| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * STMicroelectronics st_lsm6dsx FIFO buffer library driver |
| * |
| * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C: |
| * The FIFO buffer can be configured to store data from gyroscope and |
| * accelerometer. Samples are queued without any tag according to a |
| * specific pattern based on 'FIFO data sets' (6 bytes each): |
| * - 1st data set is reserved for gyroscope data |
| * - 2nd data set is reserved for accelerometer data |
| * The FIFO pattern changes depending on the ODRs and decimation factors |
| * assigned to the FIFO data sets. The first sequence of data stored in FIFO |
| * buffer contains the data of all the enabled FIFO data sets |
| * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the |
| * value of the decimation factor and ODR set for each FIFO data set. |
| * |
| * LSM6DSO/LSM6DSOX/ASM330LHH/LSM6DSR/LSM6DSRX/ISM330DHCX: |
| * The FIFO buffer can be configured to store data from gyroscope and |
| * accelerometer. Each sample is queued with a tag (1B) indicating data |
| * source (gyroscope, accelerometer, hw timer). |
| * |
| * FIFO supported modes: |
| * - BYPASS: FIFO disabled |
| * - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index |
| * restarts from the beginning and the oldest sample is overwritten |
| * |
| * Copyright 2016 STMicroelectronics Inc. |
| * |
| * Lorenzo Bianconi <lorenzo.bianconi@st.com> |
| * Denis Ciocca <denis.ciocca@st.com> |
| */ |
| #include <linux/module.h> |
| #include <linux/iio/kfifo_buf.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/buffer.h> |
| #include <linux/regmap.h> |
| #include <linux/bitfield.h> |
| |
| #include <linux/platform_data/st_sensors_pdata.h> |
| |
| #include "st_lsm6dsx.h" |
| |
| #define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a |
| #define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0) |
| #define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3) |
| #define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12) |
| #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e |
| #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR 0x78 |
| #define ST_LSM6DSX_REG_TS_RESET_ADDR 0x42 |
| |
| #define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08 |
| |
| #define ST_LSM6DSX_TS_RESET_VAL 0xaa |
| |
| struct st_lsm6dsx_decimator_entry { |
| u8 decimator; |
| u8 val; |
| }; |
| |
| enum st_lsm6dsx_fifo_tag { |
| ST_LSM6DSX_GYRO_TAG = 0x01, |
| ST_LSM6DSX_ACC_TAG = 0x02, |
| ST_LSM6DSX_TS_TAG = 0x04, |
| ST_LSM6DSX_EXT0_TAG = 0x0f, |
| ST_LSM6DSX_EXT1_TAG = 0x10, |
| ST_LSM6DSX_EXT2_TAG = 0x11, |
| }; |
| |
| static const |
| struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = { |
| { 0, 0x0 }, |
| { 1, 0x1 }, |
| { 2, 0x2 }, |
| { 3, 0x3 }, |
| { 4, 0x4 }, |
| { 8, 0x5 }, |
| { 16, 0x6 }, |
| { 32, 0x7 }, |
| }; |
| |
| static int |
| st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr) |
| { |
| const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table); |
| u32 decimator = max_odr / sensor->odr; |
| int i; |
| |
| if (decimator > 1) |
| decimator = round_down(decimator, 2); |
| |
| for (i = 0; i < max_size; i++) { |
| if (st_lsm6dsx_decimator_table[i].decimator == decimator) |
| break; |
| } |
| |
| return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val; |
| } |
| |
| static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw, |
| u32 *max_odr, u32 *min_odr) |
| { |
| struct st_lsm6dsx_sensor *sensor; |
| int i; |
| |
| *max_odr = 0, *min_odr = ~0; |
| for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { |
| if (!hw->iio_devs[i]) |
| continue; |
| |
| sensor = iio_priv(hw->iio_devs[i]); |
| |
| if (!(hw->enable_mask & BIT(sensor->id))) |
| continue; |
| |
| *max_odr = max_t(u32, *max_odr, sensor->odr); |
| *min_odr = min_t(u32, *min_odr, sensor->odr); |
| } |
| } |
| |
| static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr) |
| { |
| u8 sip = sensor->odr / min_odr; |
| |
| return sip > 1 ? round_down(sip, 2) : sip; |
| } |
| |
| static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw) |
| { |
| const struct st_lsm6dsx_reg *ts_dec_reg; |
| struct st_lsm6dsx_sensor *sensor; |
| u16 sip = 0, ts_sip = 0; |
| u32 max_odr, min_odr; |
| int err = 0, i; |
| u8 data; |
| |
| st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr); |
| |
| for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { |
| const struct st_lsm6dsx_reg *dec_reg; |
| |
| if (!hw->iio_devs[i]) |
| continue; |
| |
| sensor = iio_priv(hw->iio_devs[i]); |
| /* update fifo decimators and sample in pattern */ |
| if (hw->enable_mask & BIT(sensor->id)) { |
| sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr); |
| data = st_lsm6dsx_get_decimator_val(sensor, max_odr); |
| } else { |
| sensor->sip = 0; |
| data = 0; |
| } |
| ts_sip = max_t(u16, ts_sip, sensor->sip); |
| |
| dec_reg = &hw->settings->decimator[sensor->id]; |
| if (dec_reg->addr) { |
| int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask); |
| |
| err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr, |
| dec_reg->mask, |
| val); |
| if (err < 0) |
| return err; |
| } |
| sip += sensor->sip; |
| } |
| hw->sip = sip + ts_sip; |
| hw->ts_sip = ts_sip; |
| |
| /* |
| * update hw ts decimator if necessary. Decimator for hw timestamp |
| * is always 1 or 0 in order to have a ts sample for each data |
| * sample in FIFO |
| */ |
| ts_dec_reg = &hw->settings->ts_settings.decimator; |
| if (ts_dec_reg->addr) { |
| int val, ts_dec = !!hw->ts_sip; |
| |
| val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask); |
| err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr, |
| ts_dec_reg->mask, val); |
| } |
| return err; |
| } |
| |
| int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw, |
| enum st_lsm6dsx_fifo_mode fifo_mode) |
| { |
| unsigned int data; |
| |
| data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode); |
| return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR, |
| ST_LSM6DSX_FIFO_MODE_MASK, data); |
| } |
| |
| static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor, |
| bool enable) |
| { |
| struct st_lsm6dsx_hw *hw = sensor->hw; |
| const struct st_lsm6dsx_reg *batch_reg; |
| u8 data; |
| |
| batch_reg = &hw->settings->batch[sensor->id]; |
| if (batch_reg->addr) { |
| int val; |
| |
| if (enable) { |
| int err; |
| |
| err = st_lsm6dsx_check_odr(sensor, sensor->odr, |
| &data); |
| if (err < 0) |
| return err; |
| } else { |
| data = 0; |
| } |
| val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask); |
| return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr, |
| batch_reg->mask, val); |
| } else { |
| data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0; |
| return st_lsm6dsx_update_bits_locked(hw, |
| ST_LSM6DSX_REG_FIFO_MODE_ADDR, |
| ST_LSM6DSX_FIFO_ODR_MASK, |
| FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK, |
| data)); |
| } |
| } |
| |
| int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark) |
| { |
| u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask; |
| struct st_lsm6dsx_hw *hw = sensor->hw; |
| struct st_lsm6dsx_sensor *cur_sensor; |
| int i, err, data; |
| __le16 wdata; |
| |
| if (!hw->sip) |
| return 0; |
| |
| for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { |
| if (!hw->iio_devs[i]) |
| continue; |
| |
| cur_sensor = iio_priv(hw->iio_devs[i]); |
| |
| if (!(hw->enable_mask & BIT(cur_sensor->id))) |
| continue; |
| |
| cur_watermark = (cur_sensor == sensor) ? watermark |
| : cur_sensor->watermark; |
| |
| fifo_watermark = min_t(u16, fifo_watermark, cur_watermark); |
| } |
| |
| fifo_watermark = max_t(u16, fifo_watermark, hw->sip); |
| fifo_watermark = (fifo_watermark / hw->sip) * hw->sip; |
| fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl; |
| |
| mutex_lock(&hw->page_lock); |
| err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1, |
| &data); |
| if (err < 0) |
| goto out; |
| |
| fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask; |
| fifo_watermark = ((data << 8) & ~fifo_th_mask) | |
| (fifo_watermark & fifo_th_mask); |
| |
| wdata = cpu_to_le16(fifo_watermark); |
| err = regmap_bulk_write(hw->regmap, |
| hw->settings->fifo_ops.fifo_th.addr, |
| &wdata, sizeof(wdata)); |
| out: |
| mutex_unlock(&hw->page_lock); |
| return err; |
| } |
| |
| static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw) |
| { |
| struct st_lsm6dsx_sensor *sensor; |
| int i, err; |
| |
| /* reset hw ts counter */ |
| err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR, |
| ST_LSM6DSX_TS_RESET_VAL); |
| if (err < 0) |
| return err; |
| |
| for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { |
| if (!hw->iio_devs[i]) |
| continue; |
| |
| sensor = iio_priv(hw->iio_devs[i]); |
| /* |
| * store enable buffer timestamp as reference for |
| * hw timestamp |
| */ |
| sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]); |
| } |
| return 0; |
| } |
| |
| /* |
| * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN |
| * in order to avoid a kmalloc for each bus access |
| */ |
| static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr, |
| u8 *data, unsigned int data_len, |
| unsigned int max_word_len) |
| { |
| unsigned int word_len, read_len = 0; |
| int err; |
| |
| while (read_len < data_len) { |
| word_len = min_t(unsigned int, data_len - read_len, |
| max_word_len); |
| err = st_lsm6dsx_read_locked(hw, addr, data + read_len, |
| word_len); |
| if (err < 0) |
| return err; |
| read_len += word_len; |
| } |
| return 0; |
| } |
| |
| #define ST_LSM6DSX_IIO_BUFF_SIZE (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \ |
| sizeof(s64)) + sizeof(s64)) |
| /** |
| * st_lsm6dsx_read_fifo() - hw FIFO read routine |
| * @hw: Pointer to instance of struct st_lsm6dsx_hw. |
| * |
| * Read samples from the hw FIFO and push them to IIO buffers. |
| * |
| * Return: Number of bytes read from the FIFO |
| */ |
| int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw) |
| { |
| u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE; |
| u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask; |
| int err, acc_sip, gyro_sip, ts_sip, read_len, offset; |
| struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor; |
| u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE]; |
| u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE]; |
| bool reset_ts = false; |
| __le16 fifo_status; |
| s64 ts = 0; |
| |
| err = st_lsm6dsx_read_locked(hw, |
| hw->settings->fifo_ops.fifo_diff.addr, |
| &fifo_status, sizeof(fifo_status)); |
| if (err < 0) { |
| dev_err(hw->dev, "failed to read fifo status (err=%d)\n", |
| err); |
| return err; |
| } |
| |
| if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK)) |
| return 0; |
| |
| fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) * |
| ST_LSM6DSX_CHAN_SIZE; |
| fifo_len = (fifo_len / pattern_len) * pattern_len; |
| |
| acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); |
| gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]); |
| |
| for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { |
| err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR, |
| hw->buff, pattern_len, |
| ST_LSM6DSX_MAX_WORD_LEN); |
| if (err < 0) { |
| dev_err(hw->dev, |
| "failed to read pattern from fifo (err=%d)\n", |
| err); |
| return err; |
| } |
| |
| /* |
| * Data are written to the FIFO with a specific pattern |
| * depending on the configured ODRs. The first sequence of data |
| * stored in FIFO contains the data of all enabled sensors |
| * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated |
| * depending on the value of the decimation factor set for each |
| * sensor. |
| * |
| * Supposing the FIFO is storing data from gyroscope and |
| * accelerometer at different ODRs: |
| * - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz |
| * Since the gyroscope ODR is twice the accelerometer one, the |
| * following pattern is repeated every 9 samples: |
| * - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, .. |
| */ |
| gyro_sip = gyro_sensor->sip; |
| acc_sip = acc_sensor->sip; |
| ts_sip = hw->ts_sip; |
| offset = 0; |
| |
| while (acc_sip > 0 || gyro_sip > 0) { |
| if (gyro_sip > 0) { |
| memcpy(gyro_buff, &hw->buff[offset], |
| ST_LSM6DSX_SAMPLE_SIZE); |
| offset += ST_LSM6DSX_SAMPLE_SIZE; |
| } |
| if (acc_sip > 0) { |
| memcpy(acc_buff, &hw->buff[offset], |
| ST_LSM6DSX_SAMPLE_SIZE); |
| offset += ST_LSM6DSX_SAMPLE_SIZE; |
| } |
| |
| if (ts_sip-- > 0) { |
| u8 data[ST_LSM6DSX_SAMPLE_SIZE]; |
| |
| memcpy(data, &hw->buff[offset], sizeof(data)); |
| /* |
| * hw timestamp is 3B long and it is stored |
| * in FIFO using 6B as 4th FIFO data set |
| * according to this schema: |
| * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0] |
| */ |
| ts = data[1] << 16 | data[0] << 8 | data[3]; |
| /* |
| * check if hw timestamp engine is going to |
| * reset (the sensor generates an interrupt |
| * to signal the hw timestamp will reset in |
| * 1.638s) |
| */ |
| if (!reset_ts && ts >= 0xff0000) |
| reset_ts = true; |
| ts *= hw->ts_gain; |
| |
| offset += ST_LSM6DSX_SAMPLE_SIZE; |
| } |
| |
| if (gyro_sip-- > 0) |
| iio_push_to_buffers_with_timestamp( |
| hw->iio_devs[ST_LSM6DSX_ID_GYRO], |
| gyro_buff, gyro_sensor->ts_ref + ts); |
| if (acc_sip-- > 0) |
| iio_push_to_buffers_with_timestamp( |
| hw->iio_devs[ST_LSM6DSX_ID_ACC], |
| acc_buff, acc_sensor->ts_ref + ts); |
| } |
| } |
| |
| if (unlikely(reset_ts)) { |
| err = st_lsm6dsx_reset_hw_ts(hw); |
| if (err < 0) { |
| dev_err(hw->dev, "failed to reset hw ts (err=%d)\n", |
| err); |
| return err; |
| } |
| } |
| return read_len; |
| } |
| |
| #define ST_LSM6DSX_INVALID_SAMPLE 0x7ffd |
| static int |
| st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag, |
| u8 *data, s64 ts) |
| { |
| s16 val = le16_to_cpu(*(__le16 *)data); |
| struct st_lsm6dsx_sensor *sensor; |
| struct iio_dev *iio_dev; |
| |
| /* invalid sample during bootstrap phase */ |
| if (val >= ST_LSM6DSX_INVALID_SAMPLE) |
| return -EINVAL; |
| |
| /* |
| * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG |
| * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG |
| * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled |
| * channel |
| */ |
| switch (tag) { |
| case ST_LSM6DSX_GYRO_TAG: |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO]; |
| break; |
| case ST_LSM6DSX_ACC_TAG: |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC]; |
| break; |
| case ST_LSM6DSX_EXT0_TAG: |
| if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0]; |
| else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)) |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1]; |
| else |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; |
| break; |
| case ST_LSM6DSX_EXT1_TAG: |
| if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) && |
| (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))) |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1]; |
| else |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; |
| break; |
| case ST_LSM6DSX_EXT2_TAG: |
| iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| sensor = iio_priv(iio_dev); |
| iio_push_to_buffers_with_timestamp(iio_dev, data, |
| ts + sensor->ts_ref); |
| |
| return 0; |
| } |
| |
| /** |
| * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine |
| * @hw: Pointer to instance of struct st_lsm6dsx_hw. |
| * |
| * Read samples from the hw FIFO and push them to IIO buffers. |
| * |
| * Return: Number of bytes read from the FIFO |
| */ |
| int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw) |
| { |
| u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE; |
| u16 fifo_len, fifo_diff_mask; |
| u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE], tag; |
| bool reset_ts = false; |
| int i, err, read_len; |
| __le16 fifo_status; |
| s64 ts = 0; |
| |
| err = st_lsm6dsx_read_locked(hw, |
| hw->settings->fifo_ops.fifo_diff.addr, |
| &fifo_status, sizeof(fifo_status)); |
| if (err < 0) { |
| dev_err(hw->dev, "failed to read fifo status (err=%d)\n", |
| err); |
| return err; |
| } |
| |
| fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask; |
| fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) * |
| ST_LSM6DSX_TAGGED_SAMPLE_SIZE; |
| if (!fifo_len) |
| return 0; |
| |
| for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { |
| err = st_lsm6dsx_read_block(hw, |
| ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR, |
| hw->buff, pattern_len, |
| ST_LSM6DSX_MAX_TAGGED_WORD_LEN); |
| if (err < 0) { |
| dev_err(hw->dev, |
| "failed to read pattern from fifo (err=%d)\n", |
| err); |
| return err; |
| } |
| |
| for (i = 0; i < pattern_len; |
| i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) { |
| memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE], |
| ST_LSM6DSX_SAMPLE_SIZE); |
| |
| tag = hw->buff[i] >> 3; |
| if (tag == ST_LSM6DSX_TS_TAG) { |
| /* |
| * hw timestamp is 4B long and it is stored |
| * in FIFO according to this schema: |
| * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16], |
| * B3 = ts[31:24] |
| */ |
| ts = le32_to_cpu(*((__le32 *)iio_buff)); |
| /* |
| * check if hw timestamp engine is going to |
| * reset (the sensor generates an interrupt |
| * to signal the hw timestamp will reset in |
| * 1.638s) |
| */ |
| if (!reset_ts && ts >= 0xffff0000) |
| reset_ts = true; |
| ts *= hw->ts_gain; |
| } else { |
| st_lsm6dsx_push_tagged_data(hw, tag, iio_buff, |
| ts); |
| } |
| } |
| } |
| |
| if (unlikely(reset_ts)) { |
| err = st_lsm6dsx_reset_hw_ts(hw); |
| if (err < 0) |
| return err; |
| } |
| return read_len; |
| } |
| |
| int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw) |
| { |
| int err; |
| |
| if (!hw->settings->fifo_ops.read_fifo) |
| return -ENOTSUPP; |
| |
| mutex_lock(&hw->fifo_lock); |
| |
| hw->settings->fifo_ops.read_fifo(hw); |
| err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS); |
| |
| mutex_unlock(&hw->fifo_lock); |
| |
| return err; |
| } |
| |
| int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable) |
| { |
| struct st_lsm6dsx_hw *hw = sensor->hw; |
| u8 fifo_mask; |
| int err; |
| |
| mutex_lock(&hw->conf_lock); |
| |
| if (enable) |
| fifo_mask = hw->fifo_mask | BIT(sensor->id); |
| else |
| fifo_mask = hw->fifo_mask & ~BIT(sensor->id); |
| |
| if (hw->fifo_mask) { |
| err = st_lsm6dsx_flush_fifo(hw); |
| if (err < 0) |
| goto out; |
| } |
| |
| if (sensor->id == ST_LSM6DSX_ID_EXT0 || |
| sensor->id == ST_LSM6DSX_ID_EXT1 || |
| sensor->id == ST_LSM6DSX_ID_EXT2) { |
| err = st_lsm6dsx_shub_set_enable(sensor, enable); |
| if (err < 0) |
| goto out; |
| } else { |
| err = st_lsm6dsx_sensor_set_enable(sensor, enable); |
| if (err < 0) |
| goto out; |
| |
| err = st_lsm6dsx_set_fifo_odr(sensor, enable); |
| if (err < 0) |
| goto out; |
| } |
| |
| err = st_lsm6dsx_update_decimators(hw); |
| if (err < 0) |
| goto out; |
| |
| err = st_lsm6dsx_update_watermark(sensor, sensor->watermark); |
| if (err < 0) |
| goto out; |
| |
| if (fifo_mask) { |
| /* reset hw ts counter */ |
| err = st_lsm6dsx_reset_hw_ts(hw); |
| if (err < 0) |
| goto out; |
| |
| err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT); |
| if (err < 0) |
| goto out; |
| } |
| |
| hw->fifo_mask = fifo_mask; |
| |
| out: |
| mutex_unlock(&hw->conf_lock); |
| |
| return err; |
| } |
| |
| static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev) |
| { |
| struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); |
| struct st_lsm6dsx_hw *hw = sensor->hw; |
| |
| if (!hw->settings->fifo_ops.update_fifo) |
| return -ENOTSUPP; |
| |
| return hw->settings->fifo_ops.update_fifo(sensor, true); |
| } |
| |
| static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev) |
| { |
| struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); |
| struct st_lsm6dsx_hw *hw = sensor->hw; |
| |
| if (!hw->settings->fifo_ops.update_fifo) |
| return -ENOTSUPP; |
| |
| return hw->settings->fifo_ops.update_fifo(sensor, false); |
| } |
| |
| static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = { |
| .preenable = st_lsm6dsx_buffer_preenable, |
| .postdisable = st_lsm6dsx_buffer_postdisable, |
| }; |
| |
| int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw) |
| { |
| struct iio_buffer *buffer; |
| int i; |
| |
| for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { |
| if (!hw->iio_devs[i]) |
| continue; |
| |
| buffer = devm_iio_kfifo_allocate(hw->dev); |
| if (!buffer) |
| return -ENOMEM; |
| |
| iio_device_attach_buffer(hw->iio_devs[i], buffer); |
| hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE; |
| hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops; |
| } |
| |
| return 0; |
| } |