| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/slab.h> |
| #include <linux/file.h> |
| #include <linux/fdtable.h> |
| #include <linux/freezer.h> |
| #include <linux/mm.h> |
| #include <linux/stat.h> |
| #include <linux/fcntl.h> |
| #include <linux/swap.h> |
| #include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| #include <linux/perf_event.h> |
| #include <linux/highmem.h> |
| #include <linux/spinlock.h> |
| #include <linux/key.h> |
| #include <linux/personality.h> |
| #include <linux/binfmts.h> |
| #include <linux/coredump.h> |
| #include <linux/sched/coredump.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/utsname.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/module.h> |
| #include <linux/namei.h> |
| #include <linux/mount.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/tsacct_kern.h> |
| #include <linux/cn_proc.h> |
| #include <linux/audit.h> |
| #include <linux/tracehook.h> |
| #include <linux/kmod.h> |
| #include <linux/fsnotify.h> |
| #include <linux/fs_struct.h> |
| #include <linux/pipe_fs_i.h> |
| #include <linux/oom.h> |
| #include <linux/compat.h> |
| #include <linux/fs.h> |
| #include <linux/path.h> |
| #include <linux/timekeeping.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlb.h> |
| #include <asm/exec.h> |
| |
| #include <trace/events/task.h> |
| #include "internal.h" |
| |
| #include <trace/events/sched.h> |
| |
| int core_uses_pid; |
| unsigned int core_pipe_limit; |
| char core_pattern[CORENAME_MAX_SIZE] = "core"; |
| static int core_name_size = CORENAME_MAX_SIZE; |
| |
| struct core_name { |
| char *corename; |
| int used, size; |
| }; |
| |
| /* The maximal length of core_pattern is also specified in sysctl.c */ |
| |
| static int expand_corename(struct core_name *cn, int size) |
| { |
| char *corename = krealloc(cn->corename, size, GFP_KERNEL); |
| |
| if (!corename) |
| return -ENOMEM; |
| |
| if (size > core_name_size) /* racy but harmless */ |
| core_name_size = size; |
| |
| cn->size = ksize(corename); |
| cn->corename = corename; |
| return 0; |
| } |
| |
| static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, |
| va_list arg) |
| { |
| int free, need; |
| va_list arg_copy; |
| |
| again: |
| free = cn->size - cn->used; |
| |
| va_copy(arg_copy, arg); |
| need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); |
| va_end(arg_copy); |
| |
| if (need < free) { |
| cn->used += need; |
| return 0; |
| } |
| |
| if (!expand_corename(cn, cn->size + need - free + 1)) |
| goto again; |
| |
| return -ENOMEM; |
| } |
| |
| static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) |
| { |
| va_list arg; |
| int ret; |
| |
| va_start(arg, fmt); |
| ret = cn_vprintf(cn, fmt, arg); |
| va_end(arg); |
| |
| return ret; |
| } |
| |
| static __printf(2, 3) |
| int cn_esc_printf(struct core_name *cn, const char *fmt, ...) |
| { |
| int cur = cn->used; |
| va_list arg; |
| int ret; |
| |
| va_start(arg, fmt); |
| ret = cn_vprintf(cn, fmt, arg); |
| va_end(arg); |
| |
| if (ret == 0) { |
| /* |
| * Ensure that this coredump name component can't cause the |
| * resulting corefile path to consist of a ".." or ".". |
| */ |
| if ((cn->used - cur == 1 && cn->corename[cur] == '.') || |
| (cn->used - cur == 2 && cn->corename[cur] == '.' |
| && cn->corename[cur+1] == '.')) |
| cn->corename[cur] = '!'; |
| |
| /* |
| * Empty names are fishy and could be used to create a "//" in a |
| * corefile name, causing the coredump to happen one directory |
| * level too high. Enforce that all components of the core |
| * pattern are at least one character long. |
| */ |
| if (cn->used == cur) |
| ret = cn_printf(cn, "!"); |
| } |
| |
| for (; cur < cn->used; ++cur) { |
| if (cn->corename[cur] == '/') |
| cn->corename[cur] = '!'; |
| } |
| return ret; |
| } |
| |
| static int cn_print_exe_file(struct core_name *cn, bool name_only) |
| { |
| struct file *exe_file; |
| char *pathbuf, *path, *ptr; |
| int ret; |
| |
| exe_file = get_mm_exe_file(current->mm); |
| if (!exe_file) |
| return cn_esc_printf(cn, "%s (path unknown)", current->comm); |
| |
| pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| if (!pathbuf) { |
| ret = -ENOMEM; |
| goto put_exe_file; |
| } |
| |
| path = file_path(exe_file, pathbuf, PATH_MAX); |
| if (IS_ERR(path)) { |
| ret = PTR_ERR(path); |
| goto free_buf; |
| } |
| |
| if (name_only) { |
| ptr = strrchr(path, '/'); |
| if (ptr) |
| path = ptr + 1; |
| } |
| ret = cn_esc_printf(cn, "%s", path); |
| |
| free_buf: |
| kfree(pathbuf); |
| put_exe_file: |
| fput(exe_file); |
| return ret; |
| } |
| |
| /* format_corename will inspect the pattern parameter, and output a |
| * name into corename, which must have space for at least |
| * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. |
| */ |
| static int format_corename(struct core_name *cn, struct coredump_params *cprm, |
| size_t **argv, int *argc) |
| { |
| const struct cred *cred = current_cred(); |
| const char *pat_ptr = core_pattern; |
| int ispipe = (*pat_ptr == '|'); |
| bool was_space = false; |
| int pid_in_pattern = 0; |
| int err = 0; |
| |
| cn->used = 0; |
| cn->corename = NULL; |
| if (expand_corename(cn, core_name_size)) |
| return -ENOMEM; |
| cn->corename[0] = '\0'; |
| |
| if (ispipe) { |
| int argvs = sizeof(core_pattern) / 2; |
| (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); |
| if (!(*argv)) |
| return -ENOMEM; |
| (*argv)[(*argc)++] = 0; |
| ++pat_ptr; |
| if (!(*pat_ptr)) |
| return -ENOMEM; |
| } |
| |
| /* Repeat as long as we have more pattern to process and more output |
| space */ |
| while (*pat_ptr) { |
| /* |
| * Split on spaces before doing template expansion so that |
| * %e and %E don't get split if they have spaces in them |
| */ |
| if (ispipe) { |
| if (isspace(*pat_ptr)) { |
| was_space = true; |
| pat_ptr++; |
| continue; |
| } else if (was_space) { |
| was_space = false; |
| err = cn_printf(cn, "%c", '\0'); |
| if (err) |
| return err; |
| (*argv)[(*argc)++] = cn->used; |
| } |
| } |
| if (*pat_ptr != '%') { |
| err = cn_printf(cn, "%c", *pat_ptr++); |
| } else { |
| switch (*++pat_ptr) { |
| /* single % at the end, drop that */ |
| case 0: |
| goto out; |
| /* Double percent, output one percent */ |
| case '%': |
| err = cn_printf(cn, "%c", '%'); |
| break; |
| /* pid */ |
| case 'p': |
| pid_in_pattern = 1; |
| err = cn_printf(cn, "%d", |
| task_tgid_vnr(current)); |
| break; |
| /* global pid */ |
| case 'P': |
| err = cn_printf(cn, "%d", |
| task_tgid_nr(current)); |
| break; |
| case 'i': |
| err = cn_printf(cn, "%d", |
| task_pid_vnr(current)); |
| break; |
| case 'I': |
| err = cn_printf(cn, "%d", |
| task_pid_nr(current)); |
| break; |
| /* uid */ |
| case 'u': |
| err = cn_printf(cn, "%u", |
| from_kuid(&init_user_ns, |
| cred->uid)); |
| break; |
| /* gid */ |
| case 'g': |
| err = cn_printf(cn, "%u", |
| from_kgid(&init_user_ns, |
| cred->gid)); |
| break; |
| case 'd': |
| err = cn_printf(cn, "%d", |
| __get_dumpable(cprm->mm_flags)); |
| break; |
| /* signal that caused the coredump */ |
| case 's': |
| err = cn_printf(cn, "%d", |
| cprm->siginfo->si_signo); |
| break; |
| /* UNIX time of coredump */ |
| case 't': { |
| time64_t time; |
| |
| time = ktime_get_real_seconds(); |
| err = cn_printf(cn, "%lld", time); |
| break; |
| } |
| /* hostname */ |
| case 'h': |
| down_read(&uts_sem); |
| err = cn_esc_printf(cn, "%s", |
| utsname()->nodename); |
| up_read(&uts_sem); |
| break; |
| /* executable, could be changed by prctl PR_SET_NAME etc */ |
| case 'e': |
| err = cn_esc_printf(cn, "%s", current->comm); |
| break; |
| /* file name of executable */ |
| case 'f': |
| err = cn_print_exe_file(cn, true); |
| break; |
| case 'E': |
| err = cn_print_exe_file(cn, false); |
| break; |
| /* core limit size */ |
| case 'c': |
| err = cn_printf(cn, "%lu", |
| rlimit(RLIMIT_CORE)); |
| break; |
| default: |
| break; |
| } |
| ++pat_ptr; |
| } |
| |
| if (err) |
| return err; |
| } |
| |
| out: |
| /* Backward compatibility with core_uses_pid: |
| * |
| * If core_pattern does not include a %p (as is the default) |
| * and core_uses_pid is set, then .%pid will be appended to |
| * the filename. Do not do this for piped commands. */ |
| if (!ispipe && !pid_in_pattern && core_uses_pid) { |
| err = cn_printf(cn, ".%d", task_tgid_vnr(current)); |
| if (err) |
| return err; |
| } |
| return ispipe; |
| } |
| |
| static int zap_process(struct task_struct *start, int exit_code, int flags) |
| { |
| struct task_struct *t; |
| int nr = 0; |
| |
| /* ignore all signals except SIGKILL, see prepare_signal() */ |
| start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; |
| start->signal->group_exit_code = exit_code; |
| start->signal->group_stop_count = 0; |
| |
| for_each_thread(start, t) { |
| task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); |
| if (t != current && t->mm) { |
| sigaddset(&t->pending.signal, SIGKILL); |
| signal_wake_up(t, 1); |
| nr++; |
| } |
| } |
| |
| return nr; |
| } |
| |
| static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, |
| struct core_state *core_state, int exit_code) |
| { |
| struct task_struct *g, *p; |
| unsigned long flags; |
| int nr = -EAGAIN; |
| |
| spin_lock_irq(&tsk->sighand->siglock); |
| if (!signal_group_exit(tsk->signal)) { |
| mm->core_state = core_state; |
| tsk->signal->group_exit_task = tsk; |
| nr = zap_process(tsk, exit_code, 0); |
| clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
| } |
| spin_unlock_irq(&tsk->sighand->siglock); |
| if (unlikely(nr < 0)) |
| return nr; |
| |
| tsk->flags |= PF_DUMPCORE; |
| if (atomic_read(&mm->mm_users) == nr + 1) |
| goto done; |
| /* |
| * We should find and kill all tasks which use this mm, and we should |
| * count them correctly into ->nr_threads. We don't take tasklist |
| * lock, but this is safe wrt: |
| * |
| * fork: |
| * None of sub-threads can fork after zap_process(leader). All |
| * processes which were created before this point should be |
| * visible to zap_threads() because copy_process() adds the new |
| * process to the tail of init_task.tasks list, and lock/unlock |
| * of ->siglock provides a memory barrier. |
| * |
| * do_exit: |
| * The caller holds mm->mmap_lock. This means that the task which |
| * uses this mm can't pass exit_mm(), so it can't exit or clear |
| * its ->mm. |
| * |
| * de_thread: |
| * It does list_replace_rcu(&leader->tasks, ¤t->tasks), |
| * we must see either old or new leader, this does not matter. |
| * However, it can change p->sighand, so lock_task_sighand(p) |
| * must be used. Since p->mm != NULL and we hold ->mmap_lock |
| * it can't fail. |
| * |
| * Note also that "g" can be the old leader with ->mm == NULL |
| * and already unhashed and thus removed from ->thread_group. |
| * This is OK, __unhash_process()->list_del_rcu() does not |
| * clear the ->next pointer, we will find the new leader via |
| * next_thread(). |
| */ |
| rcu_read_lock(); |
| for_each_process(g) { |
| if (g == tsk->group_leader) |
| continue; |
| if (g->flags & PF_KTHREAD) |
| continue; |
| |
| for_each_thread(g, p) { |
| if (unlikely(!p->mm)) |
| continue; |
| if (unlikely(p->mm == mm)) { |
| lock_task_sighand(p, &flags); |
| nr += zap_process(p, exit_code, |
| SIGNAL_GROUP_EXIT); |
| unlock_task_sighand(p, &flags); |
| } |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| done: |
| atomic_set(&core_state->nr_threads, nr); |
| return nr; |
| } |
| |
| static int coredump_wait(int exit_code, struct core_state *core_state) |
| { |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->mm; |
| int core_waiters = -EBUSY; |
| |
| init_completion(&core_state->startup); |
| core_state->dumper.task = tsk; |
| core_state->dumper.next = NULL; |
| |
| if (mmap_write_lock_killable(mm)) |
| return -EINTR; |
| |
| if (!mm->core_state) |
| core_waiters = zap_threads(tsk, mm, core_state, exit_code); |
| mmap_write_unlock(mm); |
| |
| if (core_waiters > 0) { |
| struct core_thread *ptr; |
| |
| freezer_do_not_count(); |
| wait_for_completion(&core_state->startup); |
| freezer_count(); |
| /* |
| * Wait for all the threads to become inactive, so that |
| * all the thread context (extended register state, like |
| * fpu etc) gets copied to the memory. |
| */ |
| ptr = core_state->dumper.next; |
| while (ptr != NULL) { |
| wait_task_inactive(ptr->task, 0); |
| ptr = ptr->next; |
| } |
| } |
| |
| return core_waiters; |
| } |
| |
| static void coredump_finish(struct mm_struct *mm, bool core_dumped) |
| { |
| struct core_thread *curr, *next; |
| struct task_struct *task; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| if (core_dumped && !__fatal_signal_pending(current)) |
| current->signal->group_exit_code |= 0x80; |
| current->signal->group_exit_task = NULL; |
| current->signal->flags = SIGNAL_GROUP_EXIT; |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| next = mm->core_state->dumper.next; |
| while ((curr = next) != NULL) { |
| next = curr->next; |
| task = curr->task; |
| /* |
| * see exit_mm(), curr->task must not see |
| * ->task == NULL before we read ->next. |
| */ |
| smp_mb(); |
| curr->task = NULL; |
| wake_up_process(task); |
| } |
| |
| mm->core_state = NULL; |
| } |
| |
| static bool dump_interrupted(void) |
| { |
| /* |
| * SIGKILL or freezing() interrupt the coredumping. Perhaps we |
| * can do try_to_freeze() and check __fatal_signal_pending(), |
| * but then we need to teach dump_write() to restart and clear |
| * TIF_SIGPENDING. |
| */ |
| return signal_pending(current); |
| } |
| |
| static void wait_for_dump_helpers(struct file *file) |
| { |
| struct pipe_inode_info *pipe = file->private_data; |
| |
| pipe_lock(pipe); |
| pipe->readers++; |
| pipe->writers--; |
| wake_up_interruptible_sync(&pipe->rd_wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| pipe_unlock(pipe); |
| |
| /* |
| * We actually want wait_event_freezable() but then we need |
| * to clear TIF_SIGPENDING and improve dump_interrupted(). |
| */ |
| wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); |
| |
| pipe_lock(pipe); |
| pipe->readers--; |
| pipe->writers++; |
| pipe_unlock(pipe); |
| } |
| |
| /* |
| * umh_pipe_setup |
| * helper function to customize the process used |
| * to collect the core in userspace. Specifically |
| * it sets up a pipe and installs it as fd 0 (stdin) |
| * for the process. Returns 0 on success, or |
| * PTR_ERR on failure. |
| * Note that it also sets the core limit to 1. This |
| * is a special value that we use to trap recursive |
| * core dumps |
| */ |
| static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) |
| { |
| struct file *files[2]; |
| struct coredump_params *cp = (struct coredump_params *)info->data; |
| int err = create_pipe_files(files, 0); |
| if (err) |
| return err; |
| |
| cp->file = files[1]; |
| |
| err = replace_fd(0, files[0], 0); |
| fput(files[0]); |
| /* and disallow core files too */ |
| current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; |
| |
| return err; |
| } |
| |
| void do_coredump(const kernel_siginfo_t *siginfo) |
| { |
| struct core_state core_state; |
| struct core_name cn; |
| struct mm_struct *mm = current->mm; |
| struct linux_binfmt * binfmt; |
| const struct cred *old_cred; |
| struct cred *cred; |
| int retval = 0; |
| int ispipe; |
| size_t *argv = NULL; |
| int argc = 0; |
| /* require nonrelative corefile path and be extra careful */ |
| bool need_suid_safe = false; |
| bool core_dumped = false; |
| static atomic_t core_dump_count = ATOMIC_INIT(0); |
| struct coredump_params cprm = { |
| .siginfo = siginfo, |
| .regs = signal_pt_regs(), |
| .limit = rlimit(RLIMIT_CORE), |
| /* |
| * We must use the same mm->flags while dumping core to avoid |
| * inconsistency of bit flags, since this flag is not protected |
| * by any locks. |
| */ |
| .mm_flags = mm->flags, |
| }; |
| |
| audit_core_dumps(siginfo->si_signo); |
| |
| binfmt = mm->binfmt; |
| if (!binfmt || !binfmt->core_dump) |
| goto fail; |
| if (!__get_dumpable(cprm.mm_flags)) |
| goto fail; |
| |
| cred = prepare_creds(); |
| if (!cred) |
| goto fail; |
| /* |
| * We cannot trust fsuid as being the "true" uid of the process |
| * nor do we know its entire history. We only know it was tainted |
| * so we dump it as root in mode 2, and only into a controlled |
| * environment (pipe handler or fully qualified path). |
| */ |
| if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { |
| /* Setuid core dump mode */ |
| cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ |
| need_suid_safe = true; |
| } |
| |
| retval = coredump_wait(siginfo->si_signo, &core_state); |
| if (retval < 0) |
| goto fail_creds; |
| |
| old_cred = override_creds(cred); |
| |
| ispipe = format_corename(&cn, &cprm, &argv, &argc); |
| |
| if (ispipe) { |
| int argi; |
| int dump_count; |
| char **helper_argv; |
| struct subprocess_info *sub_info; |
| |
| if (ispipe < 0) { |
| printk(KERN_WARNING "format_corename failed\n"); |
| printk(KERN_WARNING "Aborting core\n"); |
| goto fail_unlock; |
| } |
| |
| if (cprm.limit == 1) { |
| /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. |
| * |
| * Normally core limits are irrelevant to pipes, since |
| * we're not writing to the file system, but we use |
| * cprm.limit of 1 here as a special value, this is a |
| * consistent way to catch recursive crashes. |
| * We can still crash if the core_pattern binary sets |
| * RLIM_CORE = !1, but it runs as root, and can do |
| * lots of stupid things. |
| * |
| * Note that we use task_tgid_vnr here to grab the pid |
| * of the process group leader. That way we get the |
| * right pid if a thread in a multi-threaded |
| * core_pattern process dies. |
| */ |
| printk(KERN_WARNING |
| "Process %d(%s) has RLIMIT_CORE set to 1\n", |
| task_tgid_vnr(current), current->comm); |
| printk(KERN_WARNING "Aborting core\n"); |
| goto fail_unlock; |
| } |
| cprm.limit = RLIM_INFINITY; |
| |
| dump_count = atomic_inc_return(&core_dump_count); |
| if (core_pipe_limit && (core_pipe_limit < dump_count)) { |
| printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", |
| task_tgid_vnr(current), current->comm); |
| printk(KERN_WARNING "Skipping core dump\n"); |
| goto fail_dropcount; |
| } |
| |
| helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), |
| GFP_KERNEL); |
| if (!helper_argv) { |
| printk(KERN_WARNING "%s failed to allocate memory\n", |
| __func__); |
| goto fail_dropcount; |
| } |
| for (argi = 0; argi < argc; argi++) |
| helper_argv[argi] = cn.corename + argv[argi]; |
| helper_argv[argi] = NULL; |
| |
| retval = -ENOMEM; |
| sub_info = call_usermodehelper_setup(helper_argv[0], |
| helper_argv, NULL, GFP_KERNEL, |
| umh_pipe_setup, NULL, &cprm); |
| if (sub_info) |
| retval = call_usermodehelper_exec(sub_info, |
| UMH_WAIT_EXEC); |
| |
| kfree(helper_argv); |
| if (retval) { |
| printk(KERN_INFO "Core dump to |%s pipe failed\n", |
| cn.corename); |
| goto close_fail; |
| } |
| } else { |
| struct inode *inode; |
| int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | |
| O_LARGEFILE | O_EXCL; |
| |
| if (cprm.limit < binfmt->min_coredump) |
| goto fail_unlock; |
| |
| if (need_suid_safe && cn.corename[0] != '/') { |
| printk(KERN_WARNING "Pid %d(%s) can only dump core "\ |
| "to fully qualified path!\n", |
| task_tgid_vnr(current), current->comm); |
| printk(KERN_WARNING "Skipping core dump\n"); |
| goto fail_unlock; |
| } |
| |
| /* |
| * Unlink the file if it exists unless this is a SUID |
| * binary - in that case, we're running around with root |
| * privs and don't want to unlink another user's coredump. |
| */ |
| if (!need_suid_safe) { |
| /* |
| * If it doesn't exist, that's fine. If there's some |
| * other problem, we'll catch it at the filp_open(). |
| */ |
| do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); |
| } |
| |
| /* |
| * There is a race between unlinking and creating the |
| * file, but if that causes an EEXIST here, that's |
| * fine - another process raced with us while creating |
| * the corefile, and the other process won. To userspace, |
| * what matters is that at least one of the two processes |
| * writes its coredump successfully, not which one. |
| */ |
| if (need_suid_safe) { |
| /* |
| * Using user namespaces, normal user tasks can change |
| * their current->fs->root to point to arbitrary |
| * directories. Since the intention of the "only dump |
| * with a fully qualified path" rule is to control where |
| * coredumps may be placed using root privileges, |
| * current->fs->root must not be used. Instead, use the |
| * root directory of init_task. |
| */ |
| struct path root; |
| |
| task_lock(&init_task); |
| get_fs_root(init_task.fs, &root); |
| task_unlock(&init_task); |
| cprm.file = file_open_root(root.dentry, root.mnt, |
| cn.corename, open_flags, 0600); |
| path_put(&root); |
| } else { |
| cprm.file = filp_open(cn.corename, open_flags, 0600); |
| } |
| if (IS_ERR(cprm.file)) |
| goto fail_unlock; |
| |
| inode = file_inode(cprm.file); |
| if (inode->i_nlink > 1) |
| goto close_fail; |
| if (d_unhashed(cprm.file->f_path.dentry)) |
| goto close_fail; |
| /* |
| * AK: actually i see no reason to not allow this for named |
| * pipes etc, but keep the previous behaviour for now. |
| */ |
| if (!S_ISREG(inode->i_mode)) |
| goto close_fail; |
| /* |
| * Don't dump core if the filesystem changed owner or mode |
| * of the file during file creation. This is an issue when |
| * a process dumps core while its cwd is e.g. on a vfat |
| * filesystem. |
| */ |
| if (!uid_eq(inode->i_uid, current_fsuid())) |
| goto close_fail; |
| if ((inode->i_mode & 0677) != 0600) |
| goto close_fail; |
| if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) |
| goto close_fail; |
| if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) |
| goto close_fail; |
| } |
| |
| /* get us an unshared descriptor table; almost always a no-op */ |
| retval = unshare_files(); |
| if (retval) |
| goto close_fail; |
| if (!dump_interrupted()) { |
| /* |
| * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would |
| * have this set to NULL. |
| */ |
| if (!cprm.file) { |
| pr_info("Core dump to |%s disabled\n", cn.corename); |
| goto close_fail; |
| } |
| file_start_write(cprm.file); |
| core_dumped = binfmt->core_dump(&cprm); |
| file_end_write(cprm.file); |
| } |
| if (ispipe && core_pipe_limit) |
| wait_for_dump_helpers(cprm.file); |
| close_fail: |
| if (cprm.file) |
| filp_close(cprm.file, NULL); |
| fail_dropcount: |
| if (ispipe) |
| atomic_dec(&core_dump_count); |
| fail_unlock: |
| kfree(argv); |
| kfree(cn.corename); |
| coredump_finish(mm, core_dumped); |
| revert_creds(old_cred); |
| fail_creds: |
| put_cred(cred); |
| fail: |
| return; |
| } |
| |
| /* |
| * Core dumping helper functions. These are the only things you should |
| * do on a core-file: use only these functions to write out all the |
| * necessary info. |
| */ |
| int dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| { |
| struct file *file = cprm->file; |
| loff_t pos = file->f_pos; |
| ssize_t n; |
| if (cprm->written + nr > cprm->limit) |
| return 0; |
| |
| |
| if (dump_interrupted()) |
| return 0; |
| n = __kernel_write(file, addr, nr, &pos); |
| if (n != nr) |
| return 0; |
| file->f_pos = pos; |
| cprm->written += n; |
| cprm->pos += n; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(dump_emit); |
| |
| int dump_skip(struct coredump_params *cprm, size_t nr) |
| { |
| static char zeroes[PAGE_SIZE]; |
| struct file *file = cprm->file; |
| if (file->f_op->llseek && file->f_op->llseek != no_llseek) { |
| if (dump_interrupted() || |
| file->f_op->llseek(file, nr, SEEK_CUR) < 0) |
| return 0; |
| cprm->pos += nr; |
| return 1; |
| } else { |
| while (nr > PAGE_SIZE) { |
| if (!dump_emit(cprm, zeroes, PAGE_SIZE)) |
| return 0; |
| nr -= PAGE_SIZE; |
| } |
| return dump_emit(cprm, zeroes, nr); |
| } |
| } |
| EXPORT_SYMBOL(dump_skip); |
| |
| #ifdef CONFIG_ELF_CORE |
| int dump_user_range(struct coredump_params *cprm, unsigned long start, |
| unsigned long len) |
| { |
| unsigned long addr; |
| |
| for (addr = start; addr < start + len; addr += PAGE_SIZE) { |
| struct page *page; |
| int stop; |
| |
| /* |
| * To avoid having to allocate page tables for virtual address |
| * ranges that have never been used yet, and also to make it |
| * easy to generate sparse core files, use a helper that returns |
| * NULL when encountering an empty page table entry that would |
| * otherwise have been filled with the zero page. |
| */ |
| page = get_dump_page(addr); |
| if (page) { |
| void *kaddr = kmap(page); |
| |
| stop = !dump_emit(cprm, kaddr, PAGE_SIZE); |
| kunmap(page); |
| put_page(page); |
| } else { |
| stop = !dump_skip(cprm, PAGE_SIZE); |
| } |
| if (stop) |
| return 0; |
| } |
| return 1; |
| } |
| #endif |
| |
| int dump_align(struct coredump_params *cprm, int align) |
| { |
| unsigned mod = cprm->pos & (align - 1); |
| if (align & (align - 1)) |
| return 0; |
| return mod ? dump_skip(cprm, align - mod) : 1; |
| } |
| EXPORT_SYMBOL(dump_align); |
| |
| /* |
| * Ensures that file size is big enough to contain the current file |
| * postion. This prevents gdb from complaining about a truncated file |
| * if the last "write" to the file was dump_skip. |
| */ |
| void dump_truncate(struct coredump_params *cprm) |
| { |
| struct file *file = cprm->file; |
| loff_t offset; |
| |
| if (file->f_op->llseek && file->f_op->llseek != no_llseek) { |
| offset = file->f_op->llseek(file, 0, SEEK_CUR); |
| if (i_size_read(file->f_mapping->host) < offset) |
| do_truncate(file->f_path.dentry, offset, 0, file); |
| } |
| } |
| EXPORT_SYMBOL(dump_truncate); |
| |
| /* |
| * The purpose of always_dump_vma() is to make sure that special kernel mappings |
| * that are useful for post-mortem analysis are included in every core dump. |
| * In that way we ensure that the core dump is fully interpretable later |
| * without matching up the same kernel and hardware config to see what PC values |
| * meant. These special mappings include - vDSO, vsyscall, and other |
| * architecture specific mappings |
| */ |
| static bool always_dump_vma(struct vm_area_struct *vma) |
| { |
| /* Any vsyscall mappings? */ |
| if (vma == get_gate_vma(vma->vm_mm)) |
| return true; |
| |
| /* |
| * Assume that all vmas with a .name op should always be dumped. |
| * If this changes, a new vm_ops field can easily be added. |
| */ |
| if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) |
| return true; |
| |
| /* |
| * arch_vma_name() returns non-NULL for special architecture mappings, |
| * such as vDSO sections. |
| */ |
| if (arch_vma_name(vma)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Decide how much of @vma's contents should be included in a core dump. |
| */ |
| static unsigned long vma_dump_size(struct vm_area_struct *vma, |
| unsigned long mm_flags) |
| { |
| #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
| |
| /* always dump the vdso and vsyscall sections */ |
| if (always_dump_vma(vma)) |
| goto whole; |
| |
| if (vma->vm_flags & VM_DONTDUMP) |
| return 0; |
| |
| /* support for DAX */ |
| if (vma_is_dax(vma)) { |
| if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) |
| goto whole; |
| if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Hugetlb memory check */ |
| if (is_vm_hugetlb_page(vma)) { |
| if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) |
| goto whole; |
| if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Do not dump I/O mapped devices or special mappings */ |
| if (vma->vm_flags & VM_IO) |
| return 0; |
| |
| /* By default, dump shared memory if mapped from an anonymous file. */ |
| if (vma->vm_flags & VM_SHARED) { |
| if (file_inode(vma->vm_file)->i_nlink == 0 ? |
| FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Dump segments that have been written to. */ |
| if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) |
| goto whole; |
| if (vma->vm_file == NULL) |
| return 0; |
| |
| if (FILTER(MAPPED_PRIVATE)) |
| goto whole; |
| |
| /* |
| * If this is the beginning of an executable file mapping, |
| * dump the first page to aid in determining what was mapped here. |
| */ |
| if (FILTER(ELF_HEADERS) && |
| vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) && |
| (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) |
| return PAGE_SIZE; |
| |
| #undef FILTER |
| |
| return 0; |
| |
| whole: |
| return vma->vm_end - vma->vm_start; |
| } |
| |
| static struct vm_area_struct *first_vma(struct task_struct *tsk, |
| struct vm_area_struct *gate_vma) |
| { |
| struct vm_area_struct *ret = tsk->mm->mmap; |
| |
| if (ret) |
| return ret; |
| return gate_vma; |
| } |
| |
| /* |
| * Helper function for iterating across a vma list. It ensures that the caller |
| * will visit `gate_vma' prior to terminating the search. |
| */ |
| static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, |
| struct vm_area_struct *gate_vma) |
| { |
| struct vm_area_struct *ret; |
| |
| ret = this_vma->vm_next; |
| if (ret) |
| return ret; |
| if (this_vma == gate_vma) |
| return NULL; |
| return gate_vma; |
| } |
| |
| /* |
| * Under the mmap_lock, take a snapshot of relevant information about the task's |
| * VMAs. |
| */ |
| int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count, |
| struct core_vma_metadata **vma_meta, |
| size_t *vma_data_size_ptr) |
| { |
| struct vm_area_struct *vma, *gate_vma; |
| struct mm_struct *mm = current->mm; |
| int i; |
| size_t vma_data_size = 0; |
| |
| /* |
| * Once the stack expansion code is fixed to not change VMA bounds |
| * under mmap_lock in read mode, this can be changed to take the |
| * mmap_lock in read mode. |
| */ |
| if (mmap_write_lock_killable(mm)) |
| return -EINTR; |
| |
| gate_vma = get_gate_vma(mm); |
| *vma_count = mm->map_count + (gate_vma ? 1 : 0); |
| |
| *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL); |
| if (!*vma_meta) { |
| mmap_write_unlock(mm); |
| return -ENOMEM; |
| } |
| |
| for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; |
| vma = next_vma(vma, gate_vma), i++) { |
| struct core_vma_metadata *m = (*vma_meta) + i; |
| |
| m->start = vma->vm_start; |
| m->end = vma->vm_end; |
| m->flags = vma->vm_flags; |
| m->dump_size = vma_dump_size(vma, cprm->mm_flags); |
| |
| vma_data_size += m->dump_size; |
| } |
| |
| mmap_write_unlock(mm); |
| |
| if (WARN_ON(i != *vma_count)) |
| return -EFAULT; |
| |
| *vma_data_size_ptr = vma_data_size; |
| return 0; |
| } |