|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/dax.h> | 
|  |  | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_log_recover.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_ag.h" | 
|  |  | 
|  | struct kmem_cache *xfs_buf_cache; | 
|  |  | 
|  | /* | 
|  | * Locking orders | 
|  | * | 
|  | * xfs_buf_ioacct_inc: | 
|  | * xfs_buf_ioacct_dec: | 
|  | *	b_sema (caller holds) | 
|  | *	  b_lock | 
|  | * | 
|  | * xfs_buf_stale: | 
|  | *	b_sema (caller holds) | 
|  | *	  b_lock | 
|  | *	    lru_lock | 
|  | * | 
|  | * xfs_buf_rele: | 
|  | *	b_lock | 
|  | *	  pag_buf_lock | 
|  | *	    lru_lock | 
|  | * | 
|  | * xfs_buftarg_drain_rele | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | * | 
|  | * xfs_buftarg_isolate | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | */ | 
|  |  | 
|  | static int __xfs_buf_submit(struct xfs_buf *bp, bool wait); | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_submit( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC)); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_is_vmapped( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | /* | 
|  | * Return true if the buffer is vmapped. | 
|  | * | 
|  | * b_addr is null if the buffer is not mapped, but the code is clever | 
|  | * enough to know it doesn't have to map a single page, so the check has | 
|  | * to be both for b_addr and bp->b_page_count > 1. | 
|  | */ | 
|  | return bp->b_addr && bp->b_page_count > 1; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_vmap_len( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | return (bp->b_page_count * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bump the I/O in flight count on the buftarg if we haven't yet done so for | 
|  | * this buffer. The count is incremented once per buffer (per hold cycle) | 
|  | * because the corresponding decrement is deferred to buffer release. Buffers | 
|  | * can undergo I/O multiple times in a hold-release cycle and per buffer I/O | 
|  | * tracking adds unnecessary overhead. This is used for sychronization purposes | 
|  | * with unmount (see xfs_buftarg_drain()), so all we really need is a count of | 
|  | * in-flight buffers. | 
|  | * | 
|  | * Buffers that are never released (e.g., superblock, iclog buffers) must set | 
|  | * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count | 
|  | * never reaches zero and unmount hangs indefinitely. | 
|  | */ | 
|  | static inline void | 
|  | xfs_buf_ioacct_inc( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (bp->b_flags & XBF_NO_IOACCT) | 
|  | return; | 
|  |  | 
|  | ASSERT(bp->b_flags & XBF_ASYNC); | 
|  | spin_lock(&bp->b_lock); | 
|  | if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { | 
|  | bp->b_state |= XFS_BSTATE_IN_FLIGHT; | 
|  | percpu_counter_inc(&bp->b_target->bt_io_count); | 
|  | } | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the in-flight state on a buffer about to be released to the LRU or | 
|  | * freed and unaccount from the buftarg. | 
|  | */ | 
|  | static inline void | 
|  | __xfs_buf_ioacct_dec( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | lockdep_assert_held(&bp->b_lock); | 
|  |  | 
|  | if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { | 
|  | bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; | 
|  | percpu_counter_dec(&bp->b_target->bt_io_count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_buf_ioacct_dec( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | spin_lock(&bp->b_lock); | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we mark a buffer stale, we remove the buffer from the LRU and clear the | 
|  | * b_lru_ref count so that the buffer is freed immediately when the buffer | 
|  | * reference count falls to zero. If the buffer is already on the LRU, we need | 
|  | * to remove the reference that LRU holds on the buffer. | 
|  | * | 
|  | * This prevents build-up of stale buffers on the LRU. | 
|  | */ | 
|  | void | 
|  | xfs_buf_stale( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_STALE; | 
|  |  | 
|  | /* | 
|  | * Clear the delwri status so that a delwri queue walker will not | 
|  | * flush this buffer to disk now that it is stale. The delwri queue has | 
|  | * a reference to the buffer, so this is safe to do. | 
|  | */ | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  |  | 
|  | /* | 
|  | * Once the buffer is marked stale and unlocked, a subsequent lookup | 
|  | * could reset b_flags. There is no guarantee that the buffer is | 
|  | * unaccounted (released to LRU) before that occurs. Drop in-flight | 
|  | * status now to preserve accounting consistency. | 
|  | */ | 
|  | spin_lock(&bp->b_lock); | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  |  | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE) && | 
|  | (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) | 
|  | atomic_dec(&bp->b_hold); | 
|  |  | 
|  | ASSERT(atomic_read(&bp->b_hold) >= 1); | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_get_maps( | 
|  | struct xfs_buf		*bp, | 
|  | int			map_count) | 
|  | { | 
|  | ASSERT(bp->b_maps == NULL); | 
|  | bp->b_map_count = map_count; | 
|  |  | 
|  | if (map_count == 1) { | 
|  | bp->b_maps = &bp->__b_map; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), | 
|  | KM_NOFS); | 
|  | if (!bp->b_maps) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees b_pages if it was allocated. | 
|  | */ | 
|  | static void | 
|  | xfs_buf_free_maps( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (bp->b_maps != &bp->__b_map) { | 
|  | kmem_free(bp->b_maps); | 
|  | bp->b_maps = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | _xfs_buf_alloc( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | *bpp = NULL; | 
|  | bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL); | 
|  |  | 
|  | /* | 
|  | * We don't want certain flags to appear in b_flags unless they are | 
|  | * specifically set by later operations on the buffer. | 
|  | */ | 
|  | flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | atomic_set(&bp->b_hold, 1); | 
|  | atomic_set(&bp->b_lru_ref, 1); | 
|  | init_completion(&bp->b_iowait); | 
|  | INIT_LIST_HEAD(&bp->b_lru); | 
|  | INIT_LIST_HEAD(&bp->b_list); | 
|  | INIT_LIST_HEAD(&bp->b_li_list); | 
|  | sema_init(&bp->b_sema, 0); /* held, no waiters */ | 
|  | spin_lock_init(&bp->b_lock); | 
|  | bp->b_target = target; | 
|  | bp->b_mount = target->bt_mount; | 
|  | bp->b_flags = flags; | 
|  |  | 
|  | /* | 
|  | * Set length and io_length to the same value initially. | 
|  | * I/O routines should use io_length, which will be the same in | 
|  | * most cases but may be reset (e.g. XFS recovery). | 
|  | */ | 
|  | error = xfs_buf_get_maps(bp, nmaps); | 
|  | if (error)  { | 
|  | kmem_cache_free(xfs_buf_cache, bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | bp->b_rhash_key = map[0].bm_bn; | 
|  | bp->b_length = 0; | 
|  | for (i = 0; i < nmaps; i++) { | 
|  | bp->b_maps[i].bm_bn = map[i].bm_bn; | 
|  | bp->b_maps[i].bm_len = map[i].bm_len; | 
|  | bp->b_length += map[i].bm_len; | 
|  | } | 
|  |  | 
|  | atomic_set(&bp->b_pin_count, 0); | 
|  | init_waitqueue_head(&bp->b_waiters); | 
|  |  | 
|  | XFS_STATS_INC(bp->b_mount, xb_create); | 
|  | trace_xfs_buf_init(bp, _RET_IP_); | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_free_pages( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | uint		i; | 
|  |  | 
|  | ASSERT(bp->b_flags & _XBF_PAGES); | 
|  |  | 
|  | if (xfs_buf_is_vmapped(bp)) | 
|  | vm_unmap_ram(bp->b_addr, bp->b_page_count); | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | if (bp->b_pages[i]) | 
|  | __free_page(bp->b_pages[i]); | 
|  | } | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += bp->b_page_count; | 
|  |  | 
|  | if (bp->b_pages != bp->b_page_array) | 
|  | kmem_free(bp->b_pages); | 
|  | bp->b_pages = NULL; | 
|  | bp->b_flags &= ~_XBF_PAGES; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_free_callback( | 
|  | struct callback_head	*cb) | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu); | 
|  |  | 
|  | xfs_buf_free_maps(bp); | 
|  | kmem_cache_free(xfs_buf_cache, bp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_free( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_free(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  |  | 
|  | if (bp->b_flags & _XBF_PAGES) | 
|  | xfs_buf_free_pages(bp); | 
|  | else if (bp->b_flags & _XBF_KMEM) | 
|  | kmem_free(bp->b_addr); | 
|  |  | 
|  | call_rcu(&bp->b_rcu, xfs_buf_free_callback); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_alloc_kmem( | 
|  | struct xfs_buf	*bp, | 
|  | xfs_buf_flags_t	flags) | 
|  | { | 
|  | xfs_km_flags_t	kmflag_mask = KM_NOFS; | 
|  | size_t		size = BBTOB(bp->b_length); | 
|  |  | 
|  | /* Assure zeroed buffer for non-read cases. */ | 
|  | if (!(flags & XBF_READ)) | 
|  | kmflag_mask |= KM_ZERO; | 
|  |  | 
|  | bp->b_addr = kmem_alloc(size, kmflag_mask); | 
|  | if (!bp->b_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != | 
|  | ((unsigned long)bp->b_addr & PAGE_MASK)) { | 
|  | /* b_addr spans two pages - use alloc_page instead */ | 
|  | kmem_free(bp->b_addr); | 
|  | bp->b_addr = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | bp->b_offset = offset_in_page(bp->b_addr); | 
|  | bp->b_pages = bp->b_page_array; | 
|  | bp->b_pages[0] = kmem_to_page(bp->b_addr); | 
|  | bp->b_page_count = 1; | 
|  | bp->b_flags |= _XBF_KMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_alloc_pages( | 
|  | struct xfs_buf	*bp, | 
|  | xfs_buf_flags_t	flags) | 
|  | { | 
|  | gfp_t		gfp_mask = __GFP_NOWARN; | 
|  | long		filled = 0; | 
|  |  | 
|  | if (flags & XBF_READ_AHEAD) | 
|  | gfp_mask |= __GFP_NORETRY; | 
|  | else | 
|  | gfp_mask |= GFP_NOFS; | 
|  |  | 
|  | /* Make sure that we have a page list */ | 
|  | bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); | 
|  | if (bp->b_page_count <= XB_PAGES) { | 
|  | bp->b_pages = bp->b_page_array; | 
|  | } else { | 
|  | bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, | 
|  | gfp_mask); | 
|  | if (!bp->b_pages) | 
|  | return -ENOMEM; | 
|  | } | 
|  | bp->b_flags |= _XBF_PAGES; | 
|  |  | 
|  | /* Assure zeroed buffer for non-read cases. */ | 
|  | if (!(flags & XBF_READ)) | 
|  | gfp_mask |= __GFP_ZERO; | 
|  |  | 
|  | /* | 
|  | * Bulk filling of pages can take multiple calls. Not filling the entire | 
|  | * array is not an allocation failure, so don't back off if we get at | 
|  | * least one extra page. | 
|  | */ | 
|  | for (;;) { | 
|  | long	last = filled; | 
|  |  | 
|  | filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count, | 
|  | bp->b_pages); | 
|  | if (filled == bp->b_page_count) { | 
|  | XFS_STATS_INC(bp->b_mount, xb_page_found); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (filled != last) | 
|  | continue; | 
|  |  | 
|  | if (flags & XBF_READ_AHEAD) { | 
|  | xfs_buf_free_pages(bp); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(bp->b_mount, xb_page_retries); | 
|  | memalloc_retry_wait(gfp_mask); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Map buffer into kernel address-space if necessary. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_map_pages( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | ASSERT(bp->b_flags & _XBF_PAGES); | 
|  | if (bp->b_page_count == 1) { | 
|  | /* A single page buffer is always mappable */ | 
|  | bp->b_addr = page_address(bp->b_pages[0]); | 
|  | } else if (flags & XBF_UNMAPPED) { | 
|  | bp->b_addr = NULL; | 
|  | } else { | 
|  | int retried = 0; | 
|  | unsigned nofs_flag; | 
|  |  | 
|  | /* | 
|  | * vm_map_ram() will allocate auxiliary structures (e.g. | 
|  | * pagetables) with GFP_KERNEL, yet we are likely to be under | 
|  | * GFP_NOFS context here. Hence we need to tell memory reclaim | 
|  | * that we are in such a context via PF_MEMALLOC_NOFS to prevent | 
|  | * memory reclaim re-entering the filesystem here and | 
|  | * potentially deadlocking. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | do { | 
|  | bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, | 
|  | -1); | 
|  | if (bp->b_addr) | 
|  | break; | 
|  | vm_unmap_aliases(); | 
|  | } while (retried++ <= 1); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | if (!bp->b_addr) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  | static int | 
|  | _xfs_buf_obj_cmp( | 
|  | struct rhashtable_compare_arg	*arg, | 
|  | const void			*obj) | 
|  | { | 
|  | const struct xfs_buf_map	*map = arg->key; | 
|  | const struct xfs_buf		*bp = obj; | 
|  |  | 
|  | /* | 
|  | * The key hashing in the lookup path depends on the key being the | 
|  | * first element of the compare_arg, make sure to assert this. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); | 
|  |  | 
|  | if (bp->b_rhash_key != map->bm_bn) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(bp->b_length != map->bm_len)) { | 
|  | /* | 
|  | * found a block number match. If the range doesn't | 
|  | * match, the only way this is allowed is if the buffer | 
|  | * in the cache is stale and the transaction that made | 
|  | * it stale has not yet committed. i.e. we are | 
|  | * reallocating a busy extent. Skip this buffer and | 
|  | * continue searching for an exact match. | 
|  | */ | 
|  | ASSERT(bp->b_flags & XBF_STALE); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct rhashtable_params xfs_buf_hash_params = { | 
|  | .min_size		= 32,	/* empty AGs have minimal footprint */ | 
|  | .nelem_hint		= 16, | 
|  | .key_len		= sizeof(xfs_daddr_t), | 
|  | .key_offset		= offsetof(struct xfs_buf, b_rhash_key), | 
|  | .head_offset		= offsetof(struct xfs_buf, b_rhash_head), | 
|  | .automatic_shrinking	= true, | 
|  | .obj_cmpfn		= _xfs_buf_obj_cmp, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_buf_hash_init( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | spin_lock_init(&pag->pag_buf_lock); | 
|  | return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_hash_destroy( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | rhashtable_destroy(&pag->pag_buf_hash); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_map_verify( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_map	*map) | 
|  | { | 
|  | xfs_daddr_t		eofs; | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); | 
|  | ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); | 
|  |  | 
|  | /* | 
|  | * Corrupted block numbers can get through to here, unfortunately, so we | 
|  | * have to check that the buffer falls within the filesystem bounds. | 
|  | */ | 
|  | eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); | 
|  | if (map->bm_bn < 0 || map->bm_bn >= eofs) { | 
|  | xfs_alert(btp->bt_mount, | 
|  | "%s: daddr 0x%llx out of range, EOFS 0x%llx", | 
|  | __func__, map->bm_bn, eofs); | 
|  | WARN_ON(1); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_find_lock( | 
|  | struct xfs_buf          *bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | if (flags & XBF_TRYLOCK) { | 
|  | if (!xfs_buf_trylock(bp)) { | 
|  | XFS_STATS_INC(bp->b_mount, xb_busy_locked); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | xfs_buf_lock(bp); | 
|  | XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the buffer is stale, clear all the external state associated with | 
|  | * it. We need to keep flags such as how we allocated the buffer memory | 
|  | * intact here. | 
|  | */ | 
|  | if (bp->b_flags & XBF_STALE) { | 
|  | ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
|  | bp->b_flags &= _XBF_KMEM | _XBF_PAGES; | 
|  | bp->b_ops = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_lookup( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_buf_map	*map, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf          *bp; | 
|  | int			error; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params); | 
|  | if (!bp || !atomic_inc_not_zero(&bp->b_hold)) { | 
|  | rcu_read_unlock(); | 
|  | return -ENOENT; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | error = xfs_buf_find_lock(bp, flags); | 
|  | if (error) { | 
|  | xfs_buf_rele(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_find(bp, flags, _RET_IP_); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the new_bp into the hash table. This consumes the perag reference | 
|  | * taken for the lookup regardless of the result of the insert. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_find_insert( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_buf_map	*cmap, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_buf		*new_bp; | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); | 
|  | if (error) | 
|  | goto out_drop_pag; | 
|  |  | 
|  | /* | 
|  | * For buffers that fit entirely within a single page, first attempt to | 
|  | * allocate the memory from the heap to minimise memory usage. If we | 
|  | * can't get heap memory for these small buffers, we fall back to using | 
|  | * the page allocator. | 
|  | */ | 
|  | if (BBTOB(new_bp->b_length) >= PAGE_SIZE || | 
|  | xfs_buf_alloc_kmem(new_bp, flags) < 0) { | 
|  | error = xfs_buf_alloc_pages(new_bp, flags); | 
|  | if (error) | 
|  | goto out_free_buf; | 
|  | } | 
|  |  | 
|  | spin_lock(&pag->pag_buf_lock); | 
|  | bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash, | 
|  | &new_bp->b_rhash_head, xfs_buf_hash_params); | 
|  | if (IS_ERR(bp)) { | 
|  | error = PTR_ERR(bp); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | goto out_free_buf; | 
|  | } | 
|  | if (bp) { | 
|  | /* found an existing buffer */ | 
|  | atomic_inc(&bp->b_hold); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | error = xfs_buf_find_lock(bp, flags); | 
|  | if (error) | 
|  | xfs_buf_rele(bp); | 
|  | else | 
|  | *bpp = bp; | 
|  | goto out_free_buf; | 
|  | } | 
|  |  | 
|  | /* The new buffer keeps the perag reference until it is freed. */ | 
|  | new_bp->b_pag = pag; | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | *bpp = new_bp; | 
|  | return 0; | 
|  |  | 
|  | out_free_buf: | 
|  | xfs_buf_free(new_bp); | 
|  | out_drop_pag: | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assembles a buffer covering the specified range. The code is optimised for | 
|  | * cache hits, as metadata intensive workloads will see 3 orders of magnitude | 
|  | * more hits than misses. | 
|  | */ | 
|  | int | 
|  | xfs_buf_get_map( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_buf		*bp = NULL; | 
|  | struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn }; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | for (i = 0; i < nmaps; i++) | 
|  | cmap.bm_len += map[i].bm_len; | 
|  |  | 
|  | error = xfs_buf_map_verify(btp, &cmap); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | pag = xfs_perag_get(btp->bt_mount, | 
|  | xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); | 
|  |  | 
|  | error = xfs_buf_lookup(pag, &cmap, flags, &bp); | 
|  | if (error && error != -ENOENT) | 
|  | goto out_put_perag; | 
|  |  | 
|  | /* cache hits always outnumber misses by at least 10:1 */ | 
|  | if (unlikely(!bp)) { | 
|  | XFS_STATS_INC(btp->bt_mount, xb_miss_locked); | 
|  |  | 
|  | if (flags & XBF_INCORE) | 
|  | goto out_put_perag; | 
|  |  | 
|  | /* xfs_buf_find_insert() consumes the perag reference. */ | 
|  | error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps, | 
|  | flags, &bp); | 
|  | if (error) | 
|  | return error; | 
|  | } else { | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get_locked); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | /* We do not hold a perag reference anymore. */ | 
|  | if (!bp->b_addr) { | 
|  | error = _xfs_buf_map_pages(bp, flags); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn_ratelimited(btp->bt_mount, | 
|  | "%s: failed to map %u pages", __func__, | 
|  | bp->b_page_count); | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear b_error if this is a lookup from a caller that doesn't expect | 
|  | * valid data to be found in the buffer. | 
|  | */ | 
|  | if (!(flags & XBF_READ)) | 
|  | xfs_buf_ioerror(bp, 0); | 
|  |  | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get); | 
|  | trace_xfs_buf_get(bp, flags, _RET_IP_); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  |  | 
|  | out_put_perag: | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | _xfs_buf_read( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | ASSERT(!(flags & XBF_WRITE)); | 
|  | ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); | 
|  | bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | return xfs_buf_submit(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reverify a buffer found in cache without an attached ->b_ops. | 
|  | * | 
|  | * If the caller passed an ops structure and the buffer doesn't have ops | 
|  | * assigned, set the ops and use it to verify the contents. If verification | 
|  | * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is | 
|  | * already in XBF_DONE state on entry. | 
|  | * | 
|  | * Under normal operations, every in-core buffer is verified on read I/O | 
|  | * completion. There are two scenarios that can lead to in-core buffers without | 
|  | * an assigned ->b_ops. The first is during log recovery of buffers on a V4 | 
|  | * filesystem, though these buffers are purged at the end of recovery. The | 
|  | * other is online repair, which intentionally reads with a NULL buffer ops to | 
|  | * run several verifiers across an in-core buffer in order to establish buffer | 
|  | * type.  If repair can't establish that, the buffer will be left in memory | 
|  | * with NULL buffer ops. | 
|  | */ | 
|  | int | 
|  | xfs_buf_reverify( | 
|  | struct xfs_buf		*bp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | ASSERT(bp->b_flags & XBF_DONE); | 
|  | ASSERT(bp->b_error == 0); | 
|  |  | 
|  | if (!ops || bp->b_ops) | 
|  | return 0; | 
|  |  | 
|  | bp->b_ops = ops; | 
|  | bp->b_ops->verify_read(bp); | 
|  | if (bp->b_error) | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_read_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp, | 
|  | const struct xfs_buf_ops *ops, | 
|  | xfs_failaddr_t		fa) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | flags |= XBF_READ; | 
|  | *bpp = NULL; | 
|  |  | 
|  | error = xfs_buf_get_map(target, map, nmaps, flags, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | trace_xfs_buf_read(bp, flags, _RET_IP_); | 
|  |  | 
|  | if (!(bp->b_flags & XBF_DONE)) { | 
|  | /* Initiate the buffer read and wait. */ | 
|  | XFS_STATS_INC(target->bt_mount, xb_get_read); | 
|  | bp->b_ops = ops; | 
|  | error = _xfs_buf_read(bp, flags); | 
|  |  | 
|  | /* Readahead iodone already dropped the buffer, so exit. */ | 
|  | if (flags & XBF_ASYNC) | 
|  | return 0; | 
|  | } else { | 
|  | /* Buffer already read; all we need to do is check it. */ | 
|  | error = xfs_buf_reverify(bp, ops); | 
|  |  | 
|  | /* Readahead already finished; drop the buffer and exit. */ | 
|  | if (flags & XBF_ASYNC) { | 
|  | xfs_buf_relse(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We do not want read in the flags */ | 
|  | bp->b_flags &= ~XBF_READ; | 
|  | ASSERT(bp->b_ops != NULL || ops == NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we've had a read error, then the contents of the buffer are | 
|  | * invalid and should not be used. To ensure that a followup read tries | 
|  | * to pull the buffer from disk again, we clear the XBF_DONE flag and | 
|  | * mark the buffer stale. This ensures that anyone who has a current | 
|  | * reference to the buffer will interpret it's contents correctly and | 
|  | * future cache lookups will also treat it as an empty, uninitialised | 
|  | * buffer. | 
|  | */ | 
|  | if (error) { | 
|  | /* | 
|  | * Check against log shutdown for error reporting because | 
|  | * metadata writeback may require a read first and we need to | 
|  | * report errors in metadata writeback until the log is shut | 
|  | * down. High level transaction read functions already check | 
|  | * against mount shutdown, anyway, so we only need to be | 
|  | * concerned about low level IO interactions here. | 
|  | */ | 
|  | if (!xlog_is_shutdown(target->bt_mount->m_log)) | 
|  | xfs_buf_ioerror_alert(bp, fa); | 
|  |  | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_relse(bp); | 
|  |  | 
|  | /* bad CRC means corrupted metadata */ | 
|  | if (error == -EFSBADCRC) | 
|  | error = -EFSCORRUPTED; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are not low on memory then do the readahead in a deadlock | 
|  | *	safe manner. | 
|  | */ | 
|  | void | 
|  | xfs_buf_readahead_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | xfs_buf_read_map(target, map, nmaps, | 
|  | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, | 
|  | __this_address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an uncached buffer from disk. Allocates and returns a locked | 
|  | * buffer containing the disk contents or nothing. Uncached buffers always have | 
|  | * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer | 
|  | * is cached or uncached during fault diagnosis. | 
|  | */ | 
|  | int | 
|  | xfs_buf_read_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_daddr_t		daddr, | 
|  | size_t			numblks, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | *bpp = NULL; | 
|  |  | 
|  | error = xfs_buf_get_uncached(target, numblks, flags, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* set up the buffer for a read IO */ | 
|  | ASSERT(bp->b_map_count == 1); | 
|  | bp->b_rhash_key = XFS_BUF_DADDR_NULL; | 
|  | bp->b_maps[0].bm_bn = daddr; | 
|  | bp->b_flags |= XBF_READ; | 
|  | bp->b_ops = ops; | 
|  |  | 
|  | xfs_buf_submit(bp); | 
|  | if (bp->b_error) { | 
|  | error = bp->b_error; | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_get_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | size_t			numblks, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | int			error; | 
|  | struct xfs_buf		*bp; | 
|  | DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); | 
|  |  | 
|  | *bpp = NULL; | 
|  |  | 
|  | /* flags might contain irrelevant bits, pass only what we care about */ | 
|  | error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_buf_alloc_pages(bp, flags); | 
|  | if (error) | 
|  | goto fail_free_buf; | 
|  |  | 
|  | error = _xfs_buf_map_pages(bp, 0); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn(target->bt_mount, | 
|  | "%s: failed to map pages", __func__); | 
|  | goto fail_free_buf; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_get_uncached(bp, _RET_IP_); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  |  | 
|  | fail_free_buf: | 
|  | xfs_buf_free(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | xfs_buf_hold( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_hold(bp, _RET_IP_); | 
|  | atomic_inc(&bp->b_hold); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a hold on the specified buffer. If the hold count is 1, the buffer is | 
|  | * placed on LRU or freed (depending on b_lru_ref). | 
|  | */ | 
|  | void | 
|  | xfs_buf_rele( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_perag	*pag = bp->b_pag; | 
|  | bool			release; | 
|  | bool			freebuf = false; | 
|  |  | 
|  | trace_xfs_buf_rele(bp, _RET_IP_); | 
|  |  | 
|  | if (!pag) { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | if (atomic_dec_and_test(&bp->b_hold)) { | 
|  | xfs_buf_ioacct_dec(bp); | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT(atomic_read(&bp->b_hold) > 0); | 
|  |  | 
|  | /* | 
|  | * We grab the b_lock here first to serialise racing xfs_buf_rele() | 
|  | * calls. The pag_buf_lock being taken on the last reference only | 
|  | * serialises against racing lookups in xfs_buf_find(). IOWs, the second | 
|  | * to last reference we drop here is not serialised against the last | 
|  | * reference until we take bp->b_lock. Hence if we don't grab b_lock | 
|  | * first, the last "release" reference can win the race to the lock and | 
|  | * free the buffer before the second-to-last reference is processed, | 
|  | * leading to a use-after-free scenario. | 
|  | */ | 
|  | spin_lock(&bp->b_lock); | 
|  | release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); | 
|  | if (!release) { | 
|  | /* | 
|  | * Drop the in-flight state if the buffer is already on the LRU | 
|  | * and it holds the only reference. This is racy because we | 
|  | * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT | 
|  | * ensures the decrement occurs only once per-buf. | 
|  | */ | 
|  | if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* the last reference has been dropped ... */ | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { | 
|  | /* | 
|  | * If the buffer is added to the LRU take a new reference to the | 
|  | * buffer for the LRU and clear the (now stale) dispose list | 
|  | * state flag | 
|  | */ | 
|  | if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { | 
|  | bp->b_state &= ~XFS_BSTATE_DISPOSE; | 
|  | atomic_inc(&bp->b_hold); | 
|  | } | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | } else { | 
|  | /* | 
|  | * most of the time buffers will already be removed from the | 
|  | * LRU, so optimise that case by checking for the | 
|  | * XFS_BSTATE_DISPOSE flag indicating the last list the buffer | 
|  | * was on was the disposal list | 
|  | */ | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { | 
|  | list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); | 
|  | } else { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | } | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  | rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, | 
|  | xfs_buf_hash_params); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  | freebuf = true; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&bp->b_lock); | 
|  |  | 
|  | if (freebuf) | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object, if it is not already locked. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we are | 
|  | *	being asked to lock a buffer that has been reallocated. Because it is | 
|  | *	pinned, we know that the log has not been pushed to disk and hence it | 
|  | *	will still be locked.  Rather than continuing to have trylock attempts | 
|  | *	fail until someone else pushes the log, push it ourselves before | 
|  | *	returning.  This means that the xfsaild will not get stuck trying | 
|  | *	to push on stale inode buffers. | 
|  | */ | 
|  | int | 
|  | xfs_buf_trylock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&bp->b_sema) == 0; | 
|  | if (locked) | 
|  | trace_xfs_buf_trylock(bp, _RET_IP_); | 
|  | else | 
|  | trace_xfs_buf_trylock_fail(bp, _RET_IP_); | 
|  | return locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we | 
|  | *	are being asked to lock a buffer that has been reallocated. Because | 
|  | *	it is pinned, we know that the log has not been pushed to disk and | 
|  | *	hence it will still be locked. Rather than sleeping until someone | 
|  | *	else pushes the log, push it ourselves before trying to get the lock. | 
|  | */ | 
|  | void | 
|  | xfs_buf_lock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_lock(bp, _RET_IP_); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
|  | xfs_log_force(bp->b_mount, 0); | 
|  | down(&bp->b_sema); | 
|  |  | 
|  | trace_xfs_buf_lock_done(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_unlock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | up(&bp->b_sema); | 
|  | trace_xfs_buf_unlock(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_wait_unpin( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&bp->b_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | break; | 
|  | io_schedule(); | 
|  | } | 
|  | remove_wait_queue(&bp->b_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioerror_alert_ratelimited( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | static unsigned long	lasttime; | 
|  | static struct xfs_buftarg *lasttarg; | 
|  |  | 
|  | if (bp->b_target != lasttarg || | 
|  | time_after(jiffies, (lasttime + 5*HZ))) { | 
|  | lasttime = jiffies; | 
|  | xfs_buf_ioerror_alert(bp, __this_address); | 
|  | } | 
|  | lasttarg = bp->b_target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for this latest trip around the retry handler, and decide if | 
|  | * we've failed enough times to constitute a permanent failure. | 
|  | */ | 
|  | static bool | 
|  | xfs_buf_ioerror_permanent( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_error_cfg	*cfg) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  |  | 
|  | if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && | 
|  | ++bp->b_retries > cfg->max_retries) | 
|  | return true; | 
|  | if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && | 
|  | time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) | 
|  | return true; | 
|  |  | 
|  | /* At unmount we may treat errors differently */ | 
|  | if (xfs_is_unmounting(mp) && mp->m_fail_unmount) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On a sync write or shutdown we just want to stale the buffer and let the | 
|  | * caller handle the error in bp->b_error appropriately. | 
|  | * | 
|  | * If the write was asynchronous then no one will be looking for the error.  If | 
|  | * this is the first failure of this type, clear the error state and write the | 
|  | * buffer out again. This means we always retry an async write failure at least | 
|  | * once, but we also need to set the buffer up to behave correctly now for | 
|  | * repeated failures. | 
|  | * | 
|  | * If we get repeated async write failures, then we take action according to the | 
|  | * error configuration we have been set up to use. | 
|  | * | 
|  | * Returns true if this function took care of error handling and the caller must | 
|  | * not touch the buffer again.  Return false if the caller should proceed with | 
|  | * normal I/O completion handling. | 
|  | */ | 
|  | static bool | 
|  | xfs_buf_ioend_handle_error( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_error_cfg	*cfg; | 
|  |  | 
|  | /* | 
|  | * If we've already shutdown the journal because of I/O errors, there's | 
|  | * no point in giving this a retry. | 
|  | */ | 
|  | if (xlog_is_shutdown(mp->m_log)) | 
|  | goto out_stale; | 
|  |  | 
|  | xfs_buf_ioerror_alert_ratelimited(bp); | 
|  |  | 
|  | /* | 
|  | * We're not going to bother about retrying this during recovery. | 
|  | * One strike! | 
|  | */ | 
|  | if (bp->b_flags & _XBF_LOGRECOVERY) { | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronous writes will have callers process the error. | 
|  | */ | 
|  | if (!(bp->b_flags & XBF_ASYNC)) | 
|  | goto out_stale; | 
|  |  | 
|  | trace_xfs_buf_iodone_async(bp, _RET_IP_); | 
|  |  | 
|  | cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); | 
|  | if (bp->b_last_error != bp->b_error || | 
|  | !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { | 
|  | bp->b_last_error = bp->b_error; | 
|  | if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && | 
|  | !bp->b_first_retry_time) | 
|  | bp->b_first_retry_time = jiffies; | 
|  | goto resubmit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Permanent error - we need to trigger a shutdown if we haven't already | 
|  | * to indicate that inconsistency will result from this action. | 
|  | */ | 
|  | if (xfs_buf_ioerror_permanent(bp, cfg)) { | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | goto out_stale; | 
|  | } | 
|  |  | 
|  | /* Still considered a transient error. Caller will schedule retries. */ | 
|  | if (bp->b_flags & _XBF_INODES) | 
|  | xfs_buf_inode_io_fail(bp); | 
|  | else if (bp->b_flags & _XBF_DQUOTS) | 
|  | xfs_buf_dquot_io_fail(bp); | 
|  | else | 
|  | ASSERT(list_empty(&bp->b_li_list)); | 
|  | xfs_buf_ioerror(bp, 0); | 
|  | xfs_buf_relse(bp); | 
|  | return true; | 
|  |  | 
|  | resubmit: | 
|  | xfs_buf_ioerror(bp, 0); | 
|  | bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); | 
|  | xfs_buf_submit(bp); | 
|  | return true; | 
|  | out_stale: | 
|  | xfs_buf_stale(bp); | 
|  | bp->b_flags |= XBF_DONE; | 
|  | bp->b_flags &= ~XBF_WRITE; | 
|  | trace_xfs_buf_error_relse(bp, _RET_IP_); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | trace_xfs_buf_iodone(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * Pull in IO completion errors now. We are guaranteed to be running | 
|  | * single threaded, so we don't need the lock to read b_io_error. | 
|  | */ | 
|  | if (!bp->b_error && bp->b_io_error) | 
|  | xfs_buf_ioerror(bp, bp->b_io_error); | 
|  |  | 
|  | if (bp->b_flags & XBF_READ) { | 
|  | if (!bp->b_error && bp->b_ops) | 
|  | bp->b_ops->verify_read(bp); | 
|  | if (!bp->b_error) | 
|  | bp->b_flags |= XBF_DONE; | 
|  | } else { | 
|  | if (!bp->b_error) { | 
|  | bp->b_flags &= ~XBF_WRITE_FAIL; | 
|  | bp->b_flags |= XBF_DONE; | 
|  | } | 
|  |  | 
|  | if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) | 
|  | return; | 
|  |  | 
|  | /* clear the retry state */ | 
|  | bp->b_last_error = 0; | 
|  | bp->b_retries = 0; | 
|  | bp->b_first_retry_time = 0; | 
|  |  | 
|  | /* | 
|  | * Note that for things like remote attribute buffers, there may | 
|  | * not be a buffer log item here, so processing the buffer log | 
|  | * item must remain optional. | 
|  | */ | 
|  | if (bp->b_log_item) | 
|  | xfs_buf_item_done(bp); | 
|  |  | 
|  | if (bp->b_flags & _XBF_INODES) | 
|  | xfs_buf_inode_iodone(bp); | 
|  | else if (bp->b_flags & _XBF_DQUOTS) | 
|  | xfs_buf_dquot_iodone(bp); | 
|  |  | 
|  | } | 
|  |  | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | | 
|  | _XBF_LOGRECOVERY); | 
|  |  | 
|  | if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | else | 
|  | complete(&bp->b_iowait); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend_work( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_buf		*bp = | 
|  | container_of(work, struct xfs_buf, b_ioend_work); | 
|  |  | 
|  | xfs_buf_ioend(bp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend_async( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); | 
|  | queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); | 
|  | } | 
|  |  | 
|  | void | 
|  | __xfs_buf_ioerror( | 
|  | struct xfs_buf		*bp, | 
|  | int			error, | 
|  | xfs_failaddr_t		failaddr) | 
|  | { | 
|  | ASSERT(error <= 0 && error >= -1000); | 
|  | bp->b_error = error; | 
|  | trace_xfs_buf_ioerror(bp, error, failaddr); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror_alert( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_failaddr_t		func) | 
|  | { | 
|  | xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", | 
|  | "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", | 
|  | func, (uint64_t)xfs_buf_daddr(bp), | 
|  | bp->b_length, -bp->b_error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To simulate an I/O failure, the buffer must be locked and held with at least | 
|  | * three references. The LRU reference is dropped by the stale call. The buf | 
|  | * item reference is dropped via ioend processing. The third reference is owned | 
|  | * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. | 
|  | */ | 
|  | void | 
|  | xfs_buf_ioend_fail( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  | xfs_buf_ioend(bp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_bwrite( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | | 
|  | XBF_DONE); | 
|  |  | 
|  | error = xfs_buf_submit(bp); | 
|  | if (error) | 
|  | xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_bio_end_io( | 
|  | struct bio		*bio) | 
|  | { | 
|  | struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private; | 
|  |  | 
|  | if (!bio->bi_status && | 
|  | (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && | 
|  | XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  |  | 
|  | /* | 
|  | * don't overwrite existing errors - otherwise we can lose errors on | 
|  | * buffers that require multiple bios to complete. | 
|  | */ | 
|  | if (bio->bi_status) { | 
|  | int error = blk_status_to_errno(bio->bi_status); | 
|  |  | 
|  | cmpxchg(&bp->b_io_error, 0, error); | 
|  | } | 
|  |  | 
|  | if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) | 
|  | invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); | 
|  |  | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) | 
|  | xfs_buf_ioend_async(bp); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioapply_map( | 
|  | struct xfs_buf	*bp, | 
|  | int		map, | 
|  | int		*buf_offset, | 
|  | int		*count, | 
|  | blk_opf_t	op) | 
|  | { | 
|  | int		page_index; | 
|  | unsigned int	total_nr_pages = bp->b_page_count; | 
|  | int		nr_pages; | 
|  | struct bio	*bio; | 
|  | sector_t	sector =  bp->b_maps[map].bm_bn; | 
|  | int		size; | 
|  | int		offset; | 
|  |  | 
|  | /* skip the pages in the buffer before the start offset */ | 
|  | page_index = 0; | 
|  | offset = *buf_offset; | 
|  | while (offset >= PAGE_SIZE) { | 
|  | page_index++; | 
|  | offset -= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Limit the IO size to the length of the current vector, and update the | 
|  | * remaining IO count for the next time around. | 
|  | */ | 
|  | size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); | 
|  | *count -= size; | 
|  | *buf_offset += size; | 
|  |  | 
|  | next_chunk: | 
|  | atomic_inc(&bp->b_io_remaining); | 
|  | nr_pages = bio_max_segs(total_nr_pages); | 
|  |  | 
|  | bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO); | 
|  | bio->bi_iter.bi_sector = sector; | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  | bio->bi_private = bp; | 
|  |  | 
|  | for (; size && nr_pages; nr_pages--, page_index++) { | 
|  | int	rbytes, nbytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, | 
|  | offset); | 
|  | if (rbytes < nbytes) | 
|  | break; | 
|  |  | 
|  | offset = 0; | 
|  | sector += BTOBB(nbytes); | 
|  | size -= nbytes; | 
|  | total_nr_pages--; | 
|  | } | 
|  |  | 
|  | if (likely(bio->bi_iter.bi_size)) { | 
|  | if (xfs_buf_is_vmapped(bp)) { | 
|  | flush_kernel_vmap_range(bp->b_addr, | 
|  | xfs_buf_vmap_len(bp)); | 
|  | } | 
|  | submit_bio(bio); | 
|  | if (size) | 
|  | goto next_chunk; | 
|  | } else { | 
|  | /* | 
|  | * This is guaranteed not to be the last io reference count | 
|  | * because the caller (xfs_buf_submit) holds a count itself. | 
|  | */ | 
|  | atomic_dec(&bp->b_io_remaining); | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_ioapply( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct blk_plug	plug; | 
|  | blk_opf_t	op; | 
|  | int		offset; | 
|  | int		size; | 
|  | int		i; | 
|  |  | 
|  | /* | 
|  | * Make sure we capture only current IO errors rather than stale errors | 
|  | * left over from previous use of the buffer (e.g. failed readahead). | 
|  | */ | 
|  | bp->b_error = 0; | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) { | 
|  | op = REQ_OP_WRITE; | 
|  |  | 
|  | /* | 
|  | * Run the write verifier callback function if it exists. If | 
|  | * this function fails it will mark the buffer with an error and | 
|  | * the IO should not be dispatched. | 
|  | */ | 
|  | if (bp->b_ops) { | 
|  | bp->b_ops->verify_write(bp); | 
|  | if (bp->b_error) { | 
|  | xfs_force_shutdown(bp->b_mount, | 
|  | SHUTDOWN_CORRUPT_INCORE); | 
|  | return; | 
|  | } | 
|  | } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { | 
|  | struct xfs_mount *mp = bp->b_mount; | 
|  |  | 
|  | /* | 
|  | * non-crc filesystems don't attach verifiers during | 
|  | * log recovery, so don't warn for such filesystems. | 
|  | */ | 
|  | if (xfs_has_crc(mp)) { | 
|  | xfs_warn(mp, | 
|  | "%s: no buf ops on daddr 0x%llx len %d", | 
|  | __func__, xfs_buf_daddr(bp), | 
|  | bp->b_length); | 
|  | xfs_hex_dump(bp->b_addr, | 
|  | XFS_CORRUPTION_DUMP_LEN); | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | op = REQ_OP_READ; | 
|  | if (bp->b_flags & XBF_READ_AHEAD) | 
|  | op |= REQ_RAHEAD; | 
|  | } | 
|  |  | 
|  | /* we only use the buffer cache for meta-data */ | 
|  | op |= REQ_META; | 
|  |  | 
|  | /* | 
|  | * Walk all the vectors issuing IO on them. Set up the initial offset | 
|  | * into the buffer and the desired IO size before we start - | 
|  | * _xfs_buf_ioapply_vec() will modify them appropriately for each | 
|  | * subsequent call. | 
|  | */ | 
|  | offset = bp->b_offset; | 
|  | size = BBTOB(bp->b_length); | 
|  | blk_start_plug(&plug); | 
|  | for (i = 0; i < bp->b_map_count; i++) { | 
|  | xfs_buf_ioapply_map(bp, i, &offset, &size, op); | 
|  | if (bp->b_error) | 
|  | break; | 
|  | if (size <= 0) | 
|  | break;	/* all done */ | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for I/O completion of a sync buffer and return the I/O error code. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_iowait( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(!(bp->b_flags & XBF_ASYNC)); | 
|  |  | 
|  | trace_xfs_buf_iowait(bp, _RET_IP_); | 
|  | wait_for_completion(&bp->b_iowait); | 
|  | trace_xfs_buf_iowait_done(bp, _RET_IP_); | 
|  |  | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffer I/O submission path, read or write. Asynchronous submission transfers | 
|  | * the buffer lock ownership and the current reference to the IO. It is not | 
|  | * safe to reference the buffer after a call to this function unless the caller | 
|  | * holds an additional reference itself. | 
|  | */ | 
|  | static int | 
|  | __xfs_buf_submit( | 
|  | struct xfs_buf	*bp, | 
|  | bool		wait) | 
|  | { | 
|  | int		error = 0; | 
|  |  | 
|  | trace_xfs_buf_submit(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  |  | 
|  | /* | 
|  | * On log shutdown we stale and complete the buffer immediately. We can | 
|  | * be called to read the superblock before the log has been set up, so | 
|  | * be careful checking the log state. | 
|  | * | 
|  | * Checking the mount shutdown state here can result in the log tail | 
|  | * moving inappropriately on disk as the log may not yet be shut down. | 
|  | * i.e. failing this buffer on mount shutdown can remove it from the AIL | 
|  | * and move the tail of the log forwards without having written this | 
|  | * buffer to disk. This corrupts the log tail state in memory, and | 
|  | * because the log may not be shut down yet, it can then be propagated | 
|  | * to disk before the log is shutdown. Hence we check log shutdown | 
|  | * state here rather than mount state to avoid corrupting the log tail | 
|  | * on shutdown. | 
|  | */ | 
|  | if (bp->b_mount->m_log && | 
|  | xlog_is_shutdown(bp->b_mount->m_log)) { | 
|  | xfs_buf_ioend_fail(bp); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab a reference so the buffer does not go away underneath us. For | 
|  | * async buffers, I/O completion drops the callers reference, which | 
|  | * could occur before submission returns. | 
|  | */ | 
|  | xfs_buf_hold(bp); | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) | 
|  | xfs_buf_wait_unpin(bp); | 
|  |  | 
|  | /* clear the internal error state to avoid spurious errors */ | 
|  | bp->b_io_error = 0; | 
|  |  | 
|  | /* | 
|  | * Set the count to 1 initially, this will stop an I/O completion | 
|  | * callout which happens before we have started all the I/O from calling | 
|  | * xfs_buf_ioend too early. | 
|  | */ | 
|  | atomic_set(&bp->b_io_remaining, 1); | 
|  | if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_ioacct_inc(bp); | 
|  | _xfs_buf_ioapply(bp); | 
|  |  | 
|  | /* | 
|  | * If _xfs_buf_ioapply failed, we can get back here with only the IO | 
|  | * reference we took above. If we drop it to zero, run completion so | 
|  | * that we don't return to the caller with completion still pending. | 
|  | */ | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { | 
|  | if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) | 
|  | xfs_buf_ioend(bp); | 
|  | else | 
|  | xfs_buf_ioend_async(bp); | 
|  | } | 
|  |  | 
|  | if (wait) | 
|  | error = xfs_buf_iowait(bp); | 
|  |  | 
|  | /* | 
|  | * Release the hold that keeps the buffer referenced for the entire | 
|  | * I/O. Note that if the buffer is async, it is not safe to reference | 
|  | * after this release. | 
|  | */ | 
|  | xfs_buf_rele(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void * | 
|  | xfs_buf_offset( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			offset) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | if (bp->b_addr) | 
|  | return bp->b_addr + offset; | 
|  |  | 
|  | page = bp->b_pages[offset >> PAGE_SHIFT]; | 
|  | return page_address(page) + (offset & (PAGE_SIZE-1)); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_zero( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			boff, | 
|  | size_t			bsize) | 
|  | { | 
|  | size_t			bend; | 
|  |  | 
|  | bend = boff + bsize; | 
|  | while (boff < bend) { | 
|  | struct page	*page; | 
|  | int		page_index, page_offset, csize; | 
|  |  | 
|  | page_index = (boff + bp->b_offset) >> PAGE_SHIFT; | 
|  | page_offset = (boff + bp->b_offset) & ~PAGE_MASK; | 
|  | page = bp->b_pages[page_index]; | 
|  | csize = min_t(size_t, PAGE_SIZE - page_offset, | 
|  | BBTOB(bp->b_length) - boff); | 
|  |  | 
|  | ASSERT((csize + page_offset) <= PAGE_SIZE); | 
|  |  | 
|  | memset(page_address(page) + page_offset, 0, csize); | 
|  |  | 
|  | boff += csize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log a message about and stale a buffer that a caller has decided is corrupt. | 
|  | * | 
|  | * This function should be called for the kinds of metadata corruption that | 
|  | * cannot be detect from a verifier, such as incorrect inter-block relationship | 
|  | * data.  Do /not/ call this function from a verifier function. | 
|  | * | 
|  | * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will | 
|  | * be marked stale, but b_error will not be set.  The caller is responsible for | 
|  | * releasing the buffer or fixing it. | 
|  | */ | 
|  | void | 
|  | __xfs_buf_mark_corrupt( | 
|  | struct xfs_buf		*bp, | 
|  | xfs_failaddr_t		fa) | 
|  | { | 
|  | ASSERT(bp->b_flags & XBF_DONE); | 
|  |  | 
|  | xfs_buf_corruption_error(bp, fa); | 
|  | xfs_buf_stale(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buffer targets (buftargs). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Wait for any bufs with callbacks that have been submitted but have not yet | 
|  | * returned. These buffers will have an elevated hold count, so wait on those | 
|  | * while freeing all the buffers only held by the LRU. | 
|  | */ | 
|  | static enum lru_status | 
|  | xfs_buftarg_drain_rele( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | spinlock_t		*lru_lock, | 
|  | void			*arg) | 
|  |  | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | if (atomic_read(&bp->b_hold) > 1) { | 
|  | /* need to wait, so skip it this pass */ | 
|  | trace_xfs_buf_drain_buftarg(bp, _RET_IP_); | 
|  | return LRU_SKIP; | 
|  | } | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  |  | 
|  | /* | 
|  | * clear the LRU reference count so the buffer doesn't get | 
|  | * ignored in xfs_buf_rele(). | 
|  | */ | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for outstanding I/O on the buftarg to complete. | 
|  | */ | 
|  | void | 
|  | xfs_buftarg_wait( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | /* | 
|  | * First wait on the buftarg I/O count for all in-flight buffers to be | 
|  | * released. This is critical as new buffers do not make the LRU until | 
|  | * they are released. | 
|  | * | 
|  | * Next, flush the buffer workqueue to ensure all completion processing | 
|  | * has finished. Just waiting on buffer locks is not sufficient for | 
|  | * async IO as the reference count held over IO is not released until | 
|  | * after the buffer lock is dropped. Hence we need to ensure here that | 
|  | * all reference counts have been dropped before we start walking the | 
|  | * LRU list. | 
|  | */ | 
|  | while (percpu_counter_sum(&btp->bt_io_count)) | 
|  | delay(100); | 
|  | flush_workqueue(btp->bt_mount->m_buf_workqueue); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buftarg_drain( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | LIST_HEAD(dispose); | 
|  | int			loop = 0; | 
|  | bool			write_fail = false; | 
|  |  | 
|  | xfs_buftarg_wait(btp); | 
|  |  | 
|  | /* loop until there is nothing left on the lru list. */ | 
|  | while (list_lru_count(&btp->bt_lru)) { | 
|  | list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, | 
|  | &dispose, LONG_MAX); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | if (bp->b_flags & XBF_WRITE_FAIL) { | 
|  | write_fail = true; | 
|  | xfs_buf_alert_ratelimited(bp, | 
|  | "XFS: Corruption Alert", | 
|  | "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", | 
|  | (long long)xfs_buf_daddr(bp)); | 
|  | } | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  | if (loop++ != 0) | 
|  | delay(100); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If one or more failed buffers were freed, that means dirty metadata | 
|  | * was thrown away. This should only ever happen after I/O completion | 
|  | * handling has elevated I/O error(s) to permanent failures and shuts | 
|  | * down the journal. | 
|  | */ | 
|  | if (write_fail) { | 
|  | ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); | 
|  | xfs_alert(btp->bt_mount, | 
|  | "Please run xfs_repair to determine the extent of the problem."); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum lru_status | 
|  | xfs_buftarg_isolate( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | spinlock_t		*lru_lock, | 
|  | void			*arg) | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | /* | 
|  | * we are inverting the lru lock/bp->b_lock here, so use a trylock. | 
|  | * If we fail to get the lock, just skip it. | 
|  | */ | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  | /* | 
|  | * Decrement the b_lru_ref count unless the value is already | 
|  | * zero. If the value is already zero, we need to reclaim the | 
|  | * buffer, otherwise it gets another trip through the LRU. | 
|  | */ | 
|  | if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_ROTATE; | 
|  | } | 
|  |  | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_scan( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = container_of(shrink, | 
|  | struct xfs_buftarg, bt_shrinker); | 
|  | LIST_HEAD(dispose); | 
|  | unsigned long		freed; | 
|  |  | 
|  | freed = list_lru_shrink_walk(&btp->bt_lru, sc, | 
|  | xfs_buftarg_isolate, &dispose); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_count( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = container_of(shrink, | 
|  | struct xfs_buftarg, bt_shrinker); | 
|  | return list_lru_shrink_count(&btp->bt_lru, sc); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | unregister_shrinker(&btp->bt_shrinker); | 
|  | ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); | 
|  | percpu_counter_destroy(&btp->bt_io_count); | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  |  | 
|  | blkdev_issue_flush(btp->bt_bdev); | 
|  | invalidate_bdev(btp->bt_bdev); | 
|  | fs_put_dax(btp->bt_daxdev, btp->bt_mount); | 
|  |  | 
|  | kmem_free(btp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_setsize_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | /* Set up metadata sector size info */ | 
|  | btp->bt_meta_sectorsize = sectorsize; | 
|  | btp->bt_meta_sectormask = sectorsize - 1; | 
|  |  | 
|  | if (set_blocksize(btp->bt_bdev, sectorsize)) { | 
|  | xfs_warn(btp->bt_mount, | 
|  | "Cannot set_blocksize to %u on device %pg", | 
|  | sectorsize, btp->bt_bdev); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set up device logical sector size mask */ | 
|  | btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); | 
|  | btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When allocating the initial buffer target we have not yet | 
|  | * read in the superblock, so don't know what sized sectors | 
|  | * are being used at this early stage.  Play safe. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_early( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); | 
|  | } | 
|  |  | 
|  | struct xfs_buftarg * | 
|  | xfs_alloc_buftarg( | 
|  | struct xfs_mount	*mp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  | const struct dax_holder_operations *ops = NULL; | 
|  |  | 
|  | #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) | 
|  | ops = &xfs_dax_holder_operations; | 
|  | #endif | 
|  | btp = kmem_zalloc(sizeof(*btp), KM_NOFS); | 
|  |  | 
|  | btp->bt_mount = mp; | 
|  | btp->bt_dev =  bdev->bd_dev; | 
|  | btp->bt_bdev = bdev; | 
|  | btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off, | 
|  | mp, ops); | 
|  |  | 
|  | /* | 
|  | * Buffer IO error rate limiting. Limit it to no more than 10 messages | 
|  | * per 30 seconds so as to not spam logs too much on repeated errors. | 
|  | */ | 
|  | ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if (xfs_setsize_buftarg_early(btp, bdev)) | 
|  | goto error_free; | 
|  |  | 
|  | if (list_lru_init(&btp->bt_lru)) | 
|  | goto error_free; | 
|  |  | 
|  | if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) | 
|  | goto error_lru; | 
|  |  | 
|  | btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; | 
|  | btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; | 
|  | btp->bt_shrinker.seeks = DEFAULT_SEEKS; | 
|  | btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; | 
|  | if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s", | 
|  | mp->m_super->s_id)) | 
|  | goto error_pcpu; | 
|  | return btp; | 
|  |  | 
|  | error_pcpu: | 
|  | percpu_counter_destroy(&btp->bt_io_count); | 
|  | error_lru: | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  | error_free: | 
|  | kmem_free(btp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cancel a delayed write list. | 
|  | * | 
|  | * Remove each buffer from the list, clear the delwri queue flag and drop the | 
|  | * associated buffer reference. | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_cancel( | 
|  | struct list_head	*list) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | while (!list_empty(list)) { | 
|  | bp = list_first_entry(list, struct xfs_buf, b_list); | 
|  |  | 
|  | xfs_buf_lock(bp); | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a buffer to the delayed write list. | 
|  | * | 
|  | * This queues a buffer for writeout if it hasn't already been.  Note that | 
|  | * neither this routine nor the buffer list submission functions perform | 
|  | * any internal synchronization.  It is expected that the lists are thread-local | 
|  | * to the callers. | 
|  | * | 
|  | * Returns true if we queued up the buffer, or false if it already had | 
|  | * been on the buffer list. | 
|  | */ | 
|  | bool | 
|  | xfs_buf_delwri_queue( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*list) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  | ASSERT(!(bp->b_flags & XBF_READ)); | 
|  |  | 
|  | /* | 
|  | * If the buffer is already marked delwri it already is queued up | 
|  | * by someone else for imediate writeout.  Just ignore it in that | 
|  | * case. | 
|  | */ | 
|  | if (bp->b_flags & _XBF_DELWRI_Q) { | 
|  | trace_xfs_buf_delwri_queued(bp, _RET_IP_); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_queue(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * If a buffer gets written out synchronously or marked stale while it | 
|  | * is on a delwri list we lazily remove it. To do this, the other party | 
|  | * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. | 
|  | * It remains referenced and on the list.  In a rare corner case it | 
|  | * might get readded to a delwri list after the synchronous writeout, in | 
|  | * which case we need just need to re-add the flag here. | 
|  | */ | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | if (list_empty(&bp->b_list)) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | list_add_tail(&bp->b_list, list); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare function is more complex than it needs to be because | 
|  | * the return value is only 32 bits and we are doing comparisons | 
|  | * on 64 bit values | 
|  | */ | 
|  | static int | 
|  | xfs_buf_cmp( | 
|  | void			*priv, | 
|  | const struct list_head	*a, | 
|  | const struct list_head	*b) | 
|  | { | 
|  | struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); | 
|  | struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); | 
|  | xfs_daddr_t		diff; | 
|  |  | 
|  | diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; | 
|  | if (diff < 0) | 
|  | return -1; | 
|  | if (diff > 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit buffers for write. If wait_list is specified, the buffers are | 
|  | * submitted using sync I/O and placed on the wait list such that the caller can | 
|  | * iowait each buffer. Otherwise async I/O is used and the buffers are released | 
|  | * at I/O completion time. In either case, buffers remain locked until I/O | 
|  | * completes and the buffer is released from the queue. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_delwri_submit_buffers( | 
|  | struct list_head	*buffer_list, | 
|  | struct list_head	*wait_list) | 
|  | { | 
|  | struct xfs_buf		*bp, *n; | 
|  | int			pinned = 0; | 
|  | struct blk_plug		plug; | 
|  |  | 
|  | list_sort(NULL, buffer_list, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry_safe(bp, n, buffer_list, b_list) { | 
|  | if (!wait_list) { | 
|  | if (!xfs_buf_trylock(bp)) | 
|  | continue; | 
|  | if (xfs_buf_ispinned(bp)) { | 
|  | xfs_buf_unlock(bp); | 
|  | pinned++; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | xfs_buf_lock(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Someone else might have written the buffer synchronously or | 
|  | * marked it stale in the meantime.  In that case only the | 
|  | * _XBF_DELWRI_Q flag got cleared, and we have to drop the | 
|  | * reference and remove it from the list here. | 
|  | */ | 
|  | if (!(bp->b_flags & _XBF_DELWRI_Q)) { | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_relse(bp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_split(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * If we have a wait list, each buffer (and associated delwri | 
|  | * queue reference) transfers to it and is submitted | 
|  | * synchronously. Otherwise, drop the buffer from the delwri | 
|  | * queue and submit async. | 
|  | */ | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | if (wait_list) { | 
|  | bp->b_flags &= ~XBF_ASYNC; | 
|  | list_move_tail(&bp->b_list, wait_list); | 
|  | } else { | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | list_del_init(&bp->b_list); | 
|  | } | 
|  | __xfs_buf_submit(bp, false); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return pinned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list asynchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all non-locked and non-pinned buffers | 
|  | * out and not wait for I/O completion on any of the buffers.  This interface | 
|  | * is only safely useable for callers that can track I/O completion by higher | 
|  | * level means, e.g. AIL pushing as the @buffer_list is consumed in this | 
|  | * function. | 
|  | * | 
|  | * Note: this function will skip buffers it would block on, and in doing so | 
|  | * leaves them on @buffer_list so they can be retried on a later pass. As such, | 
|  | * it is up to the caller to ensure that the buffer list is fully submitted or | 
|  | * cancelled appropriately when they are finished with the list. Failure to | 
|  | * cancel or resubmit the list until it is empty will result in leaked buffers | 
|  | * at unmount time. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit_nowait( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return xfs_buf_delwri_submit_buffers(buffer_list, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list synchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all buffers out and wait for I/O | 
|  | * completion on all of the buffers. @buffer_list is consumed by the function, | 
|  | * so callers must have some other way of tracking buffers if they require such | 
|  | * functionality. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | LIST_HEAD		(wait_list); | 
|  | int			error = 0, error2; | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); | 
|  |  | 
|  | /* Wait for IO to complete. */ | 
|  | while (!list_empty(&wait_list)) { | 
|  | bp = list_first_entry(&wait_list, struct xfs_buf, b_list); | 
|  |  | 
|  | list_del_init(&bp->b_list); | 
|  |  | 
|  | /* | 
|  | * Wait on the locked buffer, check for errors and unlock and | 
|  | * release the delwri queue reference. | 
|  | */ | 
|  | error2 = xfs_buf_iowait(bp); | 
|  | xfs_buf_relse(bp); | 
|  | if (!error) | 
|  | error = error2; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push a single buffer on a delwri queue. | 
|  | * | 
|  | * The purpose of this function is to submit a single buffer of a delwri queue | 
|  | * and return with the buffer still on the original queue. The waiting delwri | 
|  | * buffer submission infrastructure guarantees transfer of the delwri queue | 
|  | * buffer reference to a temporary wait list. We reuse this infrastructure to | 
|  | * transfer the buffer back to the original queue. | 
|  | * | 
|  | * Note the buffer transitions from the queued state, to the submitted and wait | 
|  | * listed state and back to the queued state during this call. The buffer | 
|  | * locking and queue management logic between _delwri_pushbuf() and | 
|  | * _delwri_queue() guarantee that the buffer cannot be queued to another list | 
|  | * before returning. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_pushbuf( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | LIST_HEAD		(submit_list); | 
|  | int			error; | 
|  |  | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  |  | 
|  | trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * Isolate the buffer to a new local list so we can submit it for I/O | 
|  | * independently from the rest of the original list. | 
|  | */ | 
|  | xfs_buf_lock(bp); | 
|  | list_move(&bp->b_list, &submit_list); | 
|  | xfs_buf_unlock(bp); | 
|  |  | 
|  | /* | 
|  | * Delwri submission clears the DELWRI_Q buffer flag and returns with | 
|  | * the buffer on the wait list with the original reference. Rather than | 
|  | * bounce the buffer from a local wait list back to the original list | 
|  | * after I/O completion, reuse the original list as the wait list. | 
|  | */ | 
|  | xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); | 
|  |  | 
|  | /* | 
|  | * The buffer is now locked, under I/O and wait listed on the original | 
|  | * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and | 
|  | * return with the buffer unlocked and on the original queue. | 
|  | */ | 
|  | error = xfs_buf_iowait(bp); | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | xfs_buf_unlock(bp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) | 
|  | { | 
|  | /* | 
|  | * Set the lru reference count to 0 based on the error injection tag. | 
|  | * This allows userspace to disrupt buffer caching for debug/testing | 
|  | * purposes. | 
|  | */ | 
|  | if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) | 
|  | lru_ref = 0; | 
|  |  | 
|  | atomic_set(&bp->b_lru_ref, lru_ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify an on-disk magic value against the magic value specified in the | 
|  | * verifier structure. The verifier magic is in disk byte order so the caller is | 
|  | * expected to pass the value directly from disk. | 
|  | */ | 
|  | bool | 
|  | xfs_verify_magic( | 
|  | struct xfs_buf		*bp, | 
|  | __be32			dmagic) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | int			idx; | 
|  |  | 
|  | idx = xfs_has_crc(mp); | 
|  | if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) | 
|  | return false; | 
|  | return dmagic == bp->b_ops->magic[idx]; | 
|  | } | 
|  | /* | 
|  | * Verify an on-disk magic value against the magic value specified in the | 
|  | * verifier structure. The verifier magic is in disk byte order so the caller is | 
|  | * expected to pass the value directly from disk. | 
|  | */ | 
|  | bool | 
|  | xfs_verify_magic16( | 
|  | struct xfs_buf		*bp, | 
|  | __be16			dmagic) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | int			idx; | 
|  |  | 
|  | idx = xfs_has_crc(mp); | 
|  | if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) | 
|  | return false; | 
|  | return dmagic == bp->b_ops->magic16[idx]; | 
|  | } |