|  | /* | 
|  | *  kernel/sched.c | 
|  | * | 
|  | *  Kernel scheduler and related syscalls | 
|  | * | 
|  | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | * | 
|  | *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
|  | *		make semaphores SMP safe | 
|  | *  1998-11-19	Implemented schedule_timeout() and related stuff | 
|  | *		by Andrea Arcangeli | 
|  | *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
|  | *		hybrid priority-list and round-robin design with | 
|  | *		an array-switch method of distributing timeslices | 
|  | *		and per-CPU runqueues.  Cleanups and useful suggestions | 
|  | *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
|  | *  2003-09-03	Interactivity tuning by Con Kolivas. | 
|  | *  2004-04-02	Scheduler domains code by Nick Piggin | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/init.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/times.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | /* | 
|  | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | * and back. | 
|  | */ | 
|  | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  |  | 
|  | /* | 
|  | * 'User priority' is the nice value converted to something we | 
|  | * can work with better when scaling various scheduler parameters, | 
|  | * it's a [ 0 ... 39 ] range. | 
|  | */ | 
|  | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  |  | 
|  | /* | 
|  | * Some helpers for converting nanosecond timing to jiffy resolution | 
|  | */ | 
|  | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
|  | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
|  |  | 
|  | /* | 
|  | * These are the 'tuning knobs' of the scheduler: | 
|  | * | 
|  | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
|  | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
|  | * Timeslices get refilled after they expire. | 
|  | */ | 
|  | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
|  | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
|  | #define ON_RUNQUEUE_WEIGHT	 30 | 
|  | #define CHILD_PENALTY		 95 | 
|  | #define PARENT_PENALTY		100 | 
|  | #define EXIT_WEIGHT		  3 | 
|  | #define PRIO_BONUS_RATIO	 25 | 
|  | #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | 
|  | #define INTERACTIVE_DELTA	  2 | 
|  | #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS) | 
|  | #define STARVATION_LIMIT	(MAX_SLEEP_AVG) | 
|  | #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG)) | 
|  |  | 
|  | /* | 
|  | * If a task is 'interactive' then we reinsert it in the active | 
|  | * array after it has expired its current timeslice. (it will not | 
|  | * continue to run immediately, it will still roundrobin with | 
|  | * other interactive tasks.) | 
|  | * | 
|  | * This part scales the interactivity limit depending on niceness. | 
|  | * | 
|  | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | 
|  | * Here are a few examples of different nice levels: | 
|  | * | 
|  | *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | 
|  | *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | 
|  | *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0] | 
|  | *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | 
|  | *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | 
|  | * | 
|  | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | 
|  | *  priority range a task can explore, a value of '1' means the | 
|  | *  task is rated interactive.) | 
|  | * | 
|  | * Ie. nice +19 tasks can never get 'interactive' enough to be | 
|  | * reinserted into the active array. And only heavily CPU-hog nice -20 | 
|  | * tasks will be expired. Default nice 0 tasks are somewhere between, | 
|  | * it takes some effort for them to get interactive, but it's not | 
|  | * too hard. | 
|  | */ | 
|  |  | 
|  | #define CURRENT_BONUS(p) \ | 
|  | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | 
|  | MAX_SLEEP_AVG) | 
|  |  | 
|  | #define GRANULARITY	(10 * HZ / 1000 ? : 1) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | 
|  | num_online_cpus()) | 
|  | #else | 
|  | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | 
|  | #endif | 
|  |  | 
|  | #define SCALE(v1,v1_max,v2_max) \ | 
|  | (v1) * (v2_max) / (v1_max) | 
|  |  | 
|  | #define DELTA(p) \ | 
|  | (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \ | 
|  | INTERACTIVE_DELTA) | 
|  |  | 
|  | #define TASK_INTERACTIVE(p) \ | 
|  | ((p)->prio <= (p)->static_prio - DELTA(p)) | 
|  |  | 
|  | #define INTERACTIVE_SLEEP(p) \ | 
|  | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | 
|  | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | 
|  |  | 
|  | #define TASK_PREEMPTS_CURR(p, rq) \ | 
|  | ((p)->prio < (rq)->curr->prio) | 
|  |  | 
|  | /* | 
|  | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to time slice values: [800ms ... 100ms ... 5ms] | 
|  | * | 
|  | * The higher a thread's priority, the bigger timeslices | 
|  | * it gets during one round of execution. But even the lowest | 
|  | * priority thread gets MIN_TIMESLICE worth of execution time. | 
|  | */ | 
|  |  | 
|  | #define SCALE_PRIO(x, prio) \ | 
|  | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) | 
|  |  | 
|  | static unsigned int static_prio_timeslice(int static_prio) | 
|  | { | 
|  | if (static_prio < NICE_TO_PRIO(0)) | 
|  | return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio); | 
|  | else | 
|  | return SCALE_PRIO(DEF_TIMESLICE, static_prio); | 
|  | } | 
|  |  | 
|  | static inline unsigned int task_timeslice(struct task_struct *p) | 
|  | { | 
|  | return static_prio_timeslice(p->static_prio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the runqueue data structures: | 
|  | */ | 
|  |  | 
|  | struct prio_array { | 
|  | unsigned int nr_active; | 
|  | DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */ | 
|  | struct list_head queue[MAX_PRIO]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is the main, per-CPU runqueue data structure. | 
|  | * | 
|  | * Locking rule: those places that want to lock multiple runqueues | 
|  | * (such as the load balancing or the thread migration code), lock | 
|  | * acquire operations must be ordered by ascending &runqueue. | 
|  | */ | 
|  | struct rq { | 
|  | spinlock_t lock; | 
|  |  | 
|  | /* | 
|  | * nr_running and cpu_load should be in the same cacheline because | 
|  | * remote CPUs use both these fields when doing load calculation. | 
|  | */ | 
|  | unsigned long nr_running; | 
|  | unsigned long raw_weighted_load; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long cpu_load[3]; | 
|  | #endif | 
|  | unsigned long long nr_switches; | 
|  |  | 
|  | /* | 
|  | * This is part of a global counter where only the total sum | 
|  | * over all CPUs matters. A task can increase this counter on | 
|  | * one CPU and if it got migrated afterwards it may decrease | 
|  | * it on another CPU. Always updated under the runqueue lock: | 
|  | */ | 
|  | unsigned long nr_uninterruptible; | 
|  |  | 
|  | unsigned long expired_timestamp; | 
|  | unsigned long long timestamp_last_tick; | 
|  | struct task_struct *curr, *idle; | 
|  | struct mm_struct *prev_mm; | 
|  | struct prio_array *active, *expired, arrays[2]; | 
|  | int best_expired_prio; | 
|  | atomic_t nr_iowait; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | /* For active balancing */ | 
|  | int active_balance; | 
|  | int push_cpu; | 
|  |  | 
|  | struct task_struct *migration_thread; | 
|  | struct list_head migration_queue; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* latency stats */ | 
|  | struct sched_info rq_sched_info; | 
|  |  | 
|  | /* sys_sched_yield() stats */ | 
|  | unsigned long yld_exp_empty; | 
|  | unsigned long yld_act_empty; | 
|  | unsigned long yld_both_empty; | 
|  | unsigned long yld_cnt; | 
|  |  | 
|  | /* schedule() stats */ | 
|  | unsigned long sched_switch; | 
|  | unsigned long sched_cnt; | 
|  | unsigned long sched_goidle; | 
|  |  | 
|  | /* try_to_wake_up() stats */ | 
|  | unsigned long ttwu_cnt; | 
|  | unsigned long ttwu_local; | 
|  | #endif | 
|  | struct lock_class_key rq_lock_key; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct rq, runqueues); | 
|  |  | 
|  | /* | 
|  | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
|  | * See detach_destroy_domains: synchronize_sched for details. | 
|  | * | 
|  | * The domain tree of any CPU may only be accessed from within | 
|  | * preempt-disabled sections. | 
|  | */ | 
|  | #define for_each_domain(cpu, __sd) \ | 
|  | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 
|  |  | 
|  | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  |  | 
|  | #ifndef prepare_arch_switch | 
|  | # define prepare_arch_switch(next)	do { } while (0) | 
|  | #endif | 
|  | #ifndef finish_arch_switch | 
|  | # define finish_arch_switch(prev)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | static inline int task_running(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | return rq->curr == p; | 
|  | } | 
|  |  | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK | 
|  | /* this is a valid case when another task releases the spinlock */ | 
|  | rq->lock.owner = current; | 
|  | #endif | 
|  | /* | 
|  | * If we are tracking spinlock dependencies then we have to | 
|  | * fix up the runqueue lock - which gets 'carried over' from | 
|  | * prev into current: | 
|  | */ | 
|  | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
|  |  | 
|  | spin_unlock_irq(&rq->lock); | 
|  | } | 
|  |  | 
|  | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  | static inline int task_running(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return p->oncpu; | 
|  | #else | 
|  | return rq->curr == p; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We can optimise this out completely for !SMP, because the | 
|  | * SMP rebalancing from interrupt is the only thing that cares | 
|  | * here. | 
|  | */ | 
|  | next->oncpu = 1; | 
|  | #endif | 
|  | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | spin_unlock_irq(&rq->lock); | 
|  | #else | 
|  | spin_unlock(&rq->lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->oncpu is cleared, the task can be moved to a different CPU. | 
|  | * We must ensure this doesn't happen until the switch is completely | 
|  | * finished. | 
|  | */ | 
|  | smp_wmb(); | 
|  | prev->oncpu = 0; | 
|  | #endif | 
|  | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | local_irq_enable(); | 
|  | #endif | 
|  | } | 
|  | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  |  | 
|  | /* | 
|  | * __task_rq_lock - lock the runqueue a given task resides on. | 
|  | * Must be called interrupts disabled. | 
|  | */ | 
|  | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | repeat_lock_task: | 
|  | rq = task_rq(p); | 
|  | spin_lock(&rq->lock); | 
|  | if (unlikely(rq != task_rq(p))) { | 
|  | spin_unlock(&rq->lock); | 
|  | goto repeat_lock_task; | 
|  | } | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * task_rq_lock - lock the runqueue a given task resides on and disable | 
|  | * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
|  | * explicitly disabling preemption. | 
|  | */ | 
|  | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | repeat_lock_task: | 
|  | local_irq_save(*flags); | 
|  | rq = task_rq(p); | 
|  | spin_lock(&rq->lock); | 
|  | if (unlikely(rq != task_rq(p))) { | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | goto repeat_lock_task; | 
|  | } | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | static inline void __task_rq_unlock(struct rq *rq) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* | 
|  | * bump this up when changing the output format or the meaning of an existing | 
|  | * format, so that tools can adapt (or abort) | 
|  | */ | 
|  | #define SCHEDSTAT_VERSION 12 | 
|  |  | 
|  | static int show_schedstat(struct seq_file *seq, void *v) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
|  | seq_printf(seq, "timestamp %lu\n", jiffies); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | #ifdef CONFIG_SMP | 
|  | struct sched_domain *sd; | 
|  | int dcnt = 0; | 
|  | #endif | 
|  |  | 
|  | /* runqueue-specific stats */ | 
|  | seq_printf(seq, | 
|  | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | cpu, rq->yld_both_empty, | 
|  | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
|  | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
|  | rq->ttwu_cnt, rq->ttwu_local, | 
|  | rq->rq_sched_info.cpu_time, | 
|  | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
|  |  | 
|  | seq_printf(seq, "\n"); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* domain-specific stats */ | 
|  | preempt_disable(); | 
|  | for_each_domain(cpu, sd) { | 
|  | enum idle_type itype; | 
|  | char mask_str[NR_CPUS]; | 
|  |  | 
|  | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
|  | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
|  | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | 
|  | itype++) { | 
|  | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | sd->lb_cnt[itype], | 
|  | sd->lb_balanced[itype], | 
|  | sd->lb_failed[itype], | 
|  | sd->lb_imbalance[itype], | 
|  | sd->lb_gained[itype], | 
|  | sd->lb_hot_gained[itype], | 
|  | sd->lb_nobusyq[itype], | 
|  | sd->lb_nobusyg[itype]); | 
|  | } | 
|  | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n", | 
|  | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
|  | sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, | 
|  | sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | 
|  | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 
|  | } | 
|  | preempt_enable(); | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int schedstat_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
|  | char *buf = kmalloc(size, GFP_KERNEL); | 
|  | struct seq_file *m; | 
|  | int res; | 
|  |  | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  | res = single_open(file, show_schedstat, NULL); | 
|  | if (!res) { | 
|  | m = file->private_data; | 
|  | m->buf = buf; | 
|  | m->size = size; | 
|  | } else | 
|  | kfree(buf); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | struct file_operations proc_schedstat_operations = { | 
|  | .open    = schedstat_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Expects runqueue lock to be held for atomicity of update | 
|  | */ | 
|  | static inline void | 
|  | rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies) | 
|  | { | 
|  | if (rq) { | 
|  | rq->rq_sched_info.run_delay += delta_jiffies; | 
|  | rq->rq_sched_info.pcnt++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expects runqueue lock to be held for atomicity of update | 
|  | */ | 
|  | static inline void | 
|  | rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies) | 
|  | { | 
|  | if (rq) | 
|  | rq->rq_sched_info.cpu_time += delta_jiffies; | 
|  | } | 
|  | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
|  | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
|  | #else /* !CONFIG_SCHEDSTATS */ | 
|  | static inline void | 
|  | rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies) | 
|  | {} | 
|  | static inline void | 
|  | rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies) | 
|  | {} | 
|  | # define schedstat_inc(rq, field)	do { } while (0) | 
|  | # define schedstat_add(rq, field, amt)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * rq_lock - lock a given runqueue and disable interrupts. | 
|  | */ | 
|  | static inline struct rq *this_rq_lock(void) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | local_irq_disable(); | 
|  | rq = this_rq(); | 
|  | spin_lock(&rq->lock); | 
|  |  | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
|  | /* | 
|  | * Called when a process is dequeued from the active array and given | 
|  | * the cpu.  We should note that with the exception of interactive | 
|  | * tasks, the expired queue will become the active queue after the active | 
|  | * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
|  | * expired queue.  (Interactive tasks may be requeued directly to the | 
|  | * active queue, thus delaying tasks in the expired queue from running; | 
|  | * see scheduler_tick()). | 
|  | * | 
|  | * This function is only called from sched_info_arrive(), rather than | 
|  | * dequeue_task(). Even though a task may be queued and dequeued multiple | 
|  | * times as it is shuffled about, we're really interested in knowing how | 
|  | * long it was from the *first* time it was queued to the time that it | 
|  | * finally hit a cpu. | 
|  | */ | 
|  | static inline void sched_info_dequeued(struct task_struct *t) | 
|  | { | 
|  | t->sched_info.last_queued = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a task finally hits the cpu.  We can now calculate how | 
|  | * long it was waiting to run.  We also note when it began so that we | 
|  | * can keep stats on how long its timeslice is. | 
|  | */ | 
|  | static void sched_info_arrive(struct task_struct *t) | 
|  | { | 
|  | unsigned long now = jiffies, delta_jiffies = 0; | 
|  |  | 
|  | if (t->sched_info.last_queued) | 
|  | delta_jiffies = now - t->sched_info.last_queued; | 
|  | sched_info_dequeued(t); | 
|  | t->sched_info.run_delay += delta_jiffies; | 
|  | t->sched_info.last_arrival = now; | 
|  | t->sched_info.pcnt++; | 
|  |  | 
|  | rq_sched_info_arrive(task_rq(t), delta_jiffies); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a process is queued into either the active or expired | 
|  | * array.  The time is noted and later used to determine how long we | 
|  | * had to wait for us to reach the cpu.  Since the expired queue will | 
|  | * become the active queue after active queue is empty, without dequeuing | 
|  | * and requeuing any tasks, we are interested in queuing to either. It | 
|  | * is unusual but not impossible for tasks to be dequeued and immediately | 
|  | * requeued in the same or another array: this can happen in sched_yield(), | 
|  | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
|  | * to runqueue. | 
|  | * | 
|  | * This function is only called from enqueue_task(), but also only updates | 
|  | * the timestamp if it is already not set.  It's assumed that | 
|  | * sched_info_dequeued() will clear that stamp when appropriate. | 
|  | */ | 
|  | static inline void sched_info_queued(struct task_struct *t) | 
|  | { | 
|  | if (unlikely(sched_info_on())) | 
|  | if (!t->sched_info.last_queued) | 
|  | t->sched_info.last_queued = jiffies; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a process ceases being the active-running process, either | 
|  | * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
|  | */ | 
|  | static inline void sched_info_depart(struct task_struct *t) | 
|  | { | 
|  | unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival; | 
|  |  | 
|  | t->sched_info.cpu_time += delta_jiffies; | 
|  | rq_sched_info_depart(task_rq(t), delta_jiffies); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when tasks are switched involuntarily due, typically, to expiring | 
|  | * their time slice.  (This may also be called when switching to or from | 
|  | * the idle task.)  We are only called when prev != next. | 
|  | */ | 
|  | static inline void | 
|  | __sched_info_switch(struct task_struct *prev, struct task_struct *next) | 
|  | { | 
|  | struct rq *rq = task_rq(prev); | 
|  |  | 
|  | /* | 
|  | * prev now departs the cpu.  It's not interesting to record | 
|  | * stats about how efficient we were at scheduling the idle | 
|  | * process, however. | 
|  | */ | 
|  | if (prev != rq->idle) | 
|  | sched_info_depart(prev); | 
|  |  | 
|  | if (next != rq->idle) | 
|  | sched_info_arrive(next); | 
|  | } | 
|  | static inline void | 
|  | sched_info_switch(struct task_struct *prev, struct task_struct *next) | 
|  | { | 
|  | if (unlikely(sched_info_on())) | 
|  | __sched_info_switch(prev, next); | 
|  | } | 
|  | #else | 
|  | #define sched_info_queued(t)		do { } while (0) | 
|  | #define sched_info_switch(t, next)	do { } while (0) | 
|  | #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void dequeue_task(struct task_struct *p, struct prio_array *array) | 
|  | { | 
|  | array->nr_active--; | 
|  | list_del(&p->run_list); | 
|  | if (list_empty(array->queue + p->prio)) | 
|  | __clear_bit(p->prio, array->bitmap); | 
|  | } | 
|  |  | 
|  | static void enqueue_task(struct task_struct *p, struct prio_array *array) | 
|  | { | 
|  | sched_info_queued(p); | 
|  | list_add_tail(&p->run_list, array->queue + p->prio); | 
|  | __set_bit(p->prio, array->bitmap); | 
|  | array->nr_active++; | 
|  | p->array = array; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the end of the run list without the overhead of dequeue | 
|  | * followed by enqueue. | 
|  | */ | 
|  | static void requeue_task(struct task_struct *p, struct prio_array *array) | 
|  | { | 
|  | list_move_tail(&p->run_list, array->queue + p->prio); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | enqueue_task_head(struct task_struct *p, struct prio_array *array) | 
|  | { | 
|  | list_add(&p->run_list, array->queue + p->prio); | 
|  | __set_bit(p->prio, array->bitmap); | 
|  | array->nr_active++; | 
|  | p->array = array; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __normal_prio - return the priority that is based on the static | 
|  | * priority but is modified by bonuses/penalties. | 
|  | * | 
|  | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | 
|  | * into the -5 ... 0 ... +5 bonus/penalty range. | 
|  | * | 
|  | * We use 25% of the full 0...39 priority range so that: | 
|  | * | 
|  | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | 
|  | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | 
|  | * | 
|  | * Both properties are important to certain workloads. | 
|  | */ | 
|  |  | 
|  | static inline int __normal_prio(struct task_struct *p) | 
|  | { | 
|  | int bonus, prio; | 
|  |  | 
|  | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | 
|  |  | 
|  | prio = p->static_prio - bonus; | 
|  | if (prio < MAX_RT_PRIO) | 
|  | prio = MAX_RT_PRIO; | 
|  | if (prio > MAX_PRIO-1) | 
|  | prio = MAX_PRIO-1; | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
|  | * of tasks with abnormal "nice" values across CPUs the contribution that | 
|  | * each task makes to its run queue's load is weighted according to its | 
|  | * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a | 
|  | * scaled version of the new time slice allocation that they receive on time | 
|  | * slice expiry etc. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE | 
|  | * If static_prio_timeslice() is ever changed to break this assumption then | 
|  | * this code will need modification | 
|  | */ | 
|  | #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE | 
|  | #define LOAD_WEIGHT(lp) \ | 
|  | (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO) | 
|  | #define PRIO_TO_LOAD_WEIGHT(prio) \ | 
|  | LOAD_WEIGHT(static_prio_timeslice(prio)) | 
|  | #define RTPRIO_TO_LOAD_WEIGHT(rp) \ | 
|  | (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp)) | 
|  |  | 
|  | static void set_load_weight(struct task_struct *p) | 
|  | { | 
|  | if (has_rt_policy(p)) { | 
|  | #ifdef CONFIG_SMP | 
|  | if (p == task_rq(p)->migration_thread) | 
|  | /* | 
|  | * The migration thread does the actual balancing. | 
|  | * Giving its load any weight will skew balancing | 
|  | * adversely. | 
|  | */ | 
|  | p->load_weight = 0; | 
|  | else | 
|  | #endif | 
|  | p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority); | 
|  | } else | 
|  | p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | inc_raw_weighted_load(struct rq *rq, const struct task_struct *p) | 
|  | { | 
|  | rq->raw_weighted_load += p->load_weight; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | dec_raw_weighted_load(struct rq *rq, const struct task_struct *p) | 
|  | { | 
|  | rq->raw_weighted_load -= p->load_weight; | 
|  | } | 
|  |  | 
|  | static inline void inc_nr_running(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | rq->nr_running++; | 
|  | inc_raw_weighted_load(rq, p); | 
|  | } | 
|  |  | 
|  | static inline void dec_nr_running(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | rq->nr_running--; | 
|  | dec_raw_weighted_load(rq, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the expected normal priority: i.e. priority | 
|  | * without taking RT-inheritance into account. Might be | 
|  | * boosted by interactivity modifiers. Changes upon fork, | 
|  | * setprio syscalls, and whenever the interactivity | 
|  | * estimator recalculates. | 
|  | */ | 
|  | static inline int normal_prio(struct task_struct *p) | 
|  | { | 
|  | int prio; | 
|  |  | 
|  | if (has_rt_policy(p)) | 
|  | prio = MAX_RT_PRIO-1 - p->rt_priority; | 
|  | else | 
|  | prio = __normal_prio(p); | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the current priority, i.e. the priority | 
|  | * taken into account by the scheduler. This value might | 
|  | * be boosted by RT tasks, or might be boosted by | 
|  | * interactivity modifiers. Will be RT if the task got | 
|  | * RT-boosted. If not then it returns p->normal_prio. | 
|  | */ | 
|  | static int effective_prio(struct task_struct *p) | 
|  | { | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* | 
|  | * If we are RT tasks or we were boosted to RT priority, | 
|  | * keep the priority unchanged. Otherwise, update priority | 
|  | * to the normal priority: | 
|  | */ | 
|  | if (!rt_prio(p->prio)) | 
|  | return p->normal_prio; | 
|  | return p->prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __activate_task - move a task to the runqueue. | 
|  | */ | 
|  | static void __activate_task(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | struct prio_array *target = rq->active; | 
|  |  | 
|  | if (batch_task(p)) | 
|  | target = rq->expired; | 
|  | enqueue_task(p, target); | 
|  | inc_nr_running(p, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __activate_idle_task - move idle task to the _front_ of runqueue. | 
|  | */ | 
|  | static inline void __activate_idle_task(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | enqueue_task_head(p, rq->active); | 
|  | inc_nr_running(p, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recalculate p->normal_prio and p->prio after having slept, | 
|  | * updating the sleep-average too: | 
|  | */ | 
|  | static int recalc_task_prio(struct task_struct *p, unsigned long long now) | 
|  | { | 
|  | /* Caller must always ensure 'now >= p->timestamp' */ | 
|  | unsigned long sleep_time = now - p->timestamp; | 
|  |  | 
|  | if (batch_task(p)) | 
|  | sleep_time = 0; | 
|  |  | 
|  | if (likely(sleep_time > 0)) { | 
|  | /* | 
|  | * This ceiling is set to the lowest priority that would allow | 
|  | * a task to be reinserted into the active array on timeslice | 
|  | * completion. | 
|  | */ | 
|  | unsigned long ceiling = INTERACTIVE_SLEEP(p); | 
|  |  | 
|  | if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) { | 
|  | /* | 
|  | * Prevents user tasks from achieving best priority | 
|  | * with one single large enough sleep. | 
|  | */ | 
|  | p->sleep_avg = ceiling; | 
|  | /* | 
|  | * Using INTERACTIVE_SLEEP() as a ceiling places a | 
|  | * nice(0) task 1ms sleep away from promotion, and | 
|  | * gives it 700ms to round-robin with no chance of | 
|  | * being demoted.  This is more than generous, so | 
|  | * mark this sleep as non-interactive to prevent the | 
|  | * on-runqueue bonus logic from intervening should | 
|  | * this task not receive cpu immediately. | 
|  | */ | 
|  | p->sleep_type = SLEEP_NONINTERACTIVE; | 
|  | } else { | 
|  | /* | 
|  | * Tasks waking from uninterruptible sleep are | 
|  | * limited in their sleep_avg rise as they | 
|  | * are likely to be waiting on I/O | 
|  | */ | 
|  | if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) { | 
|  | if (p->sleep_avg >= ceiling) | 
|  | sleep_time = 0; | 
|  | else if (p->sleep_avg + sleep_time >= | 
|  | ceiling) { | 
|  | p->sleep_avg = ceiling; | 
|  | sleep_time = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This code gives a bonus to interactive tasks. | 
|  | * | 
|  | * The boost works by updating the 'average sleep time' | 
|  | * value here, based on ->timestamp. The more time a | 
|  | * task spends sleeping, the higher the average gets - | 
|  | * and the higher the priority boost gets as well. | 
|  | */ | 
|  | p->sleep_avg += sleep_time; | 
|  |  | 
|  | } | 
|  | if (p->sleep_avg > NS_MAX_SLEEP_AVG) | 
|  | p->sleep_avg = NS_MAX_SLEEP_AVG; | 
|  | } | 
|  |  | 
|  | return effective_prio(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * activate_task - move a task to the runqueue and do priority recalculation | 
|  | * | 
|  | * Update all the scheduling statistics stuff. (sleep average | 
|  | * calculation, priority modifiers, etc.) | 
|  | */ | 
|  | static void activate_task(struct task_struct *p, struct rq *rq, int local) | 
|  | { | 
|  | unsigned long long now; | 
|  |  | 
|  | now = sched_clock(); | 
|  | #ifdef CONFIG_SMP | 
|  | if (!local) { | 
|  | /* Compensate for drifting sched_clock */ | 
|  | struct rq *this_rq = this_rq(); | 
|  | now = (now - this_rq->timestamp_last_tick) | 
|  | + rq->timestamp_last_tick; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!rt_task(p)) | 
|  | p->prio = recalc_task_prio(p, now); | 
|  |  | 
|  | /* | 
|  | * This checks to make sure it's not an uninterruptible task | 
|  | * that is now waking up. | 
|  | */ | 
|  | if (p->sleep_type == SLEEP_NORMAL) { | 
|  | /* | 
|  | * Tasks which were woken up by interrupts (ie. hw events) | 
|  | * are most likely of interactive nature. So we give them | 
|  | * the credit of extending their sleep time to the period | 
|  | * of time they spend on the runqueue, waiting for execution | 
|  | * on a CPU, first time around: | 
|  | */ | 
|  | if (in_interrupt()) | 
|  | p->sleep_type = SLEEP_INTERRUPTED; | 
|  | else { | 
|  | /* | 
|  | * Normal first-time wakeups get a credit too for | 
|  | * on-runqueue time, but it will be weighted down: | 
|  | */ | 
|  | p->sleep_type = SLEEP_INTERACTIVE; | 
|  | } | 
|  | } | 
|  | p->timestamp = now; | 
|  |  | 
|  | __activate_task(p, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deactivate_task - remove a task from the runqueue. | 
|  | */ | 
|  | static void deactivate_task(struct task_struct *p, struct rq *rq) | 
|  | { | 
|  | dec_nr_running(p, rq); | 
|  | dequeue_task(p, p->array); | 
|  | p->array = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resched_task - mark a task 'to be rescheduled now'. | 
|  | * | 
|  | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | * the target CPU. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #ifndef tsk_is_polling | 
|  | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 
|  | #endif | 
|  |  | 
|  | static void resched_task(struct task_struct *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | assert_spin_locked(&task_rq(p)->lock); | 
|  |  | 
|  | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 
|  | return; | 
|  |  | 
|  | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 
|  |  | 
|  | cpu = task_cpu(p); | 
|  | if (cpu == smp_processor_id()) | 
|  | return; | 
|  |  | 
|  | /* NEED_RESCHED must be visible before we test polling */ | 
|  | smp_mb(); | 
|  | if (!tsk_is_polling(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | } | 
|  | #else | 
|  | static inline void resched_task(struct task_struct *p) | 
|  | { | 
|  | assert_spin_locked(&task_rq(p)->lock); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_curr - is this task currently executing on a CPU? | 
|  | * @p: the task in question. | 
|  | */ | 
|  | inline int task_curr(const struct task_struct *p) | 
|  | { | 
|  | return cpu_curr(task_cpu(p)) == p; | 
|  | } | 
|  |  | 
|  | /* Used instead of source_load when we know the type == 0 */ | 
|  | unsigned long weighted_cpuload(const int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->raw_weighted_load; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct migration_req { | 
|  | struct list_head list; | 
|  |  | 
|  | struct task_struct *task; | 
|  | int dest_cpu; | 
|  |  | 
|  | struct completion done; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The task's runqueue lock must be held. | 
|  | * Returns true if you have to wait for migration thread. | 
|  | */ | 
|  | static int | 
|  | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | 
|  | { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the task is not on a runqueue (and not running), then | 
|  | * it is sufficient to simply update the task's cpu field. | 
|  | */ | 
|  | if (!p->array && !task_running(rq, p)) { | 
|  | set_task_cpu(p, dest_cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | init_completion(&req->done); | 
|  | req->task = p; | 
|  | req->dest_cpu = dest_cpu; | 
|  | list_add(&req->list, &rq->migration_queue); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait_task_inactive - wait for a thread to unschedule. | 
|  | * | 
|  | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | * else this function might spin for a *long* time. This function can't | 
|  | * be called with interrupts off, or it may introduce deadlock with | 
|  | * smp_call_function() if an IPI is sent by the same process we are | 
|  | * waiting to become inactive. | 
|  | */ | 
|  | void wait_task_inactive(struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  | int preempted; | 
|  |  | 
|  | repeat: | 
|  | rq = task_rq_lock(p, &flags); | 
|  | /* Must be off runqueue entirely, not preempted. */ | 
|  | if (unlikely(p->array || task_running(rq, p))) { | 
|  | /* If it's preempted, we yield.  It could be a while. */ | 
|  | preempted = !task_running(rq, p); | 
|  | task_rq_unlock(rq, &flags); | 
|  | cpu_relax(); | 
|  | if (preempted) | 
|  | yield(); | 
|  | goto repeat; | 
|  | } | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * kick_process - kick a running thread to enter/exit the kernel | 
|  | * @p: the to-be-kicked thread | 
|  | * | 
|  | * Cause a process which is running on another CPU to enter | 
|  | * kernel-mode, without any delay. (to get signals handled.) | 
|  | * | 
|  | * NOTE: this function doesnt have to take the runqueue lock, | 
|  | * because all it wants to ensure is that the remote task enters | 
|  | * the kernel. If the IPI races and the task has been migrated | 
|  | * to another CPU then no harm is done and the purpose has been | 
|  | * achieved as well. | 
|  | */ | 
|  | void kick_process(struct task_struct *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | preempt_disable(); | 
|  | cpu = task_cpu(p); | 
|  | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a low guess at the load of a migration-source cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | * | 
|  | * We want to under-estimate the load of migration sources, to | 
|  | * balance conservatively. | 
|  | */ | 
|  | static inline unsigned long source_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (type == 0) | 
|  | return rq->raw_weighted_load; | 
|  |  | 
|  | return min(rq->cpu_load[type-1], rq->raw_weighted_load); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a high guess at the load of a migration-target cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | */ | 
|  | static inline unsigned long target_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (type == 0) | 
|  | return rq->raw_weighted_load; | 
|  |  | 
|  | return max(rq->cpu_load[type-1], rq->raw_weighted_load); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the average load per task on the cpu's run queue | 
|  | */ | 
|  | static inline unsigned long cpu_avg_load_per_task(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long n = rq->nr_running; | 
|  |  | 
|  | return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_group finds and returns the least busy CPU group within the | 
|  | * domain. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
|  | unsigned long min_load = ULONG_MAX, this_load = 0; | 
|  | int load_idx = sd->forkexec_idx; | 
|  | int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
|  |  | 
|  | do { | 
|  | unsigned long load, avg_load; | 
|  | int local_group; | 
|  | int i; | 
|  |  | 
|  | /* Skip over this group if it has no CPUs allowed */ | 
|  | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 
|  | goto nextgroup; | 
|  |  | 
|  | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | avg_load = 0; | 
|  |  | 
|  | for_each_cpu_mask(i, group->cpumask) { | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = source_load(i, load_idx); | 
|  | else | 
|  | load = target_load(i, load_idx); | 
|  |  | 
|  | avg_load += load; | 
|  | } | 
|  |  | 
|  | /* Adjust by relative CPU power of the group */ | 
|  | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | this = group; | 
|  | } else if (avg_load < min_load) { | 
|  | min_load = avg_load; | 
|  | idlest = group; | 
|  | } | 
|  | nextgroup: | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  |  | 
|  | if (!idlest || 100*this_load < imbalance*min_load) | 
|  | return NULL; | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_queue - find the idlest runqueue among the cpus in group. | 
|  | */ | 
|  | static int | 
|  | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | cpumask_t tmp; | 
|  | unsigned long load, min_load = ULONG_MAX; | 
|  | int idlest = -1; | 
|  | int i; | 
|  |  | 
|  | /* Traverse only the allowed CPUs */ | 
|  | cpus_and(tmp, group->cpumask, p->cpus_allowed); | 
|  |  | 
|  | for_each_cpu_mask(i, tmp) { | 
|  | load = weighted_cpuload(i); | 
|  |  | 
|  | if (load < min_load || (load == min_load && i == this_cpu)) { | 
|  | min_load = load; | 
|  | idlest = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_balance_self: balance the current task (running on cpu) in domains | 
|  | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
|  | * SD_BALANCE_EXEC. | 
|  | * | 
|  | * Balance, ie. select the least loaded group. | 
|  | * | 
|  | * Returns the target CPU number, or the same CPU if no balancing is needed. | 
|  | * | 
|  | * preempt must be disabled. | 
|  | */ | 
|  | static int sched_balance_self(int cpu, int flag) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  |  | 
|  | for_each_domain(cpu, tmp) { | 
|  | /* | 
|  | * If power savings logic is enabled for a domain, stop there. | 
|  | */ | 
|  | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 
|  | break; | 
|  | if (tmp->flags & flag) | 
|  | sd = tmp; | 
|  | } | 
|  |  | 
|  | while (sd) { | 
|  | cpumask_t span; | 
|  | struct sched_group *group; | 
|  | int new_cpu; | 
|  | int weight; | 
|  |  | 
|  | span = sd->span; | 
|  | group = find_idlest_group(sd, t, cpu); | 
|  | if (!group) | 
|  | goto nextlevel; | 
|  |  | 
|  | new_cpu = find_idlest_cpu(group, t, cpu); | 
|  | if (new_cpu == -1 || new_cpu == cpu) | 
|  | goto nextlevel; | 
|  |  | 
|  | /* Now try balancing at a lower domain level */ | 
|  | cpu = new_cpu; | 
|  | nextlevel: | 
|  | sd = NULL; | 
|  | weight = cpus_weight(span); | 
|  | for_each_domain(cpu, tmp) { | 
|  | if (weight <= cpus_weight(tmp->span)) | 
|  | break; | 
|  | if (tmp->flags & flag) | 
|  | sd = tmp; | 
|  | } | 
|  | /* while loop will break here if sd == NULL */ | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * wake_idle() will wake a task on an idle cpu if task->cpu is | 
|  | * not idle and an idle cpu is available.  The span of cpus to | 
|  | * search starts with cpus closest then further out as needed, | 
|  | * so we always favor a closer, idle cpu. | 
|  | * | 
|  | * Returns the CPU we should wake onto. | 
|  | */ | 
|  | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
|  | static int wake_idle(int cpu, struct task_struct *p) | 
|  | { | 
|  | cpumask_t tmp; | 
|  | struct sched_domain *sd; | 
|  | int i; | 
|  |  | 
|  | if (idle_cpu(cpu)) | 
|  | return cpu; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & SD_WAKE_IDLE) { | 
|  | cpus_and(tmp, sd->span, p->cpus_allowed); | 
|  | for_each_cpu_mask(i, tmp) { | 
|  | if (idle_cpu(i)) | 
|  | return i; | 
|  | } | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | return cpu; | 
|  | } | 
|  | #else | 
|  | static inline int wake_idle(int cpu, struct task_struct *p) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*** | 
|  | * try_to_wake_up - wake up a thread | 
|  | * @p: the to-be-woken-up thread | 
|  | * @state: the mask of task states that can be woken | 
|  | * @sync: do a synchronous wakeup? | 
|  | * | 
|  | * Put it on the run-queue if it's not already there. The "current" | 
|  | * thread is always on the run-queue (except when the actual | 
|  | * re-schedule is in progress), and as such you're allowed to do | 
|  | * the simpler "current->state = TASK_RUNNING" to mark yourself | 
|  | * runnable without the overhead of this. | 
|  | * | 
|  | * returns failure only if the task is already active. | 
|  | */ | 
|  | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 
|  | { | 
|  | int cpu, this_cpu, success = 0; | 
|  | unsigned long flags; | 
|  | long old_state; | 
|  | struct rq *rq; | 
|  | #ifdef CONFIG_SMP | 
|  | struct sched_domain *sd, *this_sd = NULL; | 
|  | unsigned long load, this_load; | 
|  | int new_cpu; | 
|  | #endif | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  |  | 
|  | if (p->array) | 
|  | goto out_running; | 
|  |  | 
|  | cpu = task_cpu(p); | 
|  | this_cpu = smp_processor_id(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (unlikely(task_running(rq, p))) | 
|  | goto out_activate; | 
|  |  | 
|  | new_cpu = cpu; | 
|  |  | 
|  | schedstat_inc(rq, ttwu_cnt); | 
|  | if (cpu == this_cpu) { | 
|  | schedstat_inc(rq, ttwu_local); | 
|  | goto out_set_cpu; | 
|  | } | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | schedstat_inc(sd, ttwu_wake_remote); | 
|  | this_sd = sd; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
|  | goto out_set_cpu; | 
|  |  | 
|  | /* | 
|  | * Check for affine wakeup and passive balancing possibilities. | 
|  | */ | 
|  | if (this_sd) { | 
|  | int idx = this_sd->wake_idx; | 
|  | unsigned int imbalance; | 
|  |  | 
|  | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
|  |  | 
|  | load = source_load(cpu, idx); | 
|  | this_load = target_load(this_cpu, idx); | 
|  |  | 
|  | new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
|  |  | 
|  | if (this_sd->flags & SD_WAKE_AFFINE) { | 
|  | unsigned long tl = this_load; | 
|  | unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu); | 
|  |  | 
|  | /* | 
|  | * If sync wakeup then subtract the (maximum possible) | 
|  | * effect of the currently running task from the load | 
|  | * of the current CPU: | 
|  | */ | 
|  | if (sync) | 
|  | tl -= current->load_weight; | 
|  |  | 
|  | if ((tl <= load && | 
|  | tl + target_load(cpu, idx) <= tl_per_task) || | 
|  | 100*(tl + p->load_weight) <= imbalance*load) { | 
|  | /* | 
|  | * This domain has SD_WAKE_AFFINE and | 
|  | * p is cache cold in this domain, and | 
|  | * there is no bad imbalance. | 
|  | */ | 
|  | schedstat_inc(this_sd, ttwu_move_affine); | 
|  | goto out_set_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start passive balancing when half the imbalance_pct | 
|  | * limit is reached. | 
|  | */ | 
|  | if (this_sd->flags & SD_WAKE_BALANCE) { | 
|  | if (imbalance*this_load <= 100*load) { | 
|  | schedstat_inc(this_sd, ttwu_move_balance); | 
|  | goto out_set_cpu; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
|  | out_set_cpu: | 
|  | new_cpu = wake_idle(new_cpu, p); | 
|  | if (new_cpu != cpu) { | 
|  | set_task_cpu(p, new_cpu); | 
|  | task_rq_unlock(rq, &flags); | 
|  | /* might preempt at this point */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  | if (p->array) | 
|  | goto out_running; | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | cpu = task_cpu(p); | 
|  | } | 
|  |  | 
|  | out_activate: | 
|  | #endif /* CONFIG_SMP */ | 
|  | if (old_state == TASK_UNINTERRUPTIBLE) { | 
|  | rq->nr_uninterruptible--; | 
|  | /* | 
|  | * Tasks on involuntary sleep don't earn | 
|  | * sleep_avg beyond just interactive state. | 
|  | */ | 
|  | p->sleep_type = SLEEP_NONINTERACTIVE; | 
|  | } else | 
|  |  | 
|  | /* | 
|  | * Tasks that have marked their sleep as noninteractive get | 
|  | * woken up with their sleep average not weighted in an | 
|  | * interactive way. | 
|  | */ | 
|  | if (old_state & TASK_NONINTERACTIVE) | 
|  | p->sleep_type = SLEEP_NONINTERACTIVE; | 
|  |  | 
|  |  | 
|  | activate_task(p, rq, cpu == this_cpu); | 
|  | /* | 
|  | * Sync wakeups (i.e. those types of wakeups where the waker | 
|  | * has indicated that it will leave the CPU in short order) | 
|  | * don't trigger a preemption, if the woken up task will run on | 
|  | * this cpu. (in this case the 'I will reschedule' promise of | 
|  | * the waker guarantees that the freshly woken up task is going | 
|  | * to be considered on this CPU.) | 
|  | */ | 
|  | if (!sync || cpu != this_cpu) { | 
|  | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | success = 1; | 
|  |  | 
|  | out_running: | 
|  | p->state = TASK_RUNNING; | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | int fastcall wake_up_process(struct task_struct *p) | 
|  | { | 
|  | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
|  | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_process); | 
|  |  | 
|  | int fastcall wake_up_state(struct task_struct *p, unsigned int state) | 
|  | { | 
|  | return try_to_wake_up(p, state, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform scheduler related setup for a newly forked process p. | 
|  | * p is forked by current. | 
|  | */ | 
|  | void fastcall sched_fork(struct task_struct *p, int clone_flags) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 
|  | #endif | 
|  | set_task_cpu(p, cpu); | 
|  |  | 
|  | /* | 
|  | * We mark the process as running here, but have not actually | 
|  | * inserted it onto the runqueue yet. This guarantees that | 
|  | * nobody will actually run it, and a signal or other external | 
|  | * event cannot wake it up and insert it on the runqueue either. | 
|  | */ | 
|  | p->state = TASK_RUNNING; | 
|  |  | 
|  | /* | 
|  | * Make sure we do not leak PI boosting priority to the child: | 
|  | */ | 
|  | p->prio = current->normal_prio; | 
|  |  | 
|  | INIT_LIST_HEAD(&p->run_list); | 
|  | p->array = NULL; | 
|  | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
|  | if (unlikely(sched_info_on())) | 
|  | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | #endif | 
|  | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
|  | p->oncpu = 0; | 
|  | #endif | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* Want to start with kernel preemption disabled. */ | 
|  | task_thread_info(p)->preempt_count = 1; | 
|  | #endif | 
|  | /* | 
|  | * Share the timeslice between parent and child, thus the | 
|  | * total amount of pending timeslices in the system doesn't change, | 
|  | * resulting in more scheduling fairness. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | p->time_slice = (current->time_slice + 1) >> 1; | 
|  | /* | 
|  | * The remainder of the first timeslice might be recovered by | 
|  | * the parent if the child exits early enough. | 
|  | */ | 
|  | p->first_time_slice = 1; | 
|  | current->time_slice >>= 1; | 
|  | p->timestamp = sched_clock(); | 
|  | if (unlikely(!current->time_slice)) { | 
|  | /* | 
|  | * This case is rare, it happens when the parent has only | 
|  | * a single jiffy left from its timeslice. Taking the | 
|  | * runqueue lock is not a problem. | 
|  | */ | 
|  | current->time_slice = 1; | 
|  | scheduler_tick(); | 
|  | } | 
|  | local_irq_enable(); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | * | 
|  | * This function will do some initial scheduler statistics housekeeping | 
|  | * that must be done for every newly created context, then puts the task | 
|  | * on the runqueue and wakes it. | 
|  | */ | 
|  | void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | 
|  | { | 
|  | struct rq *rq, *this_rq; | 
|  | unsigned long flags; | 
|  | int this_cpu, cpu; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | BUG_ON(p->state != TASK_RUNNING); | 
|  | this_cpu = smp_processor_id(); | 
|  | cpu = task_cpu(p); | 
|  |  | 
|  | /* | 
|  | * We decrease the sleep average of forking parents | 
|  | * and children as well, to keep max-interactive tasks | 
|  | * from forking tasks that are max-interactive. The parent | 
|  | * (current) is done further down, under its lock. | 
|  | */ | 
|  | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | 
|  | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  |  | 
|  | p->prio = effective_prio(p); | 
|  |  | 
|  | if (likely(cpu == this_cpu)) { | 
|  | if (!(clone_flags & CLONE_VM)) { | 
|  | /* | 
|  | * The VM isn't cloned, so we're in a good position to | 
|  | * do child-runs-first in anticipation of an exec. This | 
|  | * usually avoids a lot of COW overhead. | 
|  | */ | 
|  | if (unlikely(!current->array)) | 
|  | __activate_task(p, rq); | 
|  | else { | 
|  | p->prio = current->prio; | 
|  | p->normal_prio = current->normal_prio; | 
|  | list_add_tail(&p->run_list, ¤t->run_list); | 
|  | p->array = current->array; | 
|  | p->array->nr_active++; | 
|  | inc_nr_running(p, rq); | 
|  | } | 
|  | set_need_resched(); | 
|  | } else | 
|  | /* Run child last */ | 
|  | __activate_task(p, rq); | 
|  | /* | 
|  | * We skip the following code due to cpu == this_cpu | 
|  | * | 
|  | *   task_rq_unlock(rq, &flags); | 
|  | *   this_rq = task_rq_lock(current, &flags); | 
|  | */ | 
|  | this_rq = rq; | 
|  | } else { | 
|  | this_rq = cpu_rq(this_cpu); | 
|  |  | 
|  | /* | 
|  | * Not the local CPU - must adjust timestamp. This should | 
|  | * get optimised away in the !CONFIG_SMP case. | 
|  | */ | 
|  | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | 
|  | + rq->timestamp_last_tick; | 
|  | __activate_task(p, rq); | 
|  | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  |  | 
|  | /* | 
|  | * Parent and child are on different CPUs, now get the | 
|  | * parent runqueue to update the parent's ->sleep_avg: | 
|  | */ | 
|  | task_rq_unlock(rq, &flags); | 
|  | this_rq = task_rq_lock(current, &flags); | 
|  | } | 
|  | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | 
|  | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | task_rq_unlock(this_rq, &flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Potentially available exiting-child timeslices are | 
|  | * retrieved here - this way the parent does not get | 
|  | * penalized for creating too many threads. | 
|  | * | 
|  | * (this cannot be used to 'generate' timeslices | 
|  | * artificially, because any timeslice recovered here | 
|  | * was given away by the parent in the first place.) | 
|  | */ | 
|  | void fastcall sched_exit(struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* | 
|  | * If the child was a (relative-) CPU hog then decrease | 
|  | * the sleep_avg of the parent as well. | 
|  | */ | 
|  | rq = task_rq_lock(p->parent, &flags); | 
|  | if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) { | 
|  | p->parent->time_slice += p->time_slice; | 
|  | if (unlikely(p->parent->time_slice > task_timeslice(p))) | 
|  | p->parent->time_slice = task_timeslice(p); | 
|  | } | 
|  | if (p->sleep_avg < p->parent->sleep_avg) | 
|  | p->parent->sleep_avg = p->parent->sleep_avg / | 
|  | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | 
|  | (EXIT_WEIGHT + 1); | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prepare_task_switch - prepare to switch tasks | 
|  | * @rq: the runqueue preparing to switch | 
|  | * @next: the task we are going to switch to. | 
|  | * | 
|  | * This is called with the rq lock held and interrupts off. It must | 
|  | * be paired with a subsequent finish_task_switch after the context | 
|  | * switch. | 
|  | * | 
|  | * prepare_task_switch sets up locking and calls architecture specific | 
|  | * hooks. | 
|  | */ | 
|  | static inline void prepare_task_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | prepare_lock_switch(rq, next); | 
|  | prepare_arch_switch(next); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_task_switch - clean up after a task-switch | 
|  | * @rq: runqueue associated with task-switch | 
|  | * @prev: the thread we just switched away from. | 
|  | * | 
|  | * finish_task_switch must be called after the context switch, paired | 
|  | * with a prepare_task_switch call before the context switch. | 
|  | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
|  | * and do any other architecture-specific cleanup actions. | 
|  | * | 
|  | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | * so, we finish that here outside of the runqueue lock.  (Doing it | 
|  | * with the lock held can cause deadlocks; see schedule() for | 
|  | * details.) | 
|  | */ | 
|  | static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct mm_struct *mm = rq->prev_mm; | 
|  | unsigned long prev_task_flags; | 
|  |  | 
|  | rq->prev_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * A task struct has one reference for the use as "current". | 
|  | * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | 
|  | * calls schedule one last time. The schedule call will never return, | 
|  | * and the scheduled task must drop that reference. | 
|  | * The test for EXIT_ZOMBIE must occur while the runqueue locks are | 
|  | * still held, otherwise prev could be scheduled on another cpu, die | 
|  | * there before we look at prev->state, and then the reference would | 
|  | * be dropped twice. | 
|  | *		Manfred Spraul <manfred@colorfullife.com> | 
|  | */ | 
|  | prev_task_flags = prev->flags; | 
|  | finish_arch_switch(prev); | 
|  | finish_lock_switch(rq, prev); | 
|  | if (mm) | 
|  | mmdrop(mm); | 
|  | if (unlikely(prev_task_flags & PF_DEAD)) { | 
|  | /* | 
|  | * Remove function-return probe instances associated with this | 
|  | * task and put them back on the free list. | 
|  | */ | 
|  | kprobe_flush_task(prev); | 
|  | put_task_struct(prev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_tail - first thing a freshly forked thread must call. | 
|  | * @prev: the thread we just switched away from. | 
|  | */ | 
|  | asmlinkage void schedule_tail(struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct rq *rq = this_rq(); | 
|  |  | 
|  | finish_task_switch(rq, prev); | 
|  | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | /* In this case, finish_task_switch does not reenable preemption */ | 
|  | preempt_enable(); | 
|  | #endif | 
|  | if (current->set_child_tid) | 
|  | put_user(current->pid, current->set_child_tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context_switch - switch to the new MM and the new | 
|  | * thread's register state. | 
|  | */ | 
|  | static inline struct task_struct * | 
|  | context_switch(struct rq *rq, struct task_struct *prev, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct mm_struct *mm = next->mm; | 
|  | struct mm_struct *oldmm = prev->active_mm; | 
|  |  | 
|  | if (unlikely(!mm)) { | 
|  | next->active_mm = oldmm; | 
|  | atomic_inc(&oldmm->mm_count); | 
|  | enter_lazy_tlb(oldmm, next); | 
|  | } else | 
|  | switch_mm(oldmm, mm, next); | 
|  |  | 
|  | if (unlikely(!prev->mm)) { | 
|  | prev->active_mm = NULL; | 
|  | WARN_ON(rq->prev_mm); | 
|  | rq->prev_mm = oldmm; | 
|  | } | 
|  | /* | 
|  | * Since the runqueue lock will be released by the next | 
|  | * task (which is an invalid locking op but in the case | 
|  | * of the scheduler it's an obvious special-case), so we | 
|  | * do an early lockdep release here: | 
|  | */ | 
|  | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
|  | #endif | 
|  |  | 
|  | /* Here we just switch the register state and the stack. */ | 
|  | switch_to(prev, next, prev); | 
|  |  | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nr_running, nr_uninterruptible and nr_context_switches: | 
|  | * | 
|  | * externally visible scheduler statistics: current number of runnable | 
|  | * threads, current number of uninterruptible-sleeping threads, total | 
|  | * number of context switches performed since bootup. | 
|  | */ | 
|  | unsigned long nr_running(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | sum += cpu_rq(i)->nr_running; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_uninterruptible(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += cpu_rq(i)->nr_uninterruptible; | 
|  |  | 
|  | /* | 
|  | * Since we read the counters lockless, it might be slightly | 
|  | * inaccurate. Do not allow it to go below zero though: | 
|  | */ | 
|  | if (unlikely((long)sum < 0)) | 
|  | sum = 0; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long long nr_context_switches(void) | 
|  | { | 
|  | int i; | 
|  | unsigned long long sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += cpu_rq(i)->nr_switches; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_iowait(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_active(void) | 
|  | { | 
|  | unsigned long i, running = 0, uninterruptible = 0; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | running += cpu_rq(i)->nr_running; | 
|  | uninterruptible += cpu_rq(i)->nr_uninterruptible; | 
|  | } | 
|  |  | 
|  | if (unlikely((long)uninterruptible < 0)) | 
|  | uninterruptible = 0; | 
|  |  | 
|  | return running + uninterruptible; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * Is this task likely cache-hot: | 
|  | */ | 
|  | static inline int | 
|  | task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd) | 
|  | { | 
|  | return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_lock - safely lock two runqueues | 
|  | * | 
|  | * Note this does not disable interrupts like task_rq_lock, | 
|  | * you need to do so manually before calling. | 
|  | */ | 
|  | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
|  | __acquires(rq1->lock) | 
|  | __acquires(rq2->lock) | 
|  | { | 
|  | if (rq1 == rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | } else { | 
|  | if (rq1 < rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | spin_lock(&rq2->lock); | 
|  | } else { | 
|  | spin_lock(&rq2->lock); | 
|  | spin_lock(&rq1->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_unlock - safely unlock two runqueues | 
|  | * | 
|  | * Note this does not restore interrupts like task_rq_unlock, | 
|  | * you need to do so manually after calling. | 
|  | */ | 
|  | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
|  | __releases(rq1->lock) | 
|  | __releases(rq2->lock) | 
|  | { | 
|  | spin_unlock(&rq1->lock); | 
|  | if (rq1 != rq2) | 
|  | spin_unlock(&rq2->lock); | 
|  | else | 
|  | __release(rq2->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | */ | 
|  | static void double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(this_rq->lock) | 
|  | __acquires(busiest->lock) | 
|  | __acquires(this_rq->lock) | 
|  | { | 
|  | if (unlikely(!spin_trylock(&busiest->lock))) { | 
|  | if (busiest < this_rq) { | 
|  | spin_unlock(&this_rq->lock); | 
|  | spin_lock(&busiest->lock); | 
|  | spin_lock(&this_rq->lock); | 
|  | } else | 
|  | spin_lock(&busiest->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If dest_cpu is allowed for this process, migrate the task to it. | 
|  | * This is accomplished by forcing the cpu_allowed mask to only | 
|  | * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
|  | * the cpu_allowed mask is restored. | 
|  | */ | 
|  | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 
|  | { | 
|  | struct migration_req req; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
|  | || unlikely(cpu_is_offline(dest_cpu))) | 
|  | goto out; | 
|  |  | 
|  | /* force the process onto the specified CPU */ | 
|  | if (migrate_task(p, dest_cpu, &req)) { | 
|  | /* Need to wait for migration thread (might exit: take ref). */ | 
|  | struct task_struct *mt = rq->migration_thread; | 
|  |  | 
|  | get_task_struct(mt); | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(mt); | 
|  | put_task_struct(mt); | 
|  | wait_for_completion(&req.done); | 
|  |  | 
|  | return; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_exec - execve() is a valuable balancing opportunity, because at | 
|  | * this point the task has the smallest effective memory and cache footprint. | 
|  | */ | 
|  | void sched_exec(void) | 
|  | { | 
|  | int new_cpu, this_cpu = get_cpu(); | 
|  | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 
|  | put_cpu(); | 
|  | if (new_cpu != this_cpu) | 
|  | sched_migrate_task(current, new_cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pull_task - move a task from a remote runqueue to the local runqueue. | 
|  | * Both runqueues must be locked. | 
|  | */ | 
|  | static void pull_task(struct rq *src_rq, struct prio_array *src_array, | 
|  | struct task_struct *p, struct rq *this_rq, | 
|  | struct prio_array *this_array, int this_cpu) | 
|  | { | 
|  | dequeue_task(p, src_array); | 
|  | dec_nr_running(p, src_rq); | 
|  | set_task_cpu(p, this_cpu); | 
|  | inc_nr_running(p, this_rq); | 
|  | enqueue_task(p, this_array); | 
|  | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | 
|  | + this_rq->timestamp_last_tick; | 
|  | /* | 
|  | * Note that idle threads have a prio of MAX_PRIO, for this test | 
|  | * to be always true for them. | 
|  | */ | 
|  | if (TASK_PREEMPTS_CURR(p, this_rq)) | 
|  | resched_task(this_rq->curr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | */ | 
|  | static | 
|  | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 
|  | struct sched_domain *sd, enum idle_type idle, | 
|  | int *all_pinned) | 
|  | { | 
|  | /* | 
|  | * We do not migrate tasks that are: | 
|  | * 1) running (obviously), or | 
|  | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | * 3) are cache-hot on their current CPU. | 
|  | */ | 
|  | if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
|  | return 0; | 
|  | *all_pinned = 0; | 
|  |  | 
|  | if (task_running(rq, p)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Aggressive migration if: | 
|  | * 1) task is cache cold, or | 
|  | * 2) too many balance attempts have failed. | 
|  | */ | 
|  |  | 
|  | if (sd->nr_balance_failed > sd->cache_nice_tries) | 
|  | return 1; | 
|  |  | 
|  | if (task_hot(p, rq->timestamp_last_tick, sd)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio) | 
|  |  | 
|  | /* | 
|  | * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted | 
|  | * load from busiest to this_rq, as part of a balancing operation within | 
|  | * "domain". Returns the number of tasks moved. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_nr_move, unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum idle_type idle, | 
|  | int *all_pinned) | 
|  | { | 
|  | int idx, pulled = 0, pinned = 0, this_best_prio, best_prio, | 
|  | best_prio_seen, skip_for_load; | 
|  | struct prio_array *array, *dst_array; | 
|  | struct list_head *head, *curr; | 
|  | struct task_struct *tmp; | 
|  | long rem_load_move; | 
|  |  | 
|  | if (max_nr_move == 0 || max_load_move == 0) | 
|  | goto out; | 
|  |  | 
|  | rem_load_move = max_load_move; | 
|  | pinned = 1; | 
|  | this_best_prio = rq_best_prio(this_rq); | 
|  | best_prio = rq_best_prio(busiest); | 
|  | /* | 
|  | * Enable handling of the case where there is more than one task | 
|  | * with the best priority.   If the current running task is one | 
|  | * of those with prio==best_prio we know it won't be moved | 
|  | * and therefore it's safe to override the skip (based on load) of | 
|  | * any task we find with that prio. | 
|  | */ | 
|  | best_prio_seen = best_prio == busiest->curr->prio; | 
|  |  | 
|  | /* | 
|  | * We first consider expired tasks. Those will likely not be | 
|  | * executed in the near future, and they are most likely to | 
|  | * be cache-cold, thus switching CPUs has the least effect | 
|  | * on them. | 
|  | */ | 
|  | if (busiest->expired->nr_active) { | 
|  | array = busiest->expired; | 
|  | dst_array = this_rq->expired; | 
|  | } else { | 
|  | array = busiest->active; | 
|  | dst_array = this_rq->active; | 
|  | } | 
|  |  | 
|  | new_array: | 
|  | /* Start searching at priority 0: */ | 
|  | idx = 0; | 
|  | skip_bitmap: | 
|  | if (!idx) | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | else | 
|  | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | 
|  | if (idx >= MAX_PRIO) { | 
|  | if (array == busiest->expired && busiest->active->nr_active) { | 
|  | array = busiest->active; | 
|  | dst_array = this_rq->active; | 
|  | goto new_array; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | head = array->queue + idx; | 
|  | curr = head->prev; | 
|  | skip_queue: | 
|  | tmp = list_entry(curr, struct task_struct, run_list); | 
|  |  | 
|  | curr = curr->prev; | 
|  |  | 
|  | /* | 
|  | * To help distribute high priority tasks accross CPUs we don't | 
|  | * skip a task if it will be the highest priority task (i.e. smallest | 
|  | * prio value) on its new queue regardless of its load weight | 
|  | */ | 
|  | skip_for_load = tmp->load_weight > rem_load_move; | 
|  | if (skip_for_load && idx < this_best_prio) | 
|  | skip_for_load = !best_prio_seen && idx == best_prio; | 
|  | if (skip_for_load || | 
|  | !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { | 
|  |  | 
|  | best_prio_seen |= idx == best_prio; | 
|  | if (curr != head) | 
|  | goto skip_queue; | 
|  | idx++; | 
|  | goto skip_bitmap; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | 
|  | schedstat_inc(sd, lb_hot_gained[idle]); | 
|  | #endif | 
|  |  | 
|  | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | 
|  | pulled++; | 
|  | rem_load_move -= tmp->load_weight; | 
|  |  | 
|  | /* | 
|  | * We only want to steal up to the prescribed number of tasks | 
|  | * and the prescribed amount of weighted load. | 
|  | */ | 
|  | if (pulled < max_nr_move && rem_load_move > 0) { | 
|  | if (idx < this_best_prio) | 
|  | this_best_prio = idx; | 
|  | if (curr != head) | 
|  | goto skip_queue; | 
|  | idx++; | 
|  | goto skip_bitmap; | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * Right now, this is the only place pull_task() is called, | 
|  | * so we can safely collect pull_task() stats here rather than | 
|  | * inside pull_task(). | 
|  | */ | 
|  | schedstat_add(sd, lb_gained[idle], pulled); | 
|  |  | 
|  | if (all_pinned) | 
|  | *all_pinned = pinned; | 
|  | return pulled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_group finds and returns the busiest CPU group within the | 
|  | * domain. It calculates and returns the amount of weighted load which | 
|  | * should be moved to restore balance via the imbalance parameter. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
|  | unsigned long *imbalance, enum idle_type idle, int *sd_idle) | 
|  | { | 
|  | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
|  | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
|  | unsigned long max_pull; | 
|  | unsigned long busiest_load_per_task, busiest_nr_running; | 
|  | unsigned long this_load_per_task, this_nr_running; | 
|  | int load_idx; | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | int power_savings_balance = 1; | 
|  | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 
|  | unsigned long min_nr_running = ULONG_MAX; | 
|  | struct sched_group *group_min = NULL, *group_leader = NULL; | 
|  | #endif | 
|  |  | 
|  | max_load = this_load = total_load = total_pwr = 0; | 
|  | busiest_load_per_task = busiest_nr_running = 0; | 
|  | this_load_per_task = this_nr_running = 0; | 
|  | if (idle == NOT_IDLE) | 
|  | load_idx = sd->busy_idx; | 
|  | else if (idle == NEWLY_IDLE) | 
|  | load_idx = sd->newidle_idx; | 
|  | else | 
|  | load_idx = sd->idle_idx; | 
|  |  | 
|  | do { | 
|  | unsigned long load, group_capacity; | 
|  | int local_group; | 
|  | int i; | 
|  | unsigned long sum_nr_running, sum_weighted_load; | 
|  |  | 
|  | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | sum_weighted_load = sum_nr_running = avg_load = 0; | 
|  |  | 
|  | for_each_cpu_mask(i, group->cpumask) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  |  | 
|  | if (*sd_idle && !idle_cpu(i)) | 
|  | *sd_idle = 0; | 
|  |  | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = target_load(i, load_idx); | 
|  | else | 
|  | load = source_load(i, load_idx); | 
|  |  | 
|  | avg_load += load; | 
|  | sum_nr_running += rq->nr_running; | 
|  | sum_weighted_load += rq->raw_weighted_load; | 
|  | } | 
|  |  | 
|  | total_load += avg_load; | 
|  | total_pwr += group->cpu_power; | 
|  |  | 
|  | /* Adjust by relative CPU power of the group */ | 
|  | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  |  | 
|  | group_capacity = group->cpu_power / SCHED_LOAD_SCALE; | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | this = group; | 
|  | this_nr_running = sum_nr_running; | 
|  | this_load_per_task = sum_weighted_load; | 
|  | } else if (avg_load > max_load && | 
|  | sum_nr_running > group_capacity) { | 
|  | max_load = avg_load; | 
|  | busiest = group; | 
|  | busiest_nr_running = sum_nr_running; | 
|  | busiest_load_per_task = sum_weighted_load; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | /* | 
|  | * Busy processors will not participate in power savings | 
|  | * balance. | 
|  | */ | 
|  | if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
|  | goto group_next; | 
|  |  | 
|  | /* | 
|  | * If the local group is idle or completely loaded | 
|  | * no need to do power savings balance at this domain | 
|  | */ | 
|  | if (local_group && (this_nr_running >= group_capacity || | 
|  | !this_nr_running)) | 
|  | power_savings_balance = 0; | 
|  |  | 
|  | /* | 
|  | * If a group is already running at full capacity or idle, | 
|  | * don't include that group in power savings calculations | 
|  | */ | 
|  | if (!power_savings_balance || sum_nr_running >= group_capacity | 
|  | || !sum_nr_running) | 
|  | goto group_next; | 
|  |  | 
|  | /* | 
|  | * Calculate the group which has the least non-idle load. | 
|  | * This is the group from where we need to pick up the load | 
|  | * for saving power | 
|  | */ | 
|  | if ((sum_nr_running < min_nr_running) || | 
|  | (sum_nr_running == min_nr_running && | 
|  | first_cpu(group->cpumask) < | 
|  | first_cpu(group_min->cpumask))) { | 
|  | group_min = group; | 
|  | min_nr_running = sum_nr_running; | 
|  | min_load_per_task = sum_weighted_load / | 
|  | sum_nr_running; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the group which is almost near its | 
|  | * capacity but still has some space to pick up some load | 
|  | * from other group and save more power | 
|  | */ | 
|  | if (sum_nr_running <= group_capacity - 1) { | 
|  | if (sum_nr_running > leader_nr_running || | 
|  | (sum_nr_running == leader_nr_running && | 
|  | first_cpu(group->cpumask) > | 
|  | first_cpu(group_leader->cpumask))) { | 
|  | group_leader = group; | 
|  | leader_nr_running = sum_nr_running; | 
|  | } | 
|  | } | 
|  | group_next: | 
|  | #endif | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  |  | 
|  | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 
|  | goto out_balanced; | 
|  |  | 
|  | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
|  |  | 
|  | if (this_load >= avg_load || | 
|  | 100*max_load <= sd->imbalance_pct*this_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | busiest_load_per_task /= busiest_nr_running; | 
|  | /* | 
|  | * We're trying to get all the cpus to the average_load, so we don't | 
|  | * want to push ourselves above the average load, nor do we wish to | 
|  | * reduce the max loaded cpu below the average load, as either of these | 
|  | * actions would just result in more rebalancing later, and ping-pong | 
|  | * tasks around. Thus we look for the minimum possible imbalance. | 
|  | * Negative imbalances (*we* are more loaded than anyone else) will | 
|  | * be counted as no imbalance for these purposes -- we can't fix that | 
|  | * by pulling tasks to us.  Be careful of negative numbers as they'll | 
|  | * appear as very large values with unsigned longs. | 
|  | */ | 
|  | if (max_load <= busiest_load_per_task) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * In the presence of smp nice balancing, certain scenarios can have | 
|  | * max load less than avg load(as we skip the groups at or below | 
|  | * its cpu_power, while calculating max_load..) | 
|  | */ | 
|  | if (max_load < avg_load) { | 
|  | *imbalance = 0; | 
|  | goto small_imbalance; | 
|  | } | 
|  |  | 
|  | /* Don't want to pull so many tasks that a group would go idle */ | 
|  | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 
|  |  | 
|  | /* How much load to actually move to equalise the imbalance */ | 
|  | *imbalance = min(max_pull * busiest->cpu_power, | 
|  | (avg_load - this_load) * this->cpu_power) | 
|  | / SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* | 
|  | * if *imbalance is less than the average load per runnable task | 
|  | * there is no gaurantee that any tasks will be moved so we'll have | 
|  | * a think about bumping its value to force at least one task to be | 
|  | * moved | 
|  | */ | 
|  | if (*imbalance < busiest_load_per_task) { | 
|  | unsigned long tmp, pwr_now, pwr_move; | 
|  | unsigned int imbn; | 
|  |  | 
|  | small_imbalance: | 
|  | pwr_move = pwr_now = 0; | 
|  | imbn = 2; | 
|  | if (this_nr_running) { | 
|  | this_load_per_task /= this_nr_running; | 
|  | if (busiest_load_per_task > this_load_per_task) | 
|  | imbn = 1; | 
|  | } else | 
|  | this_load_per_task = SCHED_LOAD_SCALE; | 
|  |  | 
|  | if (max_load - this_load >= busiest_load_per_task * imbn) { | 
|  | *imbalance = busiest_load_per_task; | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | * however we may be able to increase total CPU power used by | 
|  | * moving them. | 
|  | */ | 
|  |  | 
|  | pwr_now += busiest->cpu_power * | 
|  | min(busiest_load_per_task, max_load); | 
|  | pwr_now += this->cpu_power * | 
|  | min(this_load_per_task, this_load); | 
|  | pwr_now /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Amount of load we'd subtract */ | 
|  | tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power; | 
|  | if (max_load > tmp) | 
|  | pwr_move += busiest->cpu_power * | 
|  | min(busiest_load_per_task, max_load - tmp); | 
|  |  | 
|  | /* Amount of load we'd add */ | 
|  | if (max_load*busiest->cpu_power < | 
|  | busiest_load_per_task*SCHED_LOAD_SCALE) | 
|  | tmp = max_load*busiest->cpu_power/this->cpu_power; | 
|  | else | 
|  | tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power; | 
|  | pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp); | 
|  | pwr_move /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Move if we gain throughput */ | 
|  | if (pwr_move <= pwr_now) | 
|  | goto out_balanced; | 
|  |  | 
|  | *imbalance = busiest_load_per_task; | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  |  | 
|  | out_balanced: | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
|  | goto ret; | 
|  |  | 
|  | if (this == group_leader && group_leader != group_min) { | 
|  | *imbalance = min_load_per_task; | 
|  | return group_min; | 
|  | } | 
|  | ret: | 
|  | #endif | 
|  | *imbalance = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | */ | 
|  | static struct rq * | 
|  | find_busiest_queue(struct sched_group *group, enum idle_type idle, | 
|  | unsigned long imbalance) | 
|  | { | 
|  | struct rq *busiest = NULL, *rq; | 
|  | unsigned long max_load = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, group->cpumask) { | 
|  | rq = cpu_rq(i); | 
|  |  | 
|  | if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance) | 
|  | continue; | 
|  |  | 
|  | if (rq->raw_weighted_load > max_load) { | 
|  | max_load = rq->raw_weighted_load; | 
|  | busiest = rq; | 
|  | } | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|  | * so long as it is large enough. | 
|  | */ | 
|  | #define MAX_PINNED_INTERVAL	512 | 
|  |  | 
|  | static inline unsigned long minus_1_or_zero(unsigned long n) | 
|  | { | 
|  | return n > 0 ? n - 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | * | 
|  | * Called with this_rq unlocked. | 
|  | */ | 
|  | static int load_balance(int this_cpu, struct rq *this_rq, | 
|  | struct sched_domain *sd, enum idle_type idle) | 
|  | { | 
|  | int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | 
|  | struct sched_group *group; | 
|  | unsigned long imbalance; | 
|  | struct rq *busiest; | 
|  |  | 
|  | if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !sched_smt_power_savings) | 
|  | sd_idle = 1; | 
|  |  | 
|  | schedstat_inc(sd, lb_cnt[idle]); | 
|  |  | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group, idle, imbalance); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | BUG_ON(busiest == this_rq); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[idle], imbalance); | 
|  |  | 
|  | nr_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* | 
|  | * Attempt to move tasks. If find_busiest_group has found | 
|  | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | * still unbalanced. nr_moved simply stays zero, so it is | 
|  | * correctly treated as an imbalance. | 
|  | */ | 
|  | double_rq_lock(this_rq, busiest); | 
|  | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | minus_1_or_zero(busiest->nr_running), | 
|  | imbalance, sd, idle, &all_pinned); | 
|  | double_rq_unlock(this_rq, busiest); | 
|  |  | 
|  | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|  | if (unlikely(all_pinned)) | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | if (!nr_moved) { | 
|  | schedstat_inc(sd, lb_failed[idle]); | 
|  | sd->nr_balance_failed++; | 
|  |  | 
|  | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
|  |  | 
|  | spin_lock(&busiest->lock); | 
|  |  | 
|  | /* don't kick the migration_thread, if the curr | 
|  | * task on busiest cpu can't be moved to this_cpu | 
|  | */ | 
|  | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 
|  | spin_unlock(&busiest->lock); | 
|  | all_pinned = 1; | 
|  | goto out_one_pinned; | 
|  | } | 
|  |  | 
|  | if (!busiest->active_balance) { | 
|  | busiest->active_balance = 1; | 
|  | busiest->push_cpu = this_cpu; | 
|  | active_balance = 1; | 
|  | } | 
|  | spin_unlock(&busiest->lock); | 
|  | if (active_balance) | 
|  | wake_up_process(busiest->migration_thread); | 
|  |  | 
|  | /* | 
|  | * We've kicked active balancing, reset the failure | 
|  | * counter. | 
|  | */ | 
|  | sd->nr_balance_failed = sd->cache_nice_tries+1; | 
|  | } | 
|  | } else | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | if (likely(!active_balance)) { | 
|  | /* We were unbalanced, so reset the balancing interval */ | 
|  | sd->balance_interval = sd->min_interval; | 
|  | } else { | 
|  | /* | 
|  | * If we've begun active balancing, start to back off. This | 
|  | * case may not be covered by the all_pinned logic if there | 
|  | * is only 1 task on the busy runqueue (because we don't call | 
|  | * move_tasks). | 
|  | */ | 
|  | if (sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval *= 2; | 
|  | } | 
|  |  | 
|  | if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !sched_smt_power_savings) | 
|  | return -1; | 
|  | return nr_moved; | 
|  |  | 
|  | out_balanced: | 
|  | schedstat_inc(sd, lb_balanced[idle]); | 
|  |  | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | out_one_pinned: | 
|  | /* tune up the balancing interval */ | 
|  | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|  | (sd->balance_interval < sd->max_interval)) | 
|  | sd->balance_interval *= 2; | 
|  |  | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !sched_smt_power_savings) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | * | 
|  | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | 
|  | * this_rq is locked. | 
|  | */ | 
|  | static int | 
|  | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | 
|  | { | 
|  | struct sched_group *group; | 
|  | struct rq *busiest = NULL; | 
|  | unsigned long imbalance; | 
|  | int nr_moved = 0; | 
|  | int sd_idle = 0; | 
|  |  | 
|  | if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings) | 
|  | sd_idle = 1; | 
|  |  | 
|  | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | BUG_ON(busiest == this_rq); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 
|  |  | 
|  | nr_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* Attempt to move tasks */ | 
|  | double_lock_balance(this_rq, busiest); | 
|  | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | minus_1_or_zero(busiest->nr_running), | 
|  | imbalance, sd, NEWLY_IDLE, NULL); | 
|  | spin_unlock(&busiest->lock); | 
|  | } | 
|  |  | 
|  | if (!nr_moved) { | 
|  | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
|  | return -1; | 
|  | } else | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | return nr_moved; | 
|  |  | 
|  | out_balanced: | 
|  | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !sched_smt_power_savings) | 
|  | return -1; | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | * idle. Attempts to pull tasks from other CPUs. | 
|  | */ | 
|  | static void idle_balance(int this_cpu, struct rq *this_rq) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  | /* If we've pulled tasks over stop searching: */ | 
|  | if (load_balance_newidle(this_cpu, this_rq, sd)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * active_load_balance is run by migration threads. It pushes running tasks | 
|  | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
|  | * running on each physical CPU where possible, and avoids physical / | 
|  | * logical imbalances. | 
|  | * | 
|  | * Called with busiest_rq locked. | 
|  | */ | 
|  | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 
|  | { | 
|  | int target_cpu = busiest_rq->push_cpu; | 
|  | struct sched_domain *sd; | 
|  | struct rq *target_rq; | 
|  |  | 
|  | /* Is there any task to move? */ | 
|  | if (busiest_rq->nr_running <= 1) | 
|  | return; | 
|  |  | 
|  | target_rq = cpu_rq(target_cpu); | 
|  |  | 
|  | /* | 
|  | * This condition is "impossible", if it occurs | 
|  | * we need to fix it.  Originally reported by | 
|  | * Bjorn Helgaas on a 128-cpu setup. | 
|  | */ | 
|  | BUG_ON(busiest_rq == target_rq); | 
|  |  | 
|  | /* move a task from busiest_rq to target_rq */ | 
|  | double_lock_balance(busiest_rq, target_rq); | 
|  |  | 
|  | /* Search for an sd spanning us and the target CPU. */ | 
|  | for_each_domain(target_cpu, sd) { | 
|  | if ((sd->flags & SD_LOAD_BALANCE) && | 
|  | cpu_isset(busiest_cpu, sd->span)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(sd)) { | 
|  | schedstat_inc(sd, alb_cnt); | 
|  |  | 
|  | if (move_tasks(target_rq, target_cpu, busiest_rq, 1, | 
|  | RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, | 
|  | NULL)) | 
|  | schedstat_inc(sd, alb_pushed); | 
|  | else | 
|  | schedstat_inc(sd, alb_failed); | 
|  | } | 
|  | spin_unlock(&target_rq->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rebalance_tick will get called every timer tick, on every CPU. | 
|  | * | 
|  | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | * and initiates a balancing operation if so. | 
|  | * | 
|  | * Balancing parameters are set up in arch_init_sched_domains. | 
|  | */ | 
|  |  | 
|  | /* Don't have all balancing operations going off at once: */ | 
|  | static inline unsigned long cpu_offset(int cpu) | 
|  | { | 
|  | return jiffies + cpu * HZ / NR_CPUS; | 
|  | } | 
|  |  | 
|  | static void | 
|  | rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle) | 
|  | { | 
|  | unsigned long this_load, interval, j = cpu_offset(this_cpu); | 
|  | struct sched_domain *sd; | 
|  | int i, scale; | 
|  |  | 
|  | this_load = this_rq->raw_weighted_load; | 
|  |  | 
|  | /* Update our load: */ | 
|  | for (i = 0, scale = 1; i < 3; i++, scale <<= 1) { | 
|  | unsigned long old_load, new_load; | 
|  |  | 
|  | old_load = this_rq->cpu_load[i]; | 
|  | new_load = this_load; | 
|  | /* | 
|  | * Round up the averaging division if load is increasing. This | 
|  | * prevents us from getting stuck on 9 if the load is 10, for | 
|  | * example. | 
|  | */ | 
|  | if (new_load > old_load) | 
|  | new_load += scale-1; | 
|  | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale; | 
|  | } | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | interval = sd->balance_interval; | 
|  | if (idle != SCHED_IDLE) | 
|  | interval *= sd->busy_factor; | 
|  |  | 
|  | /* scale ms to jiffies */ | 
|  | interval = msecs_to_jiffies(interval); | 
|  | if (unlikely(!interval)) | 
|  | interval = 1; | 
|  |  | 
|  | if (j - sd->last_balance >= interval) { | 
|  | if (load_balance(this_cpu, this_rq, sd, idle)) { | 
|  | /* | 
|  | * We've pulled tasks over so either we're no | 
|  | * longer idle, or one of our SMT siblings is | 
|  | * not idle. | 
|  | */ | 
|  | idle = NOT_IDLE; | 
|  | } | 
|  | sd->last_balance += interval; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * on UP we do not need to balance between CPUs: | 
|  | */ | 
|  | static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle) | 
|  | { | 
|  | } | 
|  | static inline void idle_balance(int cpu, struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int wake_priority_sleeper(struct rq *rq) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | spin_lock(&rq->lock); | 
|  | /* | 
|  | * If an SMT sibling task has been put to sleep for priority | 
|  | * reasons reschedule the idle task to see if it can now run. | 
|  | */ | 
|  | if (rq->nr_running) { | 
|  | resched_task(rq->idle); | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock(&rq->lock); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  |  | 
|  | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  |  | 
|  | /* | 
|  | * This is called on clock ticks and on context switches. | 
|  | * Bank in p->sched_time the ns elapsed since the last tick or switch. | 
|  | */ | 
|  | static inline void | 
|  | update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now) | 
|  | { | 
|  | p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return current->sched_time plus any more ns on the sched_clock | 
|  | * that have not yet been banked. | 
|  | */ | 
|  | unsigned long long current_sched_time(const struct task_struct *p) | 
|  | { | 
|  | unsigned long long ns; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | ns = max(p->timestamp, task_rq(p)->timestamp_last_tick); | 
|  | ns = p->sched_time + sched_clock() - ns; | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We place interactive tasks back into the active array, if possible. | 
|  | * | 
|  | * To guarantee that this does not starve expired tasks we ignore the | 
|  | * interactivity of a task if the first expired task had to wait more | 
|  | * than a 'reasonable' amount of time. This deadline timeout is | 
|  | * load-dependent, as the frequency of array switched decreases with | 
|  | * increasing number of running tasks. We also ignore the interactivity | 
|  | * if a better static_prio task has expired: | 
|  | */ | 
|  | static inline int expired_starving(struct rq *rq) | 
|  | { | 
|  | if (rq->curr->static_prio > rq->best_expired_prio) | 
|  | return 1; | 
|  | if (!STARVATION_LIMIT || !rq->expired_timestamp) | 
|  | return 0; | 
|  | if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account user cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in user space since the last update | 
|  | */ | 
|  | void account_user_time(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp; | 
|  |  | 
|  | p->utime = cputime_add(p->utime, cputime); | 
|  |  | 
|  | /* Add user time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (TASK_NICE(p) > 0) | 
|  | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
|  | else | 
|  | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account system cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in kernel space since the last update | 
|  | */ | 
|  | void account_system_time(struct task_struct *p, int hardirq_offset, | 
|  | cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | struct rq *rq = this_rq(); | 
|  | cputime64_t tmp; | 
|  |  | 
|  | p->stime = cputime_add(p->stime, cputime); | 
|  |  | 
|  | /* Add system time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (hardirq_count() - hardirq_offset) | 
|  | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
|  | else if (softirq_count()) | 
|  | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
|  | else if (p != rq->idle) | 
|  | cpustat->system = cputime64_add(cpustat->system, tmp); | 
|  | else if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | /* Account for system time used */ | 
|  | acct_update_integrals(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for involuntary wait time. | 
|  | * @p: the process from which the cpu time has been stolen | 
|  | * @steal: the cpu time spent in involuntary wait | 
|  | */ | 
|  | void account_steal_time(struct task_struct *p, cputime_t steal) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp = cputime_to_cputime64(steal); | 
|  | struct rq *rq = this_rq(); | 
|  |  | 
|  | if (p == rq->idle) { | 
|  | p->stime = cputime_add(p->stime, steal); | 
|  | if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | } else | 
|  | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by the timer code, with HZ frequency. | 
|  | * We call it with interrupts disabled. | 
|  | * | 
|  | * It also gets called by the fork code, when changing the parent's | 
|  | * timeslices. | 
|  | */ | 
|  | void scheduler_tick(void) | 
|  | { | 
|  | unsigned long long now = sched_clock(); | 
|  | struct task_struct *p = current; | 
|  | int cpu = smp_processor_id(); | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | update_cpu_clock(p, rq, now); | 
|  |  | 
|  | rq->timestamp_last_tick = now; | 
|  |  | 
|  | if (p == rq->idle) { | 
|  | if (wake_priority_sleeper(rq)) | 
|  | goto out; | 
|  | rebalance_tick(cpu, rq, SCHED_IDLE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Task might have expired already, but not scheduled off yet */ | 
|  | if (p->array != rq->active) { | 
|  | set_tsk_need_resched(p); | 
|  | goto out; | 
|  | } | 
|  | spin_lock(&rq->lock); | 
|  | /* | 
|  | * The task was running during this tick - update the | 
|  | * time slice counter. Note: we do not update a thread's | 
|  | * priority until it either goes to sleep or uses up its | 
|  | * timeslice. This makes it possible for interactive tasks | 
|  | * to use up their timeslices at their highest priority levels. | 
|  | */ | 
|  | if (rt_task(p)) { | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if ((p->policy == SCHED_RR) && !--p->time_slice) { | 
|  | p->time_slice = task_timeslice(p); | 
|  | p->first_time_slice = 0; | 
|  | set_tsk_need_resched(p); | 
|  |  | 
|  | /* put it at the end of the queue: */ | 
|  | requeue_task(p, rq->active); | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!--p->time_slice) { | 
|  | dequeue_task(p, rq->active); | 
|  | set_tsk_need_resched(p); | 
|  | p->prio = effective_prio(p); | 
|  | p->time_slice = task_timeslice(p); | 
|  | p->first_time_slice = 0; | 
|  |  | 
|  | if (!rq->expired_timestamp) | 
|  | rq->expired_timestamp = jiffies; | 
|  | if (!TASK_INTERACTIVE(p) || expired_starving(rq)) { | 
|  | enqueue_task(p, rq->expired); | 
|  | if (p->static_prio < rq->best_expired_prio) | 
|  | rq->best_expired_prio = p->static_prio; | 
|  | } else | 
|  | enqueue_task(p, rq->active); | 
|  | } else { | 
|  | /* | 
|  | * Prevent a too long timeslice allowing a task to monopolize | 
|  | * the CPU. We do this by splitting up the timeslice into | 
|  | * smaller pieces. | 
|  | * | 
|  | * Note: this does not mean the task's timeslices expire or | 
|  | * get lost in any way, they just might be preempted by | 
|  | * another task of equal priority. (one with higher | 
|  | * priority would have preempted this task already.) We | 
|  | * requeue this task to the end of the list on this priority | 
|  | * level, which is in essence a round-robin of tasks with | 
|  | * equal priority. | 
|  | * | 
|  | * This only applies to tasks in the interactive | 
|  | * delta range with at least TIMESLICE_GRANULARITY to requeue. | 
|  | */ | 
|  | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | 
|  | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | 
|  | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | 
|  | (p->array == rq->active)) { | 
|  |  | 
|  | requeue_task(p, rq->active); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock(&rq->lock); | 
|  | out: | 
|  | rebalance_tick(cpu, rq, NOT_IDLE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static inline void wakeup_busy_runqueue(struct rq *rq) | 
|  | { | 
|  | /* If an SMT runqueue is sleeping due to priority reasons wake it up */ | 
|  | if (rq->curr == rq->idle && rq->nr_running) | 
|  | resched_task(rq->idle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with interrupt disabled and this_rq's runqueue locked. | 
|  | */ | 
|  | static void wake_sleeping_dependent(int this_cpu) | 
|  | { | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  | int i; | 
|  |  | 
|  | for_each_domain(this_cpu, tmp) { | 
|  | if (tmp->flags & SD_SHARE_CPUPOWER) { | 
|  | sd = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!sd) | 
|  | return; | 
|  |  | 
|  | for_each_cpu_mask(i, sd->span) { | 
|  | struct rq *smt_rq = cpu_rq(i); | 
|  |  | 
|  | if (i == this_cpu) | 
|  | continue; | 
|  | if (unlikely(!spin_trylock(&smt_rq->lock))) | 
|  | continue; | 
|  |  | 
|  | wakeup_busy_runqueue(smt_rq); | 
|  | spin_unlock(&smt_rq->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * number of 'lost' timeslices this task wont be able to fully | 
|  | * utilize, if another task runs on a sibling. This models the | 
|  | * slowdown effect of other tasks running on siblings: | 
|  | */ | 
|  | static inline unsigned long | 
|  | smt_slice(struct task_struct *p, struct sched_domain *sd) | 
|  | { | 
|  | return p->time_slice * (100 - sd->per_cpu_gain) / 100; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To minimise lock contention and not have to drop this_rq's runlock we only | 
|  | * trylock the sibling runqueues and bypass those runqueues if we fail to | 
|  | * acquire their lock. As we only trylock the normal locking order does not | 
|  | * need to be obeyed. | 
|  | */ | 
|  | static int | 
|  | dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  | int ret = 0, i; | 
|  |  | 
|  | /* kernel/rt threads do not participate in dependent sleeping */ | 
|  | if (!p->mm || rt_task(p)) | 
|  | return 0; | 
|  |  | 
|  | for_each_domain(this_cpu, tmp) { | 
|  | if (tmp->flags & SD_SHARE_CPUPOWER) { | 
|  | sd = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!sd) | 
|  | return 0; | 
|  |  | 
|  | for_each_cpu_mask(i, sd->span) { | 
|  | struct task_struct *smt_curr; | 
|  | struct rq *smt_rq; | 
|  |  | 
|  | if (i == this_cpu) | 
|  | continue; | 
|  |  | 
|  | smt_rq = cpu_rq(i); | 
|  | if (unlikely(!spin_trylock(&smt_rq->lock))) | 
|  | continue; | 
|  |  | 
|  | smt_curr = smt_rq->curr; | 
|  |  | 
|  | if (!smt_curr->mm) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * If a user task with lower static priority than the | 
|  | * running task on the SMT sibling is trying to schedule, | 
|  | * delay it till there is proportionately less timeslice | 
|  | * left of the sibling task to prevent a lower priority | 
|  | * task from using an unfair proportion of the | 
|  | * physical cpu's resources. -ck | 
|  | */ | 
|  | if (rt_task(smt_curr)) { | 
|  | /* | 
|  | * With real time tasks we run non-rt tasks only | 
|  | * per_cpu_gain% of the time. | 
|  | */ | 
|  | if ((jiffies % DEF_TIMESLICE) > | 
|  | (sd->per_cpu_gain * DEF_TIMESLICE / 100)) | 
|  | ret = 1; | 
|  | } else { | 
|  | if (smt_curr->static_prio < p->static_prio && | 
|  | !TASK_PREEMPTS_CURR(p, smt_rq) && | 
|  | smt_slice(smt_curr, sd) > task_timeslice(p)) | 
|  | ret = 1; | 
|  | } | 
|  | unlock: | 
|  | spin_unlock(&smt_rq->lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline void wake_sleeping_dependent(int this_cpu) | 
|  | { | 
|  | } | 
|  | static inline int | 
|  | dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
|  |  | 
|  | void fastcall add_preempt_count(int val) | 
|  | { | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
|  | return; | 
|  | preempt_count() += val; | 
|  | /* | 
|  | * Spinlock count overflowing soon? | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | 
|  | } | 
|  | EXPORT_SYMBOL(add_preempt_count); | 
|  |  | 
|  | void fastcall sub_preempt_count(int val) | 
|  | { | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
|  | return; | 
|  | /* | 
|  | * Is the spinlock portion underflowing? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
|  | !(preempt_count() & PREEMPT_MASK))) | 
|  | return; | 
|  |  | 
|  | preempt_count() -= val; | 
|  | } | 
|  | EXPORT_SYMBOL(sub_preempt_count); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline int interactive_sleep(enum sleep_type sleep_type) | 
|  | { | 
|  | return (sleep_type == SLEEP_INTERACTIVE || | 
|  | sleep_type == SLEEP_INTERRUPTED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * schedule() is the main scheduler function. | 
|  | */ | 
|  | asmlinkage void __sched schedule(void) | 
|  | { | 
|  | struct task_struct *prev, *next; | 
|  | struct prio_array *array; | 
|  | struct list_head *queue; | 
|  | unsigned long long now; | 
|  | unsigned long run_time; | 
|  | int cpu, idx, new_prio; | 
|  | long *switch_count; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* | 
|  | * Test if we are atomic.  Since do_exit() needs to call into | 
|  | * schedule() atomically, we ignore that path for now. | 
|  | * Otherwise, whine if we are scheduling when we should not be. | 
|  | */ | 
|  | if (unlikely(in_atomic() && !current->exit_state)) { | 
|  | printk(KERN_ERR "BUG: scheduling while atomic: " | 
|  | "%s/0x%08x/%d\n", | 
|  | current->comm, preempt_count(), current->pid); | 
|  | dump_stack(); | 
|  | } | 
|  | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  |  | 
|  | need_resched: | 
|  | preempt_disable(); | 
|  | prev = current; | 
|  | release_kernel_lock(prev); | 
|  | need_resched_nonpreemptible: | 
|  | rq = this_rq(); | 
|  |  | 
|  | /* | 
|  | * The idle thread is not allowed to schedule! | 
|  | * Remove this check after it has been exercised a bit. | 
|  | */ | 
|  | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | 
|  | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | schedstat_inc(rq, sched_cnt); | 
|  | now = sched_clock(); | 
|  | if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { | 
|  | run_time = now - prev->timestamp; | 
|  | if (unlikely((long long)(now - prev->timestamp) < 0)) | 
|  | run_time = 0; | 
|  | } else | 
|  | run_time = NS_MAX_SLEEP_AVG; | 
|  |  | 
|  | /* | 
|  | * Tasks charged proportionately less run_time at high sleep_avg to | 
|  | * delay them losing their interactive status | 
|  | */ | 
|  | run_time /= (CURRENT_BONUS(prev) ? : 1); | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | if (unlikely(prev->flags & PF_DEAD)) | 
|  | prev->state = EXIT_DEAD; | 
|  |  | 
|  | switch_count = &prev->nivcsw; | 
|  | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
|  | switch_count = &prev->nvcsw; | 
|  | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
|  | unlikely(signal_pending(prev)))) | 
|  | prev->state = TASK_RUNNING; | 
|  | else { | 
|  | if (prev->state == TASK_UNINTERRUPTIBLE) | 
|  | rq->nr_uninterruptible++; | 
|  | deactivate_task(prev, rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | if (unlikely(!rq->nr_running)) { | 
|  | idle_balance(cpu, rq); | 
|  | if (!rq->nr_running) { | 
|  | next = rq->idle; | 
|  | rq->expired_timestamp = 0; | 
|  | wake_sleeping_dependent(cpu); | 
|  | goto switch_tasks; | 
|  | } | 
|  | } | 
|  |  | 
|  | array = rq->active; | 
|  | if (unlikely(!array->nr_active)) { | 
|  | /* | 
|  | * Switch the active and expired arrays. | 
|  | */ | 
|  | schedstat_inc(rq, sched_switch); | 
|  | rq->active = rq->expired; | 
|  | rq->expired = array; | 
|  | array = rq->active; | 
|  | rq->expired_timestamp = 0; | 
|  | rq->best_expired_prio = MAX_PRIO; | 
|  | } | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, struct task_struct, run_list); | 
|  |  | 
|  | if (!rt_task(next) && interactive_sleep(next->sleep_type)) { | 
|  | unsigned long long delta = now - next->timestamp; | 
|  | if (unlikely((long long)(now - next->timestamp) < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | if (next->sleep_type == SLEEP_INTERACTIVE) | 
|  | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 
|  |  | 
|  | array = next->array; | 
|  | new_prio = recalc_task_prio(next, next->timestamp + delta); | 
|  |  | 
|  | if (unlikely(next->prio != new_prio)) { | 
|  | dequeue_task(next, array); | 
|  | next->prio = new_prio; | 
|  | enqueue_task(next, array); | 
|  | } | 
|  | } | 
|  | next->sleep_type = SLEEP_NORMAL; | 
|  | if (dependent_sleeper(cpu, rq, next)) | 
|  | next = rq->idle; | 
|  | switch_tasks: | 
|  | if (next == rq->idle) | 
|  | schedstat_inc(rq, sched_goidle); | 
|  | prefetch(next); | 
|  | prefetch_stack(next); | 
|  | clear_tsk_need_resched(prev); | 
|  | rcu_qsctr_inc(task_cpu(prev)); | 
|  |  | 
|  | update_cpu_clock(prev, rq, now); | 
|  |  | 
|  | prev->sleep_avg -= run_time; | 
|  | if ((long)prev->sleep_avg <= 0) | 
|  | prev->sleep_avg = 0; | 
|  | prev->timestamp = prev->last_ran = now; | 
|  |  | 
|  | sched_info_switch(prev, next); | 
|  | if (likely(prev != next)) { | 
|  | next->timestamp = now; | 
|  | rq->nr_switches++; | 
|  | rq->curr = next; | 
|  | ++*switch_count; | 
|  |  | 
|  | prepare_task_switch(rq, next); | 
|  | prev = context_switch(rq, prev, next); | 
|  | barrier(); | 
|  | /* | 
|  | * this_rq must be evaluated again because prev may have moved | 
|  | * CPUs since it called schedule(), thus the 'rq' on its stack | 
|  | * frame will be invalid. | 
|  | */ | 
|  | finish_task_switch(this_rq(), prev); | 
|  | } else | 
|  | spin_unlock_irq(&rq->lock); | 
|  |  | 
|  | prev = current; | 
|  | if (unlikely(reacquire_kernel_lock(prev) < 0)) | 
|  | goto need_resched_nonpreemptible; | 
|  | preempt_enable_no_resched(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  | EXPORT_SYMBOL(schedule); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * this is the entry point to schedule() from in-kernel preemption | 
|  | * off of preempt_enable.  Kernel preemptions off return from interrupt | 
|  | * occur there and call schedule directly. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | struct task_struct *task = current; | 
|  | int saved_lock_depth; | 
|  | #endif | 
|  | /* | 
|  | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | * we do not want to preempt the current task.  Just return.. | 
|  | */ | 
|  | if (unlikely(ti->preempt_count || irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | need_resched: | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | /* | 
|  | * We keep the big kernel semaphore locked, but we | 
|  | * clear ->lock_depth so that schedule() doesnt | 
|  | * auto-release the semaphore: | 
|  | */ | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | saved_lock_depth = task->lock_depth; | 
|  | task->lock_depth = -1; | 
|  | #endif | 
|  | schedule(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | task->lock_depth = saved_lock_depth; | 
|  | #endif | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* we could miss a preemption opportunity between schedule and now */ | 
|  | barrier(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  | EXPORT_SYMBOL(preempt_schedule); | 
|  |  | 
|  | /* | 
|  | * this is the entry point to schedule() from kernel preemption | 
|  | * off of irq context. | 
|  | * Note, that this is called and return with irqs disabled. This will | 
|  | * protect us against recursive calling from irq. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule_irq(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | struct task_struct *task = current; | 
|  | int saved_lock_depth; | 
|  | #endif | 
|  | /* Catch callers which need to be fixed */ | 
|  | BUG_ON(ti->preempt_count || !irqs_disabled()); | 
|  |  | 
|  | need_resched: | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | /* | 
|  | * We keep the big kernel semaphore locked, but we | 
|  | * clear ->lock_depth so that schedule() doesnt | 
|  | * auto-release the semaphore: | 
|  | */ | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | saved_lock_depth = task->lock_depth; | 
|  | task->lock_depth = -1; | 
|  | #endif | 
|  | local_irq_enable(); | 
|  | schedule(); | 
|  | local_irq_disable(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | task->lock_depth = saved_lock_depth; | 
|  | #endif | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* we could miss a preemption opportunity between schedule and now */ | 
|  | barrier(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT */ | 
|  |  | 
|  | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 
|  | void *key) | 
|  | { | 
|  | return try_to_wake_up(curr->private, mode, sync); | 
|  | } | 
|  | EXPORT_SYMBOL(default_wake_function); | 
|  |  | 
|  | /* | 
|  | * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | * | 
|  | * There are circumstances in which we can try to wake a task which has already | 
|  | * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
|  | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | */ | 
|  | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, int sync, void *key) | 
|  | { | 
|  | struct list_head *tmp, *next; | 
|  |  | 
|  | list_for_each_safe(tmp, next, &q->task_list) { | 
|  | wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); | 
|  | unsigned flags = curr->flags; | 
|  |  | 
|  | if (curr->func(curr, mode, sync, key) && | 
|  | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * @key: is directly passed to the wakeup function | 
|  | */ | 
|  | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(__wake_up); | 
|  |  | 
|  | /* | 
|  | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | */ | 
|  | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
|  | { | 
|  | __wake_up_common(q, mode, 1, 0, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up_sync - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * | 
|  | * The sync wakeup differs that the waker knows that it will schedule | 
|  | * away soon, so while the target thread will be woken up, it will not | 
|  | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | * with each other. This can prevent needless bouncing between CPUs. | 
|  | * | 
|  | * On UP it can prevent extra preemption. | 
|  | */ | 
|  | void fastcall | 
|  | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
|  | { | 
|  | unsigned long flags; | 
|  | int sync = 1; | 
|  |  | 
|  | if (unlikely(!q)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!nr_exclusive)) | 
|  | sync = 0; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  |  | 
|  | void fastcall complete(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done++; | 
|  | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 1, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete); | 
|  |  | 
|  | void fastcall complete_all(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done += UINT_MAX/2; | 
|  | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 0, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete_all); | 
|  |  | 
|  | void fastcall __sched wait_for_completion(struct completion *x) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion); | 
|  |  | 
|  | unsigned long fastcall __sched | 
|  | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!timeout) { | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_timeout); | 
|  |  | 
|  | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
|  |  | 
|  | unsigned long fastcall __sched | 
|  | wait_for_completion_interruptible_timeout(struct completion *x, | 
|  | unsigned long timeout) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | timeout = -ERESTARTSYS; | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!timeout) { | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
|  |  | 
|  |  | 
|  | #define	SLEEP_ON_VAR					\ | 
|  | unsigned long flags;				\ | 
|  | wait_queue_t wait;				\ | 
|  | init_waitqueue_entry(&wait, current); | 
|  |  | 
|  | #define SLEEP_ON_HEAD					\ | 
|  | spin_lock_irqsave(&q->lock,flags);		\ | 
|  | __add_wait_queue(q, &wait);			\ | 
|  | spin_unlock(&q->lock); | 
|  |  | 
|  | #define	SLEEP_ON_TAIL					\ | 
|  | spin_lock_irq(&q->lock);			\ | 
|  | __remove_wait_queue(q, &wait);			\ | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | schedule(); | 
|  | SLEEP_ON_TAIL | 
|  | } | 
|  | EXPORT_SYMBOL(interruptible_sleep_on); | 
|  |  | 
|  | long fastcall __sched | 
|  | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | timeout = schedule_timeout(timeout); | 
|  | SLEEP_ON_TAIL | 
|  |  | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
|  |  | 
|  | void fastcall __sched sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_UNINTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | schedule(); | 
|  | SLEEP_ON_TAIL | 
|  | } | 
|  | EXPORT_SYMBOL(sleep_on); | 
|  |  | 
|  | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_UNINTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | timeout = schedule_timeout(timeout); | 
|  | SLEEP_ON_TAIL | 
|  |  | 
|  | return timeout; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(sleep_on_timeout); | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  |  | 
|  | /* | 
|  | * rt_mutex_setprio - set the current priority of a task | 
|  | * @p: task | 
|  | * @prio: prio value (kernel-internal form) | 
|  | * | 
|  | * This function changes the 'effective' priority of a task. It does | 
|  | * not touch ->normal_prio like __setscheduler(). | 
|  | * | 
|  | * Used by the rt_mutex code to implement priority inheritance logic. | 
|  | */ | 
|  | void rt_mutex_setprio(struct task_struct *p, int prio) | 
|  | { | 
|  | struct prio_array *array; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  | int oldprio; | 
|  |  | 
|  | BUG_ON(prio < 0 || prio > MAX_PRIO); | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  |  | 
|  | oldprio = p->prio; | 
|  | array = p->array; | 
|  | if (array) | 
|  | dequeue_task(p, array); | 
|  | p->prio = prio; | 
|  |  | 
|  | if (array) { | 
|  | /* | 
|  | * If changing to an RT priority then queue it | 
|  | * in the active array! | 
|  | */ | 
|  | if (rt_task(p)) | 
|  | array = rq->active; | 
|  | enqueue_task(p, array); | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (task_running(rq, p)) { | 
|  | if (p->prio > oldprio) | 
|  | resched_task(rq->curr); | 
|  | } else if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void set_user_nice(struct task_struct *p, long nice) | 
|  | { | 
|  | struct prio_array *array; | 
|  | int old_prio, delta; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
|  | return; | 
|  | /* | 
|  | * We have to be careful, if called from sys_setpriority(), | 
|  | * the task might be in the middle of scheduling on another CPU. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | /* | 
|  | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | * allow the 'normal' nice value to be set - but as expected | 
|  | * it wont have any effect on scheduling until the task is | 
|  | * not SCHED_NORMAL/SCHED_BATCH: | 
|  | */ | 
|  | if (has_rt_policy(p)) { | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | goto out_unlock; | 
|  | } | 
|  | array = p->array; | 
|  | if (array) { | 
|  | dequeue_task(p, array); | 
|  | dec_raw_weighted_load(rq, p); | 
|  | } | 
|  |  | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | set_load_weight(p); | 
|  | old_prio = p->prio; | 
|  | p->prio = effective_prio(p); | 
|  | delta = p->prio - old_prio; | 
|  |  | 
|  | if (array) { | 
|  | enqueue_task(p, array); | 
|  | inc_raw_weighted_load(rq, p); | 
|  | /* | 
|  | * If the task increased its priority or is running and | 
|  | * lowered its priority, then reschedule its CPU: | 
|  | */ | 
|  | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | out_unlock: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  | EXPORT_SYMBOL(set_user_nice); | 
|  |  | 
|  | /* | 
|  | * can_nice - check if a task can reduce its nice value | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | int can_nice(const struct task_struct *p, const int nice) | 
|  | { | 
|  | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 
|  | int nice_rlim = 20 - nice; | 
|  |  | 
|  | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
|  | capable(CAP_SYS_NICE)); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_NICE | 
|  |  | 
|  | /* | 
|  | * sys_nice - change the priority of the current process. | 
|  | * @increment: priority increment | 
|  | * | 
|  | * sys_setpriority is a more generic, but much slower function that | 
|  | * does similar things. | 
|  | */ | 
|  | asmlinkage long sys_nice(int increment) | 
|  | { | 
|  | long nice, retval; | 
|  |  | 
|  | /* | 
|  | * Setpriority might change our priority at the same moment. | 
|  | * We don't have to worry. Conceptually one call occurs first | 
|  | * and we have a single winner. | 
|  | */ | 
|  | if (increment < -40) | 
|  | increment = -40; | 
|  | if (increment > 40) | 
|  | increment = 40; | 
|  |  | 
|  | nice = PRIO_TO_NICE(current->static_prio) + increment; | 
|  | if (nice < -20) | 
|  | nice = -20; | 
|  | if (nice > 19) | 
|  | nice = 19; | 
|  |  | 
|  | if (increment < 0 && !can_nice(current, nice)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setnice(current, nice); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | set_user_nice(current, nice); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_prio - return the priority value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * This is the priority value as seen by users in /proc. | 
|  | * RT tasks are offset by -200. Normal tasks are centered | 
|  | * around 0, value goes from -16 to +15. | 
|  | */ | 
|  | int task_prio(const struct task_struct *p) | 
|  | { | 
|  | return p->prio - MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_nice - return the nice value of a given task. | 
|  | * @p: the task in question. | 
|  | */ | 
|  | int task_nice(const struct task_struct *p) | 
|  | { | 
|  | return TASK_NICE(p); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_nice); | 
|  |  | 
|  | /** | 
|  | * idle_cpu - is a given cpu idle currently? | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | int idle_cpu(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_task - return the idle task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | struct task_struct *idle_task(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_process_by_pid - find a process with a matching PID value. | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | static inline struct task_struct *find_process_by_pid(pid_t pid) | 
|  | { | 
|  | return pid ? find_task_by_pid(pid) : current; | 
|  | } | 
|  |  | 
|  | /* Actually do priority change: must hold rq lock. */ | 
|  | static void __setscheduler(struct task_struct *p, int policy, int prio) | 
|  | { | 
|  | BUG_ON(p->array); | 
|  |  | 
|  | p->policy = policy; | 
|  | p->rt_priority = prio; | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* we are holding p->pi_lock already */ | 
|  | p->prio = rt_mutex_getprio(p); | 
|  | /* | 
|  | * SCHED_BATCH tasks are treated as perpetual CPU hogs: | 
|  | */ | 
|  | if (policy == SCHED_BATCH) | 
|  | p->sleep_avg = 0; | 
|  | set_load_weight(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler - change the scheduling policy and/or RT priority of | 
|  | * a thread. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | int sched_setscheduler(struct task_struct *p, int policy, | 
|  | struct sched_param *param) | 
|  | { | 
|  | int retval, oldprio, oldpolicy = -1; | 
|  | struct prio_array *array; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* may grab non-irq protected spin_locks */ | 
|  | BUG_ON(in_interrupt()); | 
|  | recheck: | 
|  | /* double check policy once rq lock held */ | 
|  | if (policy < 0) | 
|  | policy = oldpolicy = p->policy; | 
|  | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
|  | policy != SCHED_NORMAL && policy != SCHED_BATCH) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and | 
|  | * SCHED_BATCH is 0. | 
|  | */ | 
|  | if (param->sched_priority < 0 || | 
|  | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
|  | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
|  | return -EINVAL; | 
|  | if ((policy == SCHED_NORMAL || policy == SCHED_BATCH) | 
|  | != (param->sched_priority == 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Allow unprivileged RT tasks to decrease priority: | 
|  | */ | 
|  | if (!capable(CAP_SYS_NICE)) { | 
|  | /* | 
|  | * can't change policy, except between SCHED_NORMAL | 
|  | * and SCHED_BATCH: | 
|  | */ | 
|  | if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) && | 
|  | (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) && | 
|  | !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
|  | return -EPERM; | 
|  | /* can't increase priority */ | 
|  | if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) && | 
|  | param->sched_priority > p->rt_priority && | 
|  | param->sched_priority > | 
|  | p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
|  | return -EPERM; | 
|  | /* can't change other user's priorities */ | 
|  | if ((current->euid != p->euid) && | 
|  | (current->euid != p->uid)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | retval = security_task_setscheduler(p, policy, param); | 
|  | if (retval) | 
|  | return retval; | 
|  | /* | 
|  | * make sure no PI-waiters arrive (or leave) while we are | 
|  | * changing the priority of the task: | 
|  | */ | 
|  | spin_lock_irqsave(&p->pi_lock, flags); | 
|  | /* | 
|  | * To be able to change p->policy safely, the apropriate | 
|  | * runqueue lock must be held. | 
|  | */ | 
|  | rq = __task_rq_lock(p); | 
|  | /* recheck policy now with rq lock held */ | 
|  | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | policy = oldpolicy = -1; | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | goto recheck; | 
|  | } | 
|  | array = p->array; | 
|  | if (array) | 
|  | deactivate_task(p, rq); | 
|  | oldprio = p->prio; | 
|  | __setscheduler(p, policy, param->sched_priority); | 
|  | if (array) { | 
|  | __activate_task(p, rq); | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (task_running(rq, p)) { | 
|  | if (p->prio > oldprio) | 
|  | resched_task(rq->curr); | 
|  | } else if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  |  | 
|  | rt_mutex_adjust_pi(p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  |  | 
|  | static int | 
|  | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lparam; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | return -EFAULT; | 
|  | read_lock_irq(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | read_unlock_irq(&tasklist_lock); | 
|  | return -ESRCH; | 
|  | } | 
|  | retval = sched_setscheduler(p, policy, &lparam); | 
|  | read_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | * @pid: the pid in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
|  | struct sched_param __user *param) | 
|  | { | 
|  | /* negative values for policy are not valid */ | 
|  | if (policy < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_sched_setscheduler(pid, policy, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, -1, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval = -EINVAL; | 
|  |  | 
|  | if (pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (p) { | 
|  | retval = security_task_getscheduler(p); | 
|  | if (!retval) | 
|  | retval = p->policy; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | out_nounlock: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lp; | 
|  | struct task_struct *p; | 
|  | int retval = -EINVAL; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | retval = -ESRCH; | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | lp.sched_priority = p->rt_priority; | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | */ | 
|  | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  |  | 
|  | out_nounlock: | 
|  | return retval; | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
|  | { | 
|  | cpumask_t cpus_allowed; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | lock_cpu_hotplug(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | read_unlock(&tasklist_lock); | 
|  | unlock_cpu_hotplug(); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is not safe to call set_cpus_allowed with the | 
|  | * tasklist_lock held.  We will bump the task_struct's | 
|  | * usage count and then drop tasklist_lock. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | !capable(CAP_SYS_NICE)) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_setscheduler(p, 0, NULL); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | cpus_allowed = cpuset_cpus_allowed(p); | 
|  | cpus_and(new_mask, new_mask, cpus_allowed); | 
|  | retval = set_cpus_allowed(p, new_mask); | 
|  |  | 
|  | out_unlock: | 
|  | put_task_struct(p); | 
|  | unlock_cpu_hotplug(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | cpumask_t *new_mask) | 
|  | { | 
|  | if (len < sizeof(cpumask_t)) { | 
|  | memset(new_mask, 0, sizeof(cpumask_t)); | 
|  | } else if (len > sizeof(cpumask_t)) { | 
|  | len = sizeof(cpumask_t); | 
|  | } | 
|  | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setaffinity - set the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to the new cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | cpumask_t new_mask; | 
|  | int retval; | 
|  |  | 
|  | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return sched_setaffinity(pid, new_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Represents all cpu's present in the system | 
|  | * In systems capable of hotplug, this map could dynamically grow | 
|  | * as new cpu's are detected in the system via any platform specific | 
|  | * method, such as ACPI for e.g. | 
|  | */ | 
|  |  | 
|  | cpumask_t cpu_present_map __read_mostly; | 
|  | EXPORT_SYMBOL(cpu_present_map); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; | 
|  | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; | 
|  | #endif | 
|  |  | 
|  | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | lock_cpu_hotplug(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | cpus_and(*mask, p->cpus_allowed, cpu_online_map); | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | unlock_cpu_hotplug(); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getaffinity - get the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | int ret; | 
|  | cpumask_t mask; | 
|  |  | 
|  | if (len < sizeof(cpumask_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = sched_getaffinity(pid, &mask); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return sizeof(cpumask_t); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_yield - yield the current processor to other threads. | 
|  | * | 
|  | * this function yields the current CPU by moving the calling thread | 
|  | * to the expired array. If there are no other threads running on this | 
|  | * CPU then this function will return. | 
|  | */ | 
|  | asmlinkage long sys_sched_yield(void) | 
|  | { | 
|  | struct rq *rq = this_rq_lock(); | 
|  | struct prio_array *array = current->array, *target = rq->expired; | 
|  |  | 
|  | schedstat_inc(rq, yld_cnt); | 
|  | /* | 
|  | * We implement yielding by moving the task into the expired | 
|  | * queue. | 
|  | * | 
|  | * (special rule: RT tasks will just roundrobin in the active | 
|  | *  array.) | 
|  | */ | 
|  | if (rt_task(current)) | 
|  | target = rq->active; | 
|  |  | 
|  | if (array->nr_active == 1) { | 
|  | schedstat_inc(rq, yld_act_empty); | 
|  | if (!rq->expired->nr_active) | 
|  | schedstat_inc(rq, yld_both_empty); | 
|  | } else if (!rq->expired->nr_active) | 
|  | schedstat_inc(rq, yld_exp_empty); | 
|  |  | 
|  | if (array != target) { | 
|  | dequeue_task(current, array); | 
|  | enqueue_task(current, target); | 
|  | } else | 
|  | /* | 
|  | * requeue_task is cheaper so perform that if possible. | 
|  | */ | 
|  | requeue_task(current, array); | 
|  |  | 
|  | /* | 
|  | * Since we are going to call schedule() anyway, there's | 
|  | * no need to preempt or enable interrupts: | 
|  | */ | 
|  | __release(rq->lock); | 
|  | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
|  | _raw_spin_unlock(&rq->lock); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __resched_legal(int expected_preempt_count) | 
|  | { | 
|  | if (unlikely(preempt_count() != expected_preempt_count)) | 
|  | return 0; | 
|  | if (unlikely(system_state != SYSTEM_RUNNING)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void __cond_resched(void) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | __might_sleep(__FILE__, __LINE__); | 
|  | #endif | 
|  | /* | 
|  | * The BKS might be reacquired before we have dropped | 
|  | * PREEMPT_ACTIVE, which could trigger a second | 
|  | * cond_resched() call. | 
|  | */ | 
|  | do { | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | schedule(); | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | } while (need_resched()); | 
|  | } | 
|  |  | 
|  | int __sched cond_resched(void) | 
|  | { | 
|  | if (need_resched() && __resched_legal(0)) { | 
|  | __cond_resched(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(cond_resched); | 
|  |  | 
|  | /* | 
|  | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | * call schedule, and on return reacquire the lock. | 
|  | * | 
|  | * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
|  | * operations here to prevent schedule() from being called twice (once via | 
|  | * spin_unlock(), once by hand). | 
|  | */ | 
|  | int cond_resched_lock(spinlock_t *lock) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (need_lockbreak(lock)) { | 
|  | spin_unlock(lock); | 
|  | cpu_relax(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | if (need_resched() && __resched_legal(1)) { | 
|  | spin_release(&lock->dep_map, 1, _THIS_IP_); | 
|  | _raw_spin_unlock(lock); | 
|  | preempt_enable_no_resched(); | 
|  | __cond_resched(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(cond_resched_lock); | 
|  |  | 
|  | int __sched cond_resched_softirq(void) | 
|  | { | 
|  | BUG_ON(!in_softirq()); | 
|  |  | 
|  | if (need_resched() && __resched_legal(0)) { | 
|  | raw_local_irq_disable(); | 
|  | _local_bh_enable(); | 
|  | raw_local_irq_enable(); | 
|  | __cond_resched(); | 
|  | local_bh_disable(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(cond_resched_softirq); | 
|  |  | 
|  | /** | 
|  | * yield - yield the current processor to other threads. | 
|  | * | 
|  | * this is a shortcut for kernel-space yielding - it marks the | 
|  | * thread runnable and calls sys_sched_yield(). | 
|  | */ | 
|  | void __sched yield(void) | 
|  | { | 
|  | set_current_state(TASK_RUNNING); | 
|  | sys_sched_yield(); | 
|  | } | 
|  | EXPORT_SYMBOL(yield); | 
|  |  | 
|  | /* | 
|  | * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
|  | * that process accounting knows that this is a task in IO wait state. | 
|  | * | 
|  | * But don't do that if it is a deliberate, throttling IO wait (this task | 
|  | * has set its backing_dev_info: the queue against which it should throttle) | 
|  | */ | 
|  | void __sched io_schedule(void) | 
|  | { | 
|  | struct rq *rq = &__raw_get_cpu_var(runqueues); | 
|  |  | 
|  | delayacct_blkio_start(); | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | schedule(); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | delayacct_blkio_end(); | 
|  | } | 
|  | EXPORT_SYMBOL(io_schedule); | 
|  |  | 
|  | long __sched io_schedule_timeout(long timeout) | 
|  | { | 
|  | struct rq *rq = &__raw_get_cpu_var(runqueues); | 
|  | long ret; | 
|  |  | 
|  | delayacct_blkio_start(); | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | ret = schedule_timeout(timeout); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | delayacct_blkio_end(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the maximum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_max(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = MAX_USER_RT_PRIO-1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the minimum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_min(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = 1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | * @pid: pid of the process. | 
|  | * @interval: userspace pointer to the timeslice value. | 
|  | * | 
|  | * this syscall writes the default timeslice value of a given process | 
|  | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | */ | 
|  | asmlinkage | 
|  | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval = -EINVAL; | 
|  | struct timespec t; | 
|  |  | 
|  | if (pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | jiffies_to_timespec(p->policy == SCHED_FIFO ? | 
|  | 0 : task_timeslice(p), &t); | 
|  | read_unlock(&tasklist_lock); | 
|  | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
|  | out_nounlock: | 
|  | return retval; | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *eldest_child(struct task_struct *p) | 
|  | { | 
|  | if (list_empty(&p->children)) | 
|  | return NULL; | 
|  | return list_entry(p->children.next,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *older_sibling(struct task_struct *p) | 
|  | { | 
|  | if (p->sibling.prev==&p->parent->children) | 
|  | return NULL; | 
|  | return list_entry(p->sibling.prev,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *younger_sibling(struct task_struct *p) | 
|  | { | 
|  | if (p->sibling.next==&p->parent->children) | 
|  | return NULL; | 
|  | return list_entry(p->sibling.next,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static const char stat_nam[] = "RSDTtZX"; | 
|  |  | 
|  | static void show_task(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *relative; | 
|  | unsigned long free = 0; | 
|  | unsigned state; | 
|  |  | 
|  | state = p->state ? __ffs(p->state) + 1 : 0; | 
|  | printk("%-13.13s %c", p->comm, | 
|  | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 
|  | #if (BITS_PER_LONG == 32) | 
|  | if (state == TASK_RUNNING) | 
|  | printk(" running "); | 
|  | else | 
|  | printk(" %08lX ", thread_saved_pc(p)); | 
|  | #else | 
|  | if (state == TASK_RUNNING) | 
|  | printk("  running task   "); | 
|  | else | 
|  | printk(" %016lx ", thread_saved_pc(p)); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | { | 
|  | unsigned long *n = end_of_stack(p); | 
|  | while (!*n) | 
|  | n++; | 
|  | free = (unsigned long)n - (unsigned long)end_of_stack(p); | 
|  | } | 
|  | #endif | 
|  | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | 
|  | if ((relative = eldest_child(p))) | 
|  | printk("%5d ", relative->pid); | 
|  | else | 
|  | printk("      "); | 
|  | if ((relative = younger_sibling(p))) | 
|  | printk("%7d", relative->pid); | 
|  | else | 
|  | printk("       "); | 
|  | if ((relative = older_sibling(p))) | 
|  | printk(" %5d", relative->pid); | 
|  | else | 
|  | printk("      "); | 
|  | if (!p->mm) | 
|  | printk(" (L-TLB)\n"); | 
|  | else | 
|  | printk(" (NOTLB)\n"); | 
|  |  | 
|  | if (state != TASK_RUNNING) | 
|  | show_stack(p, NULL); | 
|  | } | 
|  |  | 
|  | void show_state(void) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | #if (BITS_PER_LONG == 32) | 
|  | printk("\n" | 
|  | "                                               sibling\n"); | 
|  | printk("  task             PC      pid father child younger older\n"); | 
|  | #else | 
|  | printk("\n" | 
|  | "                                                       sibling\n"); | 
|  | printk("  task                 PC          pid father child younger older\n"); | 
|  | #endif | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_thread(g, p) { | 
|  | /* | 
|  | * reset the NMI-timeout, listing all files on a slow | 
|  | * console might take alot of time: | 
|  | */ | 
|  | touch_nmi_watchdog(); | 
|  | show_task(p); | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  | debug_show_all_locks(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_idle - set up an idle thread for a given CPU | 
|  | * @idle: task in question | 
|  | * @cpu: cpu the idle task belongs to | 
|  | * | 
|  | * NOTE: this function does not set the idle thread's NEED_RESCHED | 
|  | * flag, to make booting more robust. | 
|  | */ | 
|  | void __devinit init_idle(struct task_struct *idle, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | idle->timestamp = sched_clock(); | 
|  | idle->sleep_avg = 0; | 
|  | idle->array = NULL; | 
|  | idle->prio = idle->normal_prio = MAX_PRIO; | 
|  | idle->state = TASK_RUNNING; | 
|  | idle->cpus_allowed = cpumask_of_cpu(cpu); | 
|  | set_task_cpu(idle, cpu); | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | rq->curr = rq->idle = idle; | 
|  | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
|  | idle->oncpu = 1; | 
|  | #endif | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  |  | 
|  | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
|  | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 
|  | #else | 
|  | task_thread_info(idle)->preempt_count = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a system that switches off the HZ timer nohz_cpu_mask | 
|  | * indicates which cpus entered this state. This is used | 
|  | * in the rcu update to wait only for active cpus. For system | 
|  | * which do not switch off the HZ timer nohz_cpu_mask should | 
|  | * always be CPU_MASK_NONE. | 
|  | */ | 
|  | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This is how migration works: | 
|  | * | 
|  | * 1) we queue a struct migration_req structure in the source CPU's | 
|  | *    runqueue and wake up that CPU's migration thread. | 
|  | * 2) we down() the locked semaphore => thread blocks. | 
|  | * 3) migration thread wakes up (implicitly it forces the migrated | 
|  | *    thread off the CPU) | 
|  | * 4) it gets the migration request and checks whether the migrated | 
|  | *    task is still in the wrong runqueue. | 
|  | * 5) if it's in the wrong runqueue then the migration thread removes | 
|  | *    it and puts it into the right queue. | 
|  | * 6) migration thread up()s the semaphore. | 
|  | * 7) we wake up and the migration is done. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | * proper CPU and schedule it away if the CPU it's executing on | 
|  | * is removed from the allowed bitmask. | 
|  | * | 
|  | * NOTE: the caller must have a valid reference to the task, the | 
|  | * task must not exit() & deallocate itself prematurely.  The | 
|  | * call is not atomic; no spinlocks may be held. | 
|  | */ | 
|  | int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) | 
|  | { | 
|  | struct migration_req req; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  | int ret = 0; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpus_intersects(new_mask, cpu_online_map)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | p->cpus_allowed = new_mask; | 
|  | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | if (cpu_isset(task_cpu(p), new_mask)) | 
|  | goto out; | 
|  |  | 
|  | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
|  | /* Need help from migration thread: drop lock and wait. */ | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(rq->migration_thread); | 
|  | wait_for_completion(&req.done); | 
|  | tlb_migrate_finish(p->mm); | 
|  | return 0; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
|  | * this because either it can't run here any more (set_cpus_allowed() | 
|  | * away from this CPU, or CPU going down), or because we're | 
|  | * attempting to rebalance this task on exec (sched_exec). | 
|  | * | 
|  | * So we race with normal scheduler movements, but that's OK, as long | 
|  | * as the task is no longer on this CPU. | 
|  | * | 
|  | * Returns non-zero if task was successfully migrated. | 
|  | */ | 
|  | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | { | 
|  | struct rq *rq_dest, *rq_src; | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(cpu_is_offline(dest_cpu))) | 
|  | return ret; | 
|  |  | 
|  | rq_src = cpu_rq(src_cpu); | 
|  | rq_dest = cpu_rq(dest_cpu); | 
|  |  | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | /* Already moved. */ | 
|  | if (task_cpu(p) != src_cpu) | 
|  | goto out; | 
|  | /* Affinity changed (again). */ | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
|  | goto out; | 
|  |  | 
|  | set_task_cpu(p, dest_cpu); | 
|  | if (p->array) { | 
|  | /* | 
|  | * Sync timestamp with rq_dest's before activating. | 
|  | * The same thing could be achieved by doing this step | 
|  | * afterwards, and pretending it was a local activate. | 
|  | * This way is cleaner and logically correct. | 
|  | */ | 
|  | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | 
|  | + rq_dest->timestamp_last_tick; | 
|  | deactivate_task(p, rq_src); | 
|  | __activate_task(p, rq_dest); | 
|  | if (TASK_PREEMPTS_CURR(p, rq_dest)) | 
|  | resched_task(rq_dest->curr); | 
|  | } | 
|  | ret = 1; | 
|  | out: | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migration_thread - this is a highprio system thread that performs | 
|  | * thread migration by bumping thread off CPU then 'pushing' onto | 
|  | * another runqueue. | 
|  | */ | 
|  | static int migration_thread(void *data) | 
|  | { | 
|  | int cpu = (long)data; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = cpu_rq(cpu); | 
|  | BUG_ON(rq->migration_thread != current); | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | struct migration_req *req; | 
|  | struct list_head *head; | 
|  |  | 
|  | try_to_freeze(); | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | if (cpu_is_offline(cpu)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | goto wait_to_die; | 
|  | } | 
|  |  | 
|  | if (rq->active_balance) { | 
|  | active_load_balance(rq, cpu); | 
|  | rq->active_balance = 0; | 
|  | } | 
|  |  | 
|  | head = &rq->migration_queue; | 
|  |  | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | continue; | 
|  | } | 
|  | req = list_entry(head->next, struct migration_req, list); | 
|  | list_del_init(head->next); | 
|  |  | 
|  | spin_unlock(&rq->lock); | 
|  | __migrate_task(req->task, cpu, req->dest_cpu); | 
|  | local_irq_enable(); | 
|  |  | 
|  | complete(&req->done); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  |  | 
|  | wait_to_die: | 
|  | /* Wait for kthread_stop */ | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* Figure out where task on dead CPU should go, use force if neccessary. */ | 
|  | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | cpumask_t mask; | 
|  | struct rq *rq; | 
|  | int dest_cpu; | 
|  |  | 
|  | restart: | 
|  | /* On same node? */ | 
|  | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
|  | cpus_and(mask, mask, p->cpus_allowed); | 
|  | dest_cpu = any_online_cpu(mask); | 
|  |  | 
|  | /* On any allowed CPU? */ | 
|  | if (dest_cpu == NR_CPUS) | 
|  | dest_cpu = any_online_cpu(p->cpus_allowed); | 
|  |  | 
|  | /* No more Mr. Nice Guy. */ | 
|  | if (dest_cpu == NR_CPUS) { | 
|  | rq = task_rq_lock(p, &flags); | 
|  | cpus_setall(p->cpus_allowed); | 
|  | dest_cpu = any_online_cpu(p->cpus_allowed); | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | /* | 
|  | * Don't tell them about moving exiting tasks or | 
|  | * kernel threads (both mm NULL), since they never | 
|  | * leave kernel. | 
|  | */ | 
|  | if (p->mm && printk_ratelimit()) | 
|  | printk(KERN_INFO "process %d (%s) no " | 
|  | "longer affine to cpu%d\n", | 
|  | p->pid, p->comm, dead_cpu); | 
|  | } | 
|  | if (!__migrate_task(p, dead_cpu, dest_cpu)) | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While a dead CPU has no uninterruptible tasks queued at this point, | 
|  | * it might still have a nonzero ->nr_uninterruptible counter, because | 
|  | * for performance reasons the counter is not stricly tracking tasks to | 
|  | * their home CPUs. So we just add the counter to another CPU's counter, | 
|  | * to keep the global sum constant after CPU-down: | 
|  | */ | 
|  | static void migrate_nr_uninterruptible(struct rq *rq_src) | 
|  | { | 
|  | struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
|  | rq_src->nr_uninterruptible = 0; | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Run through task list and migrate tasks from the dead cpu. */ | 
|  | static void migrate_live_tasks(int src_cpu) | 
|  | { | 
|  | struct task_struct *p, *t; | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | do_each_thread(t, p) { | 
|  | if (p == current) | 
|  | continue; | 
|  |  | 
|  | if (task_cpu(p) == src_cpu) | 
|  | move_task_off_dead_cpu(src_cpu, p); | 
|  | } while_each_thread(t, p); | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* Schedules idle task to be the next runnable task on current CPU. | 
|  | * It does so by boosting its priority to highest possible and adding it to | 
|  | * the _front_ of the runqueue. Used by CPU offline code. | 
|  | */ | 
|  | void sched_idle_next(void) | 
|  | { | 
|  | int this_cpu = smp_processor_id(); | 
|  | struct rq *rq = cpu_rq(this_cpu); | 
|  | struct task_struct *p = rq->idle; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* cpu has to be offline */ | 
|  | BUG_ON(cpu_online(this_cpu)); | 
|  |  | 
|  | /* | 
|  | * Strictly not necessary since rest of the CPUs are stopped by now | 
|  | * and interrupts disabled on the current cpu. | 
|  | */ | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  |  | 
|  | /* Add idle task to the _front_ of its priority queue: */ | 
|  | __activate_idle_task(p, rq); | 
|  |  | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensures that the idle task is using init_mm right before its cpu goes | 
|  | * offline. | 
|  | */ | 
|  | void idle_task_exit(void) | 
|  | { | 
|  | struct mm_struct *mm = current->active_mm; | 
|  |  | 
|  | BUG_ON(cpu_online(smp_processor_id())); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | switch_mm(mm, &init_mm, current); | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | 
|  | { | 
|  | struct rq *rq = cpu_rq(dead_cpu); | 
|  |  | 
|  | /* Must be exiting, otherwise would be on tasklist. */ | 
|  | BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD); | 
|  |  | 
|  | /* Cannot have done final schedule yet: would have vanished. */ | 
|  | BUG_ON(p->flags & PF_DEAD); | 
|  |  | 
|  | get_task_struct(p); | 
|  |  | 
|  | /* | 
|  | * Drop lock around migration; if someone else moves it, | 
|  | * that's OK.  No task can be added to this CPU, so iteration is | 
|  | * fine. | 
|  | */ | 
|  | spin_unlock_irq(&rq->lock); | 
|  | move_task_off_dead_cpu(dead_cpu, p); | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | put_task_struct(p); | 
|  | } | 
|  |  | 
|  | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
|  | static void migrate_dead_tasks(unsigned int dead_cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(dead_cpu); | 
|  | unsigned int arr, i; | 
|  |  | 
|  | for (arr = 0; arr < 2; arr++) { | 
|  | for (i = 0; i < MAX_PRIO; i++) { | 
|  | struct list_head *list = &rq->arrays[arr].queue[i]; | 
|  |  | 
|  | while (!list_empty(list)) | 
|  | migrate_dead(dead_cpu, list_entry(list->next, | 
|  | struct task_struct, run_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * migration_call - callback that gets triggered when a CPU is added. | 
|  | * Here we can start up the necessary migration thread for the new CPU. | 
|  | */ | 
|  | static int __cpuinit | 
|  | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int cpu = (long)hcpu; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | 
|  | if (IS_ERR(p)) | 
|  | return NOTIFY_BAD; | 
|  | p->flags |= PF_NOFREEZE; | 
|  | kthread_bind(p, cpu); | 
|  | /* Must be high prio: stop_machine expects to yield to it. */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | task_rq_unlock(rq, &flags); | 
|  | cpu_rq(cpu)->migration_thread = p; | 
|  | break; | 
|  |  | 
|  | case CPU_ONLINE: | 
|  | /* Strictly unneccessary, as first user will wake it. */ | 
|  | wake_up_process(cpu_rq(cpu)->migration_thread); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_UP_CANCELED: | 
|  | if (!cpu_rq(cpu)->migration_thread) | 
|  | break; | 
|  | /* Unbind it from offline cpu so it can run.  Fall thru. */ | 
|  | kthread_bind(cpu_rq(cpu)->migration_thread, | 
|  | any_online_cpu(cpu_online_map)); | 
|  | kthread_stop(cpu_rq(cpu)->migration_thread); | 
|  | cpu_rq(cpu)->migration_thread = NULL; | 
|  | break; | 
|  |  | 
|  | case CPU_DEAD: | 
|  | migrate_live_tasks(cpu); | 
|  | rq = cpu_rq(cpu); | 
|  | kthread_stop(rq->migration_thread); | 
|  | rq->migration_thread = NULL; | 
|  | /* Idle task back to normal (off runqueue, low prio) */ | 
|  | rq = task_rq_lock(rq->idle, &flags); | 
|  | deactivate_task(rq->idle, rq); | 
|  | rq->idle->static_prio = MAX_PRIO; | 
|  | __setscheduler(rq->idle, SCHED_NORMAL, 0); | 
|  | migrate_dead_tasks(cpu); | 
|  | task_rq_unlock(rq, &flags); | 
|  | migrate_nr_uninterruptible(rq); | 
|  | BUG_ON(rq->nr_running != 0); | 
|  |  | 
|  | /* No need to migrate the tasks: it was best-effort if | 
|  | * they didn't do lock_cpu_hotplug().  Just wake up | 
|  | * the requestors. */ | 
|  | spin_lock_irq(&rq->lock); | 
|  | while (!list_empty(&rq->migration_queue)) { | 
|  | struct migration_req *req; | 
|  |  | 
|  | req = list_entry(rq->migration_queue.next, | 
|  | struct migration_req, list); | 
|  | list_del_init(&req->list); | 
|  | complete(&req->done); | 
|  | } | 
|  | spin_unlock_irq(&rq->lock); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | * happens before everything else. | 
|  | */ | 
|  | static struct notifier_block __cpuinitdata migration_notifier = { | 
|  | .notifier_call = migration_call, | 
|  | .priority = 10 | 
|  | }; | 
|  |  | 
|  | int __init migration_init(void) | 
|  | { | 
|  | void *cpu = (void *)(long)smp_processor_id(); | 
|  |  | 
|  | /* Start one for the boot CPU: */ | 
|  | migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
|  | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
|  | register_cpu_notifier(&migration_notifier); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #undef SCHED_DOMAIN_DEBUG | 
|  | #ifdef SCHED_DOMAIN_DEBUG | 
|  | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | int level = 0; | 
|  |  | 
|  | if (!sd) { | 
|  | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
|  |  | 
|  | do { | 
|  | int i; | 
|  | char str[NR_CPUS]; | 
|  | struct sched_group *group = sd->groups; | 
|  | cpumask_t groupmask; | 
|  |  | 
|  | cpumask_scnprintf(str, NR_CPUS, sd->span); | 
|  | cpus_clear(groupmask); | 
|  |  | 
|  | printk(KERN_DEBUG); | 
|  | for (i = 0; i < level + 1; i++) | 
|  | printk(" "); | 
|  | printk("domain %d: ", level); | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) { | 
|  | printk("does not load-balance\n"); | 
|  | if (sd->parent) | 
|  | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | printk("span %s\n", str); | 
|  |  | 
|  | if (!cpu_isset(cpu, sd->span)) | 
|  | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | 
|  | if (!cpu_isset(cpu, group->cpumask)) | 
|  | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | 
|  |  | 
|  | printk(KERN_DEBUG); | 
|  | for (i = 0; i < level + 2; i++) | 
|  | printk(" "); | 
|  | printk("groups:"); | 
|  | do { | 
|  | if (!group) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: group is NULL\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!group->cpu_power) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | 
|  | } | 
|  |  | 
|  | if (!cpus_weight(group->cpumask)) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: empty group\n"); | 
|  | } | 
|  |  | 
|  | if (cpus_intersects(groupmask, group->cpumask)) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
|  | } | 
|  |  | 
|  | cpus_or(groupmask, groupmask, group->cpumask); | 
|  |  | 
|  | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
|  | printk(" %s", str); | 
|  |  | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  | printk("\n"); | 
|  |  | 
|  | if (!cpus_equal(sd->span, groupmask)) | 
|  | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
|  |  | 
|  | level++; | 
|  | sd = sd->parent; | 
|  |  | 
|  | if (sd) { | 
|  | if (!cpus_subset(groupmask, sd->span)) | 
|  | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | 
|  | } | 
|  |  | 
|  | } while (sd); | 
|  | } | 
|  | #else | 
|  | # define sched_domain_debug(sd, cpu) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static int sd_degenerate(struct sched_domain *sd) | 
|  | { | 
|  | if (cpus_weight(sd->span) == 1) | 
|  | return 1; | 
|  |  | 
|  | /* Following flags need at least 2 groups */ | 
|  | if (sd->flags & (SD_LOAD_BALANCE | | 
|  | SD_BALANCE_NEWIDLE | | 
|  | SD_BALANCE_FORK | | 
|  | SD_BALANCE_EXEC)) { | 
|  | if (sd->groups != sd->groups->next) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Following flags don't use groups */ | 
|  | if (sd->flags & (SD_WAKE_IDLE | | 
|  | SD_WAKE_AFFINE | | 
|  | SD_WAKE_BALANCE)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 
|  | { | 
|  | unsigned long cflags = sd->flags, pflags = parent->flags; | 
|  |  | 
|  | if (sd_degenerate(parent)) | 
|  | return 1; | 
|  |  | 
|  | if (!cpus_equal(sd->span, parent->span)) | 
|  | return 0; | 
|  |  | 
|  | /* Does parent contain flags not in child? */ | 
|  | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 
|  | if (cflags & SD_WAKE_AFFINE) | 
|  | pflags &= ~SD_WAKE_BALANCE; | 
|  | /* Flags needing groups don't count if only 1 group in parent */ | 
|  | if (parent->groups == parent->groups->next) { | 
|  | pflags &= ~(SD_LOAD_BALANCE | | 
|  | SD_BALANCE_NEWIDLE | | 
|  | SD_BALANCE_FORK | | 
|  | SD_BALANCE_EXEC); | 
|  | } | 
|  | if (~cflags & pflags) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
|  | * hold the hotplug lock. | 
|  | */ | 
|  | static void cpu_attach_domain(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct sched_domain *tmp; | 
|  |  | 
|  | /* Remove the sched domains which do not contribute to scheduling. */ | 
|  | for (tmp = sd; tmp; tmp = tmp->parent) { | 
|  | struct sched_domain *parent = tmp->parent; | 
|  | if (!parent) | 
|  | break; | 
|  | if (sd_parent_degenerate(tmp, parent)) | 
|  | tmp->parent = parent->parent; | 
|  | } | 
|  |  | 
|  | if (sd && sd_degenerate(sd)) | 
|  | sd = sd->parent; | 
|  |  | 
|  | sched_domain_debug(sd, cpu); | 
|  |  | 
|  | rcu_assign_pointer(rq->sd, sd); | 
|  | } | 
|  |  | 
|  | /* cpus with isolated domains */ | 
|  | static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | 
|  |  | 
|  | /* Setup the mask of cpus configured for isolated domains */ | 
|  | static int __init isolated_cpu_setup(char *str) | 
|  | { | 
|  | int ints[NR_CPUS], i; | 
|  |  | 
|  | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | cpus_clear(cpu_isolated_map); | 
|  | for (i = 1; i <= ints[0]; i++) | 
|  | if (ints[i] < NR_CPUS) | 
|  | cpu_set(ints[i], cpu_isolated_map); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup ("isolcpus=", isolated_cpu_setup); | 
|  |  | 
|  | /* | 
|  | * init_sched_build_groups takes an array of groups, the cpumask we wish | 
|  | * to span, and a pointer to a function which identifies what group a CPU | 
|  | * belongs to. The return value of group_fn must be a valid index into the | 
|  | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | 
|  | * keep track of groups covered with a cpumask_t). | 
|  | * | 
|  | * init_sched_build_groups will build a circular linked list of the groups | 
|  | * covered by the given span, and will set each group's ->cpumask correctly, | 
|  | * and ->cpu_power to 0. | 
|  | */ | 
|  | static void init_sched_build_groups(struct sched_group groups[], cpumask_t span, | 
|  | int (*group_fn)(int cpu)) | 
|  | { | 
|  | struct sched_group *first = NULL, *last = NULL; | 
|  | cpumask_t covered = CPU_MASK_NONE; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, span) { | 
|  | int group = group_fn(i); | 
|  | struct sched_group *sg = &groups[group]; | 
|  | int j; | 
|  |  | 
|  | if (cpu_isset(i, covered)) | 
|  | continue; | 
|  |  | 
|  | sg->cpumask = CPU_MASK_NONE; | 
|  | sg->cpu_power = 0; | 
|  |  | 
|  | for_each_cpu_mask(j, span) { | 
|  | if (group_fn(j) != group) | 
|  | continue; | 
|  |  | 
|  | cpu_set(j, covered); | 
|  | cpu_set(j, sg->cpumask); | 
|  | } | 
|  | if (!first) | 
|  | first = sg; | 
|  | if (last) | 
|  | last->next = sg; | 
|  | last = sg; | 
|  | } | 
|  | last->next = first; | 
|  | } | 
|  |  | 
|  | #define SD_NODES_PER_DOMAIN 16 | 
|  |  | 
|  | /* | 
|  | * Self-tuning task migration cost measurement between source and target CPUs. | 
|  | * | 
|  | * This is done by measuring the cost of manipulating buffers of varying | 
|  | * sizes. For a given buffer-size here are the steps that are taken: | 
|  | * | 
|  | * 1) the source CPU reads+dirties a shared buffer | 
|  | * 2) the target CPU reads+dirties the same shared buffer | 
|  | * | 
|  | * We measure how long they take, in the following 4 scenarios: | 
|  | * | 
|  | *  - source: CPU1, target: CPU2 | cost1 | 
|  | *  - source: CPU2, target: CPU1 | cost2 | 
|  | *  - source: CPU1, target: CPU1 | cost3 | 
|  | *  - source: CPU2, target: CPU2 | cost4 | 
|  | * | 
|  | * We then calculate the cost3+cost4-cost1-cost2 difference - this is | 
|  | * the cost of migration. | 
|  | * | 
|  | * We then start off from a small buffer-size and iterate up to larger | 
|  | * buffer sizes, in 5% steps - measuring each buffer-size separately, and | 
|  | * doing a maximum search for the cost. (The maximum cost for a migration | 
|  | * normally occurs when the working set size is around the effective cache | 
|  | * size.) | 
|  | */ | 
|  | #define SEARCH_SCOPE		2 | 
|  | #define MIN_CACHE_SIZE		(64*1024U) | 
|  | #define DEFAULT_CACHE_SIZE	(5*1024*1024U) | 
|  | #define ITERATIONS		1 | 
|  | #define SIZE_THRESH		130 | 
|  | #define COST_THRESH		130 | 
|  |  | 
|  | /* | 
|  | * The migration cost is a function of 'domain distance'. Domain | 
|  | * distance is the number of steps a CPU has to iterate down its | 
|  | * domain tree to share a domain with the other CPU. The farther | 
|  | * two CPUs are from each other, the larger the distance gets. | 
|  | * | 
|  | * Note that we use the distance only to cache measurement results, | 
|  | * the distance value is not used numerically otherwise. When two | 
|  | * CPUs have the same distance it is assumed that the migration | 
|  | * cost is the same. (this is a simplification but quite practical) | 
|  | */ | 
|  | #define MAX_DOMAIN_DISTANCE 32 | 
|  |  | 
|  | static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = | 
|  | { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = | 
|  | /* | 
|  | * Architectures may override the migration cost and thus avoid | 
|  | * boot-time calibration. Unit is nanoseconds. Mostly useful for | 
|  | * virtualized hardware: | 
|  | */ | 
|  | #ifdef CONFIG_DEFAULT_MIGRATION_COST | 
|  | CONFIG_DEFAULT_MIGRATION_COST | 
|  | #else | 
|  | -1LL | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allow override of migration cost - in units of microseconds. | 
|  | * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost | 
|  | * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: | 
|  | */ | 
|  | static int __init migration_cost_setup(char *str) | 
|  | { | 
|  | int ints[MAX_DOMAIN_DISTANCE+1], i; | 
|  |  | 
|  | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  |  | 
|  | printk("#ints: %d\n", ints[0]); | 
|  | for (i = 1; i <= ints[0]; i++) { | 
|  | migration_cost[i-1] = (unsigned long long)ints[i]*1000; | 
|  | printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup ("migration_cost=", migration_cost_setup); | 
|  |  | 
|  | /* | 
|  | * Global multiplier (divisor) for migration-cutoff values, | 
|  | * in percentiles. E.g. use a value of 150 to get 1.5 times | 
|  | * longer cache-hot cutoff times. | 
|  | * | 
|  | * (We scale it from 100 to 128 to long long handling easier.) | 
|  | */ | 
|  |  | 
|  | #define MIGRATION_FACTOR_SCALE 128 | 
|  |  | 
|  | static unsigned int migration_factor = MIGRATION_FACTOR_SCALE; | 
|  |  | 
|  | static int __init setup_migration_factor(char *str) | 
|  | { | 
|  | get_option(&str, &migration_factor); | 
|  | migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("migration_factor=", setup_migration_factor); | 
|  |  | 
|  | /* | 
|  | * Estimated distance of two CPUs, measured via the number of domains | 
|  | * we have to pass for the two CPUs to be in the same span: | 
|  | */ | 
|  | static unsigned long domain_distance(int cpu1, int cpu2) | 
|  | { | 
|  | unsigned long distance = 0; | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | for_each_domain(cpu1, sd) { | 
|  | WARN_ON(!cpu_isset(cpu1, sd->span)); | 
|  | if (cpu_isset(cpu2, sd->span)) | 
|  | return distance; | 
|  | distance++; | 
|  | } | 
|  | if (distance >= MAX_DOMAIN_DISTANCE) { | 
|  | WARN_ON(1); | 
|  | distance = MAX_DOMAIN_DISTANCE-1; | 
|  | } | 
|  |  | 
|  | return distance; | 
|  | } | 
|  |  | 
|  | static unsigned int migration_debug; | 
|  |  | 
|  | static int __init setup_migration_debug(char *str) | 
|  | { | 
|  | get_option(&str, &migration_debug); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("migration_debug=", setup_migration_debug); | 
|  |  | 
|  | /* | 
|  | * Maximum cache-size that the scheduler should try to measure. | 
|  | * Architectures with larger caches should tune this up during | 
|  | * bootup. Gets used in the domain-setup code (i.e. during SMP | 
|  | * bootup). | 
|  | */ | 
|  | unsigned int max_cache_size; | 
|  |  | 
|  | static int __init setup_max_cache_size(char *str) | 
|  | { | 
|  | get_option(&str, &max_cache_size); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("max_cache_size=", setup_max_cache_size); | 
|  |  | 
|  | /* | 
|  | * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This | 
|  | * is the operation that is timed, so we try to generate unpredictable | 
|  | * cachemisses that still end up filling the L2 cache: | 
|  | */ | 
|  | static void touch_cache(void *__cache, unsigned long __size) | 
|  | { | 
|  | unsigned long size = __size/sizeof(long), chunk1 = size/3, | 
|  | chunk2 = 2*size/3; | 
|  | unsigned long *cache = __cache; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < size/6; i += 8) { | 
|  | switch (i % 6) { | 
|  | case 0: cache[i]++; | 
|  | case 1: cache[size-1-i]++; | 
|  | case 2: cache[chunk1-i]++; | 
|  | case 3: cache[chunk1+i]++; | 
|  | case 4: cache[chunk2-i]++; | 
|  | case 5: cache[chunk2+i]++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Measure the cache-cost of one task migration. Returns in units of nsec. | 
|  | */ | 
|  | static unsigned long long | 
|  | measure_one(void *cache, unsigned long size, int source, int target) | 
|  | { | 
|  | cpumask_t mask, saved_mask; | 
|  | unsigned long long t0, t1, t2, t3, cost; | 
|  |  | 
|  | saved_mask = current->cpus_allowed; | 
|  |  | 
|  | /* | 
|  | * Flush source caches to RAM and invalidate them: | 
|  | */ | 
|  | sched_cacheflush(); | 
|  |  | 
|  | /* | 
|  | * Migrate to the source CPU: | 
|  | */ | 
|  | mask = cpumask_of_cpu(source); | 
|  | set_cpus_allowed(current, mask); | 
|  | WARN_ON(smp_processor_id() != source); | 
|  |  | 
|  | /* | 
|  | * Dirty the working set: | 
|  | */ | 
|  | t0 = sched_clock(); | 
|  | touch_cache(cache, size); | 
|  | t1 = sched_clock(); | 
|  |  | 
|  | /* | 
|  | * Migrate to the target CPU, dirty the L2 cache and access | 
|  | * the shared buffer. (which represents the working set | 
|  | * of a migrated task.) | 
|  | */ | 
|  | mask = cpumask_of_cpu(target); | 
|  | set_cpus_allowed(current, mask); | 
|  | WARN_ON(smp_processor_id() != target); | 
|  |  | 
|  | t2 = sched_clock(); | 
|  | touch_cache(cache, size); | 
|  | t3 = sched_clock(); | 
|  |  | 
|  | cost = t1-t0 + t3-t2; | 
|  |  | 
|  | if (migration_debug >= 2) | 
|  | printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n", | 
|  | source, target, t1-t0, t1-t0, t3-t2, cost); | 
|  | /* | 
|  | * Flush target caches to RAM and invalidate them: | 
|  | */ | 
|  | sched_cacheflush(); | 
|  |  | 
|  | set_cpus_allowed(current, saved_mask); | 
|  |  | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Measure a series of task migrations and return the average | 
|  | * result. Since this code runs early during bootup the system | 
|  | * is 'undisturbed' and the average latency makes sense. | 
|  | * | 
|  | * The algorithm in essence auto-detects the relevant cache-size, | 
|  | * so it will properly detect different cachesizes for different | 
|  | * cache-hierarchies, depending on how the CPUs are connected. | 
|  | * | 
|  | * Architectures can prime the upper limit of the search range via | 
|  | * max_cache_size, otherwise the search range defaults to 20MB...64K. | 
|  | */ | 
|  | static unsigned long long | 
|  | measure_cost(int cpu1, int cpu2, void *cache, unsigned int size) | 
|  | { | 
|  | unsigned long long cost1, cost2; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Measure the migration cost of 'size' bytes, over an | 
|  | * average of 10 runs: | 
|  | * | 
|  | * (We perturb the cache size by a small (0..4k) | 
|  | *  value to compensate size/alignment related artifacts. | 
|  | *  We also subtract the cost of the operation done on | 
|  | *  the same CPU.) | 
|  | */ | 
|  | cost1 = 0; | 
|  |  | 
|  | /* | 
|  | * dry run, to make sure we start off cache-cold on cpu1, | 
|  | * and to get any vmalloc pagefaults in advance: | 
|  | */ | 
|  | measure_one(cache, size, cpu1, cpu2); | 
|  | for (i = 0; i < ITERATIONS; i++) | 
|  | cost1 += measure_one(cache, size - i*1024, cpu1, cpu2); | 
|  |  | 
|  | measure_one(cache, size, cpu2, cpu1); | 
|  | for (i = 0; i < ITERATIONS; i++) | 
|  | cost1 += measure_one(cache, size - i*1024, cpu2, cpu1); | 
|  |  | 
|  | /* | 
|  | * (We measure the non-migrating [cached] cost on both | 
|  | *  cpu1 and cpu2, to handle CPUs with different speeds) | 
|  | */ | 
|  | cost2 = 0; | 
|  |  | 
|  | measure_one(cache, size, cpu1, cpu1); | 
|  | for (i = 0; i < ITERATIONS; i++) | 
|  | cost2 += measure_one(cache, size - i*1024, cpu1, cpu1); | 
|  |  | 
|  | measure_one(cache, size, cpu2, cpu2); | 
|  | for (i = 0; i < ITERATIONS; i++) | 
|  | cost2 += measure_one(cache, size - i*1024, cpu2, cpu2); | 
|  |  | 
|  | /* | 
|  | * Get the per-iteration migration cost: | 
|  | */ | 
|  | do_div(cost1, 2*ITERATIONS); | 
|  | do_div(cost2, 2*ITERATIONS); | 
|  |  | 
|  | return cost1 - cost2; | 
|  | } | 
|  |  | 
|  | static unsigned long long measure_migration_cost(int cpu1, int cpu2) | 
|  | { | 
|  | unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0; | 
|  | unsigned int max_size, size, size_found = 0; | 
|  | long long cost = 0, prev_cost; | 
|  | void *cache; | 
|  |  | 
|  | /* | 
|  | * Search from max_cache_size*5 down to 64K - the real relevant | 
|  | * cachesize has to lie somewhere inbetween. | 
|  | */ | 
|  | if (max_cache_size) { | 
|  | max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE); | 
|  | size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE); | 
|  | } else { | 
|  | /* | 
|  | * Since we have no estimation about the relevant | 
|  | * search range | 
|  | */ | 
|  | max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE; | 
|  | size = MIN_CACHE_SIZE; | 
|  | } | 
|  |  | 
|  | if (!cpu_online(cpu1) || !cpu_online(cpu2)) { | 
|  | printk("cpu %d and %d not both online!\n", cpu1, cpu2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the working set: | 
|  | */ | 
|  | cache = vmalloc(max_size); | 
|  | if (!cache) { | 
|  | printk("could not vmalloc %d bytes for cache!\n", 2*max_size); | 
|  | return 1000000; /* return 1 msec on very small boxen */ | 
|  | } | 
|  |  | 
|  | while (size <= max_size) { | 
|  | prev_cost = cost; | 
|  | cost = measure_cost(cpu1, cpu2, cache, size); | 
|  |  | 
|  | /* | 
|  | * Update the max: | 
|  | */ | 
|  | if (cost > 0) { | 
|  | if (max_cost < cost) { | 
|  | max_cost = cost; | 
|  | size_found = size; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Calculate average fluctuation, we use this to prevent | 
|  | * noise from triggering an early break out of the loop: | 
|  | */ | 
|  | fluct = abs(cost - prev_cost); | 
|  | avg_fluct = (avg_fluct + fluct)/2; | 
|  |  | 
|  | if (migration_debug) | 
|  | printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n", | 
|  | cpu1, cpu2, size, | 
|  | (long)cost / 1000000, | 
|  | ((long)cost / 100000) % 10, | 
|  | (long)max_cost / 1000000, | 
|  | ((long)max_cost / 100000) % 10, | 
|  | domain_distance(cpu1, cpu2), | 
|  | cost, avg_fluct); | 
|  |  | 
|  | /* | 
|  | * If we iterated at least 20% past the previous maximum, | 
|  | * and the cost has dropped by more than 20% already, | 
|  | * (taking fluctuations into account) then we assume to | 
|  | * have found the maximum and break out of the loop early: | 
|  | */ | 
|  | if (size_found && (size*100 > size_found*SIZE_THRESH)) | 
|  | if (cost+avg_fluct <= 0 || | 
|  | max_cost*100 > (cost+avg_fluct)*COST_THRESH) { | 
|  |  | 
|  | if (migration_debug) | 
|  | printk("-> found max.\n"); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Increase the cachesize in 10% steps: | 
|  | */ | 
|  | size = size * 10 / 9; | 
|  | } | 
|  |  | 
|  | if (migration_debug) | 
|  | printk("[%d][%d] working set size found: %d, cost: %Ld\n", | 
|  | cpu1, cpu2, size_found, max_cost); | 
|  |  | 
|  | vfree(cache); | 
|  |  | 
|  | /* | 
|  | * A task is considered 'cache cold' if at least 2 times | 
|  | * the worst-case cost of migration has passed. | 
|  | * | 
|  | * (this limit is only listened to if the load-balancing | 
|  | * situation is 'nice' - if there is a large imbalance we | 
|  | * ignore it for the sake of CPU utilization and | 
|  | * processing fairness.) | 
|  | */ | 
|  | return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE; | 
|  | } | 
|  |  | 
|  | static void calibrate_migration_costs(const cpumask_t *cpu_map) | 
|  | { | 
|  | int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id(); | 
|  | unsigned long j0, j1, distance, max_distance = 0; | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | j0 = jiffies; | 
|  |  | 
|  | /* | 
|  | * First pass - calculate the cacheflush times: | 
|  | */ | 
|  | for_each_cpu_mask(cpu1, *cpu_map) { | 
|  | for_each_cpu_mask(cpu2, *cpu_map) { | 
|  | if (cpu1 == cpu2) | 
|  | continue; | 
|  | distance = domain_distance(cpu1, cpu2); | 
|  | max_distance = max(max_distance, distance); | 
|  | /* | 
|  | * No result cached yet? | 
|  | */ | 
|  | if (migration_cost[distance] == -1LL) | 
|  | migration_cost[distance] = | 
|  | measure_migration_cost(cpu1, cpu2); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Second pass - update the sched domain hierarchy with | 
|  | * the new cache-hot-time estimations: | 
|  | */ | 
|  | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | distance = 0; | 
|  | for_each_domain(cpu, sd) { | 
|  | sd->cache_hot_time = migration_cost[distance]; | 
|  | distance++; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Print the matrix: | 
|  | */ | 
|  | if (migration_debug) | 
|  | printk("migration: max_cache_size: %d, cpu: %d MHz:\n", | 
|  | max_cache_size, | 
|  | #ifdef CONFIG_X86 | 
|  | cpu_khz/1000 | 
|  | #else | 
|  | -1 | 
|  | #endif | 
|  | ); | 
|  | if (system_state == SYSTEM_BOOTING) { | 
|  | printk("migration_cost="); | 
|  | for (distance = 0; distance <= max_distance; distance++) { | 
|  | if (distance) | 
|  | printk(","); | 
|  | printk("%ld", (long)migration_cost[distance] / 1000); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  | j1 = jiffies; | 
|  | if (migration_debug) | 
|  | printk("migration: %ld seconds\n", (j1-j0)/HZ); | 
|  |  | 
|  | /* | 
|  | * Move back to the original CPU. NUMA-Q gets confused | 
|  | * if we migrate to another quad during bootup. | 
|  | */ | 
|  | if (raw_smp_processor_id() != orig_cpu) { | 
|  | cpumask_t mask = cpumask_of_cpu(orig_cpu), | 
|  | saved_mask = current->cpus_allowed; | 
|  |  | 
|  | set_cpus_allowed(current, mask); | 
|  | set_cpus_allowed(current, saved_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /** | 
|  | * find_next_best_node - find the next node to include in a sched_domain | 
|  | * @node: node whose sched_domain we're building | 
|  | * @used_nodes: nodes already in the sched_domain | 
|  | * | 
|  | * Find the next node to include in a given scheduling domain.  Simply | 
|  | * finds the closest node not already in the @used_nodes map. | 
|  | * | 
|  | * Should use nodemask_t. | 
|  | */ | 
|  | static int find_next_best_node(int node, unsigned long *used_nodes) | 
|  | { | 
|  | int i, n, val, min_val, best_node = 0; | 
|  |  | 
|  | min_val = INT_MAX; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | /* Start at @node */ | 
|  | n = (node + i) % MAX_NUMNODES; | 
|  |  | 
|  | if (!nr_cpus_node(n)) | 
|  | continue; | 
|  |  | 
|  | /* Skip already used nodes */ | 
|  | if (test_bit(n, used_nodes)) | 
|  | continue; | 
|  |  | 
|  | /* Simple min distance search */ | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_bit(best_node, used_nodes); | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_domain_node_span - get a cpumask for a node's sched_domain | 
|  | * @node: node whose cpumask we're constructing | 
|  | * @size: number of nodes to include in this span | 
|  | * | 
|  | * Given a node, construct a good cpumask for its sched_domain to span.  It | 
|  | * should be one that prevents unnecessary balancing, but also spreads tasks | 
|  | * out optimally. | 
|  | */ | 
|  | static cpumask_t sched_domain_node_span(int node) | 
|  | { | 
|  | DECLARE_BITMAP(used_nodes, MAX_NUMNODES); | 
|  | cpumask_t span, nodemask; | 
|  | int i; | 
|  |  | 
|  | cpus_clear(span); | 
|  | bitmap_zero(used_nodes, MAX_NUMNODES); | 
|  |  | 
|  | nodemask = node_to_cpumask(node); | 
|  | cpus_or(span, span, nodemask); | 
|  | set_bit(node, used_nodes); | 
|  |  | 
|  | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
|  | int next_node = find_next_best_node(node, used_nodes); | 
|  |  | 
|  | nodemask = node_to_cpumask(next_node); | 
|  | cpus_or(span, span, nodemask); | 
|  | } | 
|  |  | 
|  | return span; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 
|  |  | 
|  | /* | 
|  | * SMT sched-domains: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
|  | static struct sched_group sched_group_cpus[NR_CPUS]; | 
|  |  | 
|  | static int cpu_to_cpu_group(int cpu) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * multi-core sched-domains: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static DEFINE_PER_CPU(struct sched_domain, core_domains); | 
|  | static struct sched_group *sched_group_core_bycpu[NR_CPUS]; | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 
|  | static int cpu_to_core_group(int cpu) | 
|  | { | 
|  | return first_cpu(cpu_sibling_map[cpu]); | 
|  | } | 
|  | #elif defined(CONFIG_SCHED_MC) | 
|  | static int cpu_to_core_group(int cpu) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
|  | static struct sched_group *sched_group_phys_bycpu[NR_CPUS]; | 
|  |  | 
|  | static int cpu_to_phys_group(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | cpumask_t mask = cpu_coregroup_map(cpu); | 
|  | return first_cpu(mask); | 
|  | #elif defined(CONFIG_SCHED_SMT) | 
|  | return first_cpu(cpu_sibling_map[cpu]); | 
|  | #else | 
|  | return cpu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * The init_sched_build_groups can't handle what we want to do with node | 
|  | * groups, so roll our own. Now each node has its own list of groups which | 
|  | * gets dynamically allocated. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
|  | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 
|  | static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS]; | 
|  |  | 
|  | static int cpu_to_allnodes_group(int cpu) | 
|  | { | 
|  | return cpu_to_node(cpu); | 
|  | } | 
|  | static void init_numa_sched_groups_power(struct sched_group *group_head) | 
|  | { | 
|  | struct sched_group *sg = group_head; | 
|  | int j; | 
|  |  | 
|  | if (!sg) | 
|  | return; | 
|  | next_sg: | 
|  | for_each_cpu_mask(j, sg->cpumask) { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | sd = &per_cpu(phys_domains, j); | 
|  | if (j != first_cpu(sd->groups->cpumask)) { | 
|  | /* | 
|  | * Only add "power" once for each | 
|  | * physical package. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sg->cpu_power += sd->groups->cpu_power; | 
|  | } | 
|  | sg = sg->next; | 
|  | if (sg != group_head) | 
|  | goto next_sg; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Free memory allocated for various sched_group structures */ | 
|  | static void free_sched_groups(const cpumask_t *cpu_map) | 
|  | { | 
|  | int cpu; | 
|  | #ifdef CONFIG_NUMA | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | struct sched_group *sched_group_allnodes | 
|  | = sched_group_allnodes_bycpu[cpu]; | 
|  | struct sched_group **sched_group_nodes | 
|  | = sched_group_nodes_bycpu[cpu]; | 
|  |  | 
|  | if (sched_group_allnodes) { | 
|  | kfree(sched_group_allnodes); | 
|  | sched_group_allnodes_bycpu[cpu] = NULL; | 
|  | } | 
|  |  | 
|  | if (!sched_group_nodes) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | cpumask_t nodemask = node_to_cpumask(i); | 
|  | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
|  |  | 
|  | cpus_and(nodemask, nodemask, *cpu_map); | 
|  | if (cpus_empty(nodemask)) | 
|  | continue; | 
|  |  | 
|  | if (sg == NULL) | 
|  | continue; | 
|  | sg = sg->next; | 
|  | next_sg: | 
|  | oldsg = sg; | 
|  | sg = sg->next; | 
|  | kfree(oldsg); | 
|  | if (oldsg != sched_group_nodes[i]) | 
|  | goto next_sg; | 
|  | } | 
|  | kfree(sched_group_nodes); | 
|  | sched_group_nodes_bycpu[cpu] = NULL; | 
|  | } | 
|  | #endif | 
|  | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | if (sched_group_phys_bycpu[cpu]) { | 
|  | kfree(sched_group_phys_bycpu[cpu]); | 
|  | sched_group_phys_bycpu[cpu] = NULL; | 
|  | } | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | if (sched_group_core_bycpu[cpu]) { | 
|  | kfree(sched_group_core_bycpu[cpu]); | 
|  | sched_group_core_bycpu[cpu] = NULL; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build sched domains for a given set of cpus and attach the sched domains | 
|  | * to the individual cpus | 
|  | */ | 
|  | static int build_sched_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | int i; | 
|  | struct sched_group *sched_group_phys = NULL; | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | struct sched_group *sched_group_core = NULL; | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | struct sched_group **sched_group_nodes = NULL; | 
|  | struct sched_group *sched_group_allnodes = NULL; | 
|  |  | 
|  | /* | 
|  | * Allocate the per-node list of sched groups | 
|  | */ | 
|  | sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES, | 
|  | GFP_KERNEL); | 
|  | if (!sched_group_nodes) { | 
|  | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up domains for cpus specified by the cpu_map. | 
|  | */ | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | int group; | 
|  | struct sched_domain *sd = NULL, *p; | 
|  | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
|  |  | 
|  | cpus_and(nodemask, nodemask, *cpu_map); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (cpus_weight(*cpu_map) | 
|  | > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | 
|  | if (!sched_group_allnodes) { | 
|  | sched_group_allnodes | 
|  | = kmalloc(sizeof(struct sched_group) | 
|  | * MAX_NUMNODES, | 
|  | GFP_KERNEL); | 
|  | if (!sched_group_allnodes) { | 
|  | printk(KERN_WARNING | 
|  | "Can not alloc allnodes sched group\n"); | 
|  | goto error; | 
|  | } | 
|  | sched_group_allnodes_bycpu[i] | 
|  | = sched_group_allnodes; | 
|  | } | 
|  | sd = &per_cpu(allnodes_domains, i); | 
|  | *sd = SD_ALLNODES_INIT; | 
|  | sd->span = *cpu_map; | 
|  | group = cpu_to_allnodes_group(i); | 
|  | sd->groups = &sched_group_allnodes[group]; | 
|  | p = sd; | 
|  | } else | 
|  | p = NULL; | 
|  |  | 
|  | sd = &per_cpu(node_domains, i); | 
|  | *sd = SD_NODE_INIT; | 
|  | sd->span = sched_domain_node_span(cpu_to_node(i)); | 
|  | sd->parent = p; | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | #endif | 
|  |  | 
|  | if (!sched_group_phys) { | 
|  | sched_group_phys | 
|  | = kmalloc(sizeof(struct sched_group) * NR_CPUS, | 
|  | GFP_KERNEL); | 
|  | if (!sched_group_phys) { | 
|  | printk (KERN_WARNING "Can not alloc phys sched" | 
|  | "group\n"); | 
|  | goto error; | 
|  | } | 
|  | sched_group_phys_bycpu[i] = sched_group_phys; | 
|  | } | 
|  |  | 
|  | p = sd; | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | group = cpu_to_phys_group(i); | 
|  | *sd = SD_CPU_INIT; | 
|  | sd->span = nodemask; | 
|  | sd->parent = p; | 
|  | sd->groups = &sched_group_phys[group]; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | if (!sched_group_core) { | 
|  | sched_group_core | 
|  | = kmalloc(sizeof(struct sched_group) * NR_CPUS, | 
|  | GFP_KERNEL); | 
|  | if (!sched_group_core) { | 
|  | printk (KERN_WARNING "Can not alloc core sched" | 
|  | "group\n"); | 
|  | goto error; | 
|  | } | 
|  | sched_group_core_bycpu[i] = sched_group_core; | 
|  | } | 
|  |  | 
|  | p = sd; | 
|  | sd = &per_cpu(core_domains, i); | 
|  | group = cpu_to_core_group(i); | 
|  | *sd = SD_MC_INIT; | 
|  | sd->span = cpu_coregroup_map(i); | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | sd->parent = p; | 
|  | sd->groups = &sched_group_core[group]; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | p = sd; | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | group = cpu_to_cpu_group(i); | 
|  | *sd = SD_SIBLING_INIT; | 
|  | sd->span = cpu_sibling_map[i]; | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | sd->parent = p; | 
|  | sd->groups = &sched_group_cpus[group]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* Set up CPU (sibling) groups */ | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
|  | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); | 
|  | if (i != first_cpu(this_sibling_map)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(sched_group_cpus, this_sibling_map, | 
|  | &cpu_to_cpu_group); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | /* Set up multi-core groups */ | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | cpumask_t this_core_map = cpu_coregroup_map(i); | 
|  | cpus_and(this_core_map, this_core_map, *cpu_map); | 
|  | if (i != first_cpu(this_core_map)) | 
|  | continue; | 
|  | init_sched_build_groups(sched_group_core, this_core_map, | 
|  | &cpu_to_core_group); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Set up physical groups */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | cpumask_t nodemask = node_to_cpumask(i); | 
|  |  | 
|  | cpus_and(nodemask, nodemask, *cpu_map); | 
|  | if (cpus_empty(nodemask)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(sched_group_phys, nodemask, | 
|  | &cpu_to_phys_group); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Set up node groups */ | 
|  | if (sched_group_allnodes) | 
|  | init_sched_build_groups(sched_group_allnodes, *cpu_map, | 
|  | &cpu_to_allnodes_group); | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | /* Set up node groups */ | 
|  | struct sched_group *sg, *prev; | 
|  | cpumask_t nodemask = node_to_cpumask(i); | 
|  | cpumask_t domainspan; | 
|  | cpumask_t covered = CPU_MASK_NONE; | 
|  | int j; | 
|  |  | 
|  | cpus_and(nodemask, nodemask, *cpu_map); | 
|  | if (cpus_empty(nodemask)) { | 
|  | sched_group_nodes[i] = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | domainspan = sched_domain_node_span(i); | 
|  | cpus_and(domainspan, domainspan, *cpu_map); | 
|  |  | 
|  | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); | 
|  | if (!sg) { | 
|  | printk(KERN_WARNING "Can not alloc domain group for " | 
|  | "node %d\n", i); | 
|  | goto error; | 
|  | } | 
|  | sched_group_nodes[i] = sg; | 
|  | for_each_cpu_mask(j, nodemask) { | 
|  | struct sched_domain *sd; | 
|  | sd = &per_cpu(node_domains, j); | 
|  | sd->groups = sg; | 
|  | } | 
|  | sg->cpu_power = 0; | 
|  | sg->cpumask = nodemask; | 
|  | sg->next = sg; | 
|  | cpus_or(covered, covered, nodemask); | 
|  | prev = sg; | 
|  |  | 
|  | for (j = 0; j < MAX_NUMNODES; j++) { | 
|  | cpumask_t tmp, notcovered; | 
|  | int n = (i + j) % MAX_NUMNODES; | 
|  |  | 
|  | cpus_complement(notcovered, covered); | 
|  | cpus_and(tmp, notcovered, *cpu_map); | 
|  | cpus_and(tmp, tmp, domainspan); | 
|  | if (cpus_empty(tmp)) | 
|  | break; | 
|  |  | 
|  | nodemask = node_to_cpumask(n); | 
|  | cpus_and(tmp, tmp, nodemask); | 
|  | if (cpus_empty(tmp)) | 
|  | continue; | 
|  |  | 
|  | sg = kmalloc_node(sizeof(struct sched_group), | 
|  | GFP_KERNEL, i); | 
|  | if (!sg) { | 
|  | printk(KERN_WARNING | 
|  | "Can not alloc domain group for node %d\n", j); | 
|  | goto error; | 
|  | } | 
|  | sg->cpu_power = 0; | 
|  | sg->cpumask = tmp; | 
|  | sg->next = prev->next; | 
|  | cpus_or(covered, covered, tmp); | 
|  | prev->next = sg; | 
|  | prev = sg; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Calculate CPU power for physical packages and nodes */ | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | struct sched_domain *sd; | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | sd->groups->cpu_power = SCHED_LOAD_SCALE; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | int power; | 
|  | struct sched_domain *sd; | 
|  | sd = &per_cpu(core_domains, i); | 
|  | if (sched_smt_power_savings) | 
|  | power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask); | 
|  | else | 
|  | power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1) | 
|  | * SCHED_LOAD_SCALE / 10; | 
|  | sd->groups->cpu_power = power; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | struct sched_domain *sd; | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | if (i != first_cpu(sd->groups->cpumask)) | 
|  | continue; | 
|  |  | 
|  | sd->groups->cpu_power = 0; | 
|  | if (sched_mc_power_savings || sched_smt_power_savings) { | 
|  | int j; | 
|  |  | 
|  | for_each_cpu_mask(j, sd->groups->cpumask) { | 
|  | struct sched_domain *sd1; | 
|  | sd1 = &per_cpu(core_domains, j); | 
|  | /* | 
|  | * for each core we will add once | 
|  | * to the group in physical domain | 
|  | */ | 
|  | if (j != first_cpu(sd1->groups->cpumask)) | 
|  | continue; | 
|  |  | 
|  | if (sched_smt_power_savings) | 
|  | sd->groups->cpu_power += sd1->groups->cpu_power; | 
|  | else | 
|  | sd->groups->cpu_power += SCHED_LOAD_SCALE; | 
|  | } | 
|  | } else | 
|  | /* | 
|  | * This has to be < 2 * SCHED_LOAD_SCALE | 
|  | * Lets keep it SCHED_LOAD_SCALE, so that | 
|  | * while calculating NUMA group's cpu_power | 
|  | * we can simply do | 
|  | *  numa_group->cpu_power += phys_group->cpu_power; | 
|  | * | 
|  | * See "only add power once for each physical pkg" | 
|  | * comment below | 
|  | */ | 
|  | sd->groups->cpu_power = SCHED_LOAD_SCALE; | 
|  | #else | 
|  | int power; | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | if (sched_smt_power_savings) | 
|  | power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask); | 
|  | else | 
|  | power = SCHED_LOAD_SCALE; | 
|  | sd->groups->cpu_power = power; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | init_numa_sched_groups_power(sched_group_nodes[i]); | 
|  |  | 
|  | if (sched_group_allnodes) { | 
|  | int group = cpu_to_allnodes_group(first_cpu(*cpu_map)); | 
|  | struct sched_group *sg = &sched_group_allnodes[group]; | 
|  |  | 
|  | init_numa_sched_groups_power(sg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Attach the domains */ | 
|  | for_each_cpu_mask(i, *cpu_map) { | 
|  | struct sched_domain *sd; | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | #elif defined(CONFIG_SCHED_MC) | 
|  | sd = &per_cpu(core_domains, i); | 
|  | #else | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | #endif | 
|  | cpu_attach_domain(sd, i); | 
|  | } | 
|  | /* | 
|  | * Tune cache-hot values: | 
|  | */ | 
|  | calibrate_migration_costs(cpu_map); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | free_sched_groups(cpu_map); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
|  | */ | 
|  | static int arch_init_sched_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | cpumask_t cpu_default_map; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Setup mask for cpus without special case scheduling requirements. | 
|  | * For now this just excludes isolated cpus, but could be used to | 
|  | * exclude other special cases in the future. | 
|  | */ | 
|  | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | 
|  |  | 
|  | err = build_sched_domains(&cpu_default_map); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | free_sched_groups(cpu_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detach sched domains from a group of cpus specified in cpu_map | 
|  | * These cpus will now be attached to the NULL domain | 
|  | */ | 
|  | static void detach_destroy_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, *cpu_map) | 
|  | cpu_attach_domain(NULL, i); | 
|  | synchronize_sched(); | 
|  | arch_destroy_sched_domains(cpu_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Partition sched domains as specified by the cpumasks below. | 
|  | * This attaches all cpus from the cpumasks to the NULL domain, | 
|  | * waits for a RCU quiescent period, recalculates sched | 
|  | * domain information and then attaches them back to the | 
|  | * correct sched domains | 
|  | * Call with hotplug lock held | 
|  | */ | 
|  | int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) | 
|  | { | 
|  | cpumask_t change_map; | 
|  | int err = 0; | 
|  |  | 
|  | cpus_and(*partition1, *partition1, cpu_online_map); | 
|  | cpus_and(*partition2, *partition2, cpu_online_map); | 
|  | cpus_or(change_map, *partition1, *partition2); | 
|  |  | 
|  | /* Detach sched domains from all of the affected cpus */ | 
|  | detach_destroy_domains(&change_map); | 
|  | if (!cpus_empty(*partition1)) | 
|  | err = build_sched_domains(partition1); | 
|  | if (!err && !cpus_empty(*partition2)) | 
|  | err = build_sched_domains(partition2); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | int arch_reinit_sched_domains(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | lock_cpu_hotplug(); | 
|  | detach_destroy_domains(&cpu_online_map); | 
|  | err = arch_init_sched_domains(&cpu_online_map); | 
|  | unlock_cpu_hotplug(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (buf[0] != '0' && buf[0] != '1') | 
|  | return -EINVAL; | 
|  |  | 
|  | if (smt) | 
|  | sched_smt_power_savings = (buf[0] == '1'); | 
|  | else | 
|  | sched_mc_power_savings = (buf[0] == '1'); | 
|  |  | 
|  | ret = arch_reinit_sched_domains(); | 
|  |  | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | if (smt_capable()) | 
|  | err = sysfs_create_file(&cls->kset.kobj, | 
|  | &attr_sched_smt_power_savings.attr); | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | if (!err && mc_capable()) | 
|  | err = sysfs_create_file(&cls->kset.kobj, | 
|  | &attr_sched_mc_power_savings.attr); | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) | 
|  | { | 
|  | return sprintf(page, "%u\n", sched_mc_power_savings); | 
|  | } | 
|  | static ssize_t sched_mc_power_savings_store(struct sys_device *dev, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return sched_power_savings_store(buf, count, 0); | 
|  | } | 
|  | SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, | 
|  | sched_mc_power_savings_store); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) | 
|  | { | 
|  | return sprintf(page, "%u\n", sched_smt_power_savings); | 
|  | } | 
|  | static ssize_t sched_smt_power_savings_store(struct sys_device *dev, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return sched_power_savings_store(buf, count, 1); | 
|  | } | 
|  | SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, | 
|  | sched_smt_power_savings_store); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Force a reinitialization of the sched domains hierarchy.  The domains | 
|  | * and groups cannot be updated in place without racing with the balancing | 
|  | * code, so we temporarily attach all running cpus to the NULL domain | 
|  | * which will prevent rebalancing while the sched domains are recalculated. | 
|  | */ | 
|  | static int update_sched_domains(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_DOWN_PREPARE: | 
|  | detach_destroy_domains(&cpu_online_map); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_ONLINE: | 
|  | case CPU_DEAD: | 
|  | /* | 
|  | * Fall through and re-initialise the domains. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* The hotplug lock is already held by cpu_up/cpu_down */ | 
|  | arch_init_sched_domains(&cpu_online_map); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | lock_cpu_hotplug(); | 
|  | arch_init_sched_domains(&cpu_online_map); | 
|  | unlock_cpu_hotplug(); | 
|  | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 
|  | hotcpu_notifier(update_sched_domains, 0); | 
|  | } | 
|  | #else | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int in_sched_functions(unsigned long addr) | 
|  | { | 
|  | /* Linker adds these: start and end of __sched functions */ | 
|  | extern char __sched_text_start[], __sched_text_end[]; | 
|  |  | 
|  | return in_lock_functions(addr) || | 
|  | (addr >= (unsigned long)__sched_text_start | 
|  | && addr < (unsigned long)__sched_text_end); | 
|  | } | 
|  |  | 
|  | void __init sched_init(void) | 
|  | { | 
|  | int i, j, k; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct prio_array *array; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | spin_lock_init(&rq->lock); | 
|  | lockdep_set_class(&rq->lock, &rq->rq_lock_key); | 
|  | rq->nr_running = 0; | 
|  | rq->active = rq->arrays; | 
|  | rq->expired = rq->arrays + 1; | 
|  | rq->best_expired_prio = MAX_PRIO; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | rq->sd = NULL; | 
|  | for (j = 1; j < 3; j++) | 
|  | rq->cpu_load[j] = 0; | 
|  | rq->active_balance = 0; | 
|  | rq->push_cpu = 0; | 
|  | rq->migration_thread = NULL; | 
|  | INIT_LIST_HEAD(&rq->migration_queue); | 
|  | #endif | 
|  | atomic_set(&rq->nr_iowait, 0); | 
|  |  | 
|  | for (j = 0; j < 2; j++) { | 
|  | array = rq->arrays + j; | 
|  | for (k = 0; k < MAX_PRIO; k++) { | 
|  | INIT_LIST_HEAD(array->queue + k); | 
|  | __clear_bit(k, array->bitmap); | 
|  | } | 
|  | // delimiter for bitsearch | 
|  | __set_bit(MAX_PRIO, array->bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | set_load_weight(&init_task); | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The boot idle thread does lazy MMU switching as well: | 
|  | */ | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | /* | 
|  | * Make us the idle thread. Technically, schedule() should not be | 
|  | * called from this thread, however somewhere below it might be, | 
|  | * but because we are the idle thread, we just pick up running again | 
|  | * when this runqueue becomes "idle". | 
|  | */ | 
|  | init_idle(current, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | void __might_sleep(char *file, int line) | 
|  | { | 
|  | #ifdef in_atomic | 
|  | static unsigned long prev_jiffy;	/* ratelimiting */ | 
|  |  | 
|  | if ((in_atomic() || irqs_disabled()) && | 
|  | system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
|  | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | return; | 
|  | prev_jiffy = jiffies; | 
|  | printk(KERN_ERR "BUG: sleeping function called from invalid" | 
|  | " context at %s:%d\n", file, line); | 
|  | printk("in_atomic():%d, irqs_disabled():%d\n", | 
|  | in_atomic(), irqs_disabled()); | 
|  | dump_stack(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__might_sleep); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | void normalize_rt_tasks(void) | 
|  | { | 
|  | struct prio_array *array; | 
|  | struct task_struct *p; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | read_lock_irq(&tasklist_lock); | 
|  | for_each_process(p) { | 
|  | if (!rt_task(p)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&p->pi_lock, flags); | 
|  | rq = __task_rq_lock(p); | 
|  |  | 
|  | array = p->array; | 
|  | if (array) | 
|  | deactivate_task(p, task_rq(p)); | 
|  | __setscheduler(p, SCHED_NORMAL, 0); | 
|  | if (array) { | 
|  | __activate_task(p, task_rq(p)); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | } | 
|  | read_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MAGIC_SYSRQ */ | 
|  |  | 
|  | #ifdef CONFIG_IA64 | 
|  | /* | 
|  | * These functions are only useful for the IA64 MCA handling. | 
|  | * | 
|  | * They can only be called when the whole system has been | 
|  | * stopped - every CPU needs to be quiescent, and no scheduling | 
|  | * activity can take place. Using them for anything else would | 
|  | * be a serious bug, and as a result, they aren't even visible | 
|  | * under any other configuration. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * curr_task - return the current task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | */ | 
|  | struct task_struct *curr_task(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_curr_task - set the current task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | * @p: the task pointer to set. | 
|  | * | 
|  | * Description: This function must only be used when non-maskable interrupts | 
|  | * are serviced on a separate stack.  It allows the architecture to switch the | 
|  | * notion of the current task on a cpu in a non-blocking manner.  This function | 
|  | * must be called with all CPU's synchronized, and interrupts disabled, the | 
|  | * and caller must save the original value of the current task (see | 
|  | * curr_task() above) and restore that value before reenabling interrupts and | 
|  | * re-starting the system. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | */ | 
|  | void set_curr_task(int cpu, struct task_struct *p) | 
|  | { | 
|  | cpu_curr(cpu) = p; | 
|  | } | 
|  |  | 
|  | #endif |