 
 | 	struct timespec tp; | 
 |  | 
 | 	memset(info, 0, sizeof(struct sysinfo)); | 
 |  | 
 | 	get_monotonic_boottime(&tp); | 
 | 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
 |  | 
 | 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); | 
 |  | 
 | 	info->procs = nr_threads; | 
 |  | 
 | 	si_meminfo(info); | 
 | 	si_swapinfo(info); | 
 |  | 
 | 	/* | 
 | 	 * If the sum of all the available memory (i.e. ram + swap) | 
 | 	 * is less than can be stored in a 32 bit unsigned long then | 
 | 	 * we can be binary compatible with 2.2.x kernels.  If not, | 
 | 	 * well, in that case 2.2.x was broken anyways... | 
 | 	 * | 
 | 	 *  -Erik Andersen <andersee@debian.org> | 
 | 	 */ | 
 |  | 
 | 	mem_total = info->totalram + info->totalswap; | 
 | 	if (mem_total < info->totalram || mem_total < info->totalswap) | 
 | 		goto out; | 
 | 	bitcount = 0; | 
 | 	mem_unit = info->mem_unit; | 
 | 	while (mem_unit > 1) { | 
 | 		bitcount++; | 
 | 		mem_unit >>= 1; | 
 | 		sav_total = mem_total; | 
 | 		mem_total <<= 1; | 
 | 		if (mem_total < sav_total) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If mem_total did not overflow, multiply all memory values by | 
 | 	 * info->mem_unit and set it to 1.  This leaves things compatible | 
 | 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
 | 	 * kernels... | 
 | 	 */ | 
 |  | 
 | 	info->mem_unit = 1; | 
 | 	info->totalram <<= bitcount; | 
 | 	info->freeram <<= bitcount; | 
 | 	info->sharedram <<= bitcount; | 
 | 	info->bufferram <<= bitcount; | 
 | 	info->totalswap <<= bitcount; | 
 | 	info->freeswap <<= bitcount; | 
 | 	info->totalhigh <<= bitcount; | 
 | 	info->freehigh <<= bitcount; | 
 |  | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) | 
 | { | 
 | 	struct sysinfo val; | 
 |  | 
 | 	do_sysinfo(&val); | 
 |  | 
 | 	if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | struct compat_sysinfo { | 
 | 	s32 uptime; | 
 | 	u32 loads[3]; | 
 | 	u32 totalram; | 
 | 	u32 freeram; | 
 | 	u32 sharedram; | 
 | 	u32 bufferram; | 
 | 	u32 totalswap; | 
 | 	u32 freeswap; | 
 | 	u16 procs; | 
 | 	u16 pad; | 
 | 	u32 totalhigh; | 
 | 	u32 freehigh; | 
 | 	u32 mem_unit; | 
 | 	char _f[20-2*sizeof(u32)-sizeof(int)]; | 
 | }; | 
 |  | 
 | COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) | 
 | { | 
 | 	struct sysinfo s; | 
 |  | 
 | 	do_sysinfo(&s); | 
 |  | 
 | 	/* Check to see if any memory value is too large for 32-bit and scale | 
 | 	 *  down if needed | 
 | 	 */ | 
 | 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { | 
 | 		int bitcount = 0; | 
 |  | 
 | 		while (s.mem_unit < PAGE_SIZE) { | 
 | 			s.mem_unit <<= 1; | 
 | 			bitcount++; | 
 | 		} | 
 |  | 
 | 		s.totalram >>= bitcount; | 
 | 		s.freeram >>= bitcount; | 
 | 		s.sharedram >>= bitcount; | 
 | 		s.bufferram >>= bitcount; | 
 | 		s.totalswap >>= bitcount; | 
 | 		s.freeswap >>= bitcount; | 
 | 		s.totalhigh >>= bitcount; | 
 | 		s.freehigh >>= bitcount; | 
 | 	} | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) || | 
 | 	    __put_user(s.uptime, &info->uptime) || | 
 | 	    __put_user(s.loads[0], &info->loads[0]) || | 
 | 	    __put_user(s.loads[1], &info->loads[1]) || | 
 | 	    __put_user(s.loads[2], &info->loads[2]) || | 
 | 	    __put_user(s.totalram, &info->totalram) || | 
 | 	    __put_user(s.freeram, &info->freeram) || | 
 | 	    __put_user(s.sharedram, &info->sharedram) || | 
 | 	    __put_user(s.bufferram, &info->bufferram) || | 
 | 	    __put_user(s.totalswap, &info->totalswap) || | 
 | 	    __put_user(s.freeswap, &info->freeswap) || | 
 | 	    __put_user(s.procs, &info->procs) || | 
 | 	    __put_user(s.totalhigh, &info->totalhigh) || | 
 | 	    __put_user(s.freehigh, &info->freehigh) || | 
 | 	    __put_user(s.mem_unit, &info->mem_unit)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_COMPAT */ |