blob: 41f684c970dcff7902d1159401fc369ebe97a791 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/log2.h>
#include <linux/math64.h>
#include "i915_reg.h"
#include "intel_cx0_phy.h"
#include "intel_cx0_phy_regs.h"
#include "intel_ddi.h"
#include "intel_ddi_buf_trans.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_hdmi.h"
#include "intel_panel.h"
#include "intel_psr.h"
#include "intel_tc.h"
#define MB_WRITE_COMMITTED true
#define MB_WRITE_UNCOMMITTED false
#define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
for ((__lane) = 0; (__lane) < 2; (__lane)++) \
for_each_if((__lane_mask) & BIT(__lane))
#define INTEL_CX0_LANE0 BIT(0)
#define INTEL_CX0_LANE1 BIT(1)
#define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
return true;
return false;
}
static int lane_mask_to_lane(u8 lane_mask)
{
if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
hweight8(lane_mask) != 1))
return 0;
return ilog2(lane_mask);
}
static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (!intel_tc_port_in_dp_alt_mode(dig_port))
return INTEL_CX0_BOTH_LANES;
/*
* In DP-alt with pin assignment D, only PHY lane 0 is owned
* by display and lane 1 is owned by USB.
*/
return intel_tc_port_max_lane_count(dig_port) > 2
? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
}
static void
assert_dc_off(struct drm_i915_private *i915)
{
bool enabled;
enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
drm_WARN_ON(&i915->drm, !enabled);
}
static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
{
int lane;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
intel_de_rmw(i915,
XELPDP_PORT_MSGBUS_TIMER(i915, encoder->port, lane),
XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
XELPDP_PORT_MSGBUS_TIMER_VAL);
}
/*
* Prepare HW for CX0 phy transactions.
*
* It is required that PSR and DC5/6 are disabled before any CX0 message
* bus transaction is executed.
*
* We also do the msgbus timer programming here to ensure that the timer
* is already programmed before any access to the msgbus.
*/
static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
{
intel_wakeref_t wakeref;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_pause(intel_dp);
wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
intel_cx0_program_msgbus_timer(encoder);
return wakeref;
}
static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_resume(intel_dp);
intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
}
static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
int lane)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, encoder->port, lane),
0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
}
static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_RESET);
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_RESET,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
return;
}
intel_clear_response_ready_flag(encoder, lane);
}
static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
int command, int lane, u32 *val)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
if (intel_de_wait_custom(i915,
XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane),
XELPDP_PORT_P2M_RESPONSE_READY,
XELPDP_PORT_P2M_RESPONSE_READY,
XELPDP_MSGBUS_TIMEOUT_FAST_US,
XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
phy_name(phy), *val);
if (!(intel_de_read(i915, XELPDP_PORT_MSGBUS_TIMER(i915, port, lane)) &
XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
drm_dbg_kms(&i915->drm,
"PHY %c Hardware did not detect a timeout\n",
phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
return -ETIMEDOUT;
}
if (*val & XELPDP_PORT_P2M_ERROR_SET) {
drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
intel_cx0_bus_reset(encoder, lane);
return -EINVAL;
}
if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
intel_cx0_bus_reset(encoder, lane);
return -EINVAL;
}
return 0;
}
static int __intel_cx0_read_once(struct intel_encoder *encoder,
int lane, u16 addr)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
int ack;
u32 val;
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
return -ETIMEDOUT;
}
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING |
XELPDP_PORT_M2P_COMMAND_READ |
XELPDP_PORT_M2P_ADDRESS(addr));
ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
if (ack < 0)
return ack;
intel_clear_response_ready_flag(encoder, lane);
/*
* FIXME: Workaround to let HW to settle
* down and let the message bus to end up
* in a known state
*/
intel_cx0_bus_reset(encoder, lane);
return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
}
static u8 __intel_cx0_read(struct intel_encoder *encoder,
int lane, u16 addr)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
int i, status;
assert_dc_off(i915);
/* 3 tries is assumed to be enough to read successfully */
for (i = 0; i < 3; i++) {
status = __intel_cx0_read_once(encoder, lane, addr);
if (status >= 0)
return status;
}
drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
phy_name(phy), addr, i);
return 0;
}
static u8 intel_cx0_read(struct intel_encoder *encoder,
u8 lane_mask, u16 addr)
{
int lane = lane_mask_to_lane(lane_mask);
return __intel_cx0_read(encoder, lane, addr);
}
static int __intel_cx0_write_once(struct intel_encoder *encoder,
int lane, u16 addr, u8 data, bool committed)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
int ack;
u32 val;
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
return -ETIMEDOUT;
}
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING |
(committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
XELPDP_PORT_M2P_DATA(data) |
XELPDP_PORT_M2P_ADDRESS(addr));
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
return -ETIMEDOUT;
}
if (committed) {
ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
if (ack < 0)
return ack;
} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane)) &
XELPDP_PORT_P2M_ERROR_SET)) {
drm_dbg_kms(&i915->drm,
"PHY %c Error occurred during write command.\n", phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
return -EINVAL;
}
intel_clear_response_ready_flag(encoder, lane);
/*
* FIXME: Workaround to let HW to settle
* down and let the message bus to end up
* in a known state
*/
intel_cx0_bus_reset(encoder, lane);
return 0;
}
static void __intel_cx0_write(struct intel_encoder *encoder,
int lane, u16 addr, u8 data, bool committed)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
int i, status;
assert_dc_off(i915);
/* 3 tries is assumed to be enough to write successfully */
for (i = 0; i < 3; i++) {
status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
if (status == 0)
return;
}
drm_err_once(&i915->drm,
"PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
}
static void intel_cx0_write(struct intel_encoder *encoder,
u8 lane_mask, u16 addr, u8 data, bool committed)
{
int lane;
for_each_cx0_lane_in_mask(lane_mask, lane)
__intel_cx0_write(encoder, lane, addr, data, committed);
}
static void intel_c20_sram_write(struct intel_encoder *encoder,
int lane, u16 addr, u16 data)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
assert_dc_off(i915);
intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
}
static u16 intel_c20_sram_read(struct intel_encoder *encoder,
int lane, u16 addr)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u16 val;
assert_dc_off(i915);
intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
val <<= 8;
val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
return val;
}
static void __intel_cx0_rmw(struct intel_encoder *encoder,
int lane, u16 addr, u8 clear, u8 set, bool committed)
{
u8 old, val;
old = __intel_cx0_read(encoder, lane, addr);
val = (old & ~clear) | set;
if (val != old)
__intel_cx0_write(encoder, lane, addr, val, committed);
}
static void intel_cx0_rmw(struct intel_encoder *encoder,
u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
{
u8 lane;
for_each_cx0_lane_in_mask(lane_mask, lane)
__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
}
static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
(crtc_state->port_clock == 540000 ||
crtc_state->port_clock == 810000))
return 5;
else
return 4;
} else {
return 5;
}
}
static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
(crtc_state->port_clock == 540000 ||
crtc_state->port_clock == 810000))
return 5;
else
return 2;
} else {
return 6;
}
}
void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_ddi_buf_trans *trans;
u8 owned_lane_mask;
intel_wakeref_t wakeref;
int n_entries, ln;
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
return;
owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
wakeref = intel_cx0_phy_transaction_begin(encoder);
trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
intel_cx0_phy_transaction_end(encoder, wakeref);
return;
}
if (intel_encoder_is_c10phy(encoder)) {
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
C10_CMN3_TXVBOOST_MASK,
C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
MB_WRITE_UNCOMMITTED);
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
C10_TX1_TERMCTL_MASK,
C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
MB_WRITE_COMMITTED);
}
for (ln = 0; ln < crtc_state->lane_count; ln++) {
int level = intel_ddi_level(encoder, crtc_state, ln);
int lane = ln / 2;
int tx = ln % 2;
u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
if (!(lane_mask & owned_lane_mask))
continue;
intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
MB_WRITE_COMMITTED);
intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
MB_WRITE_COMMITTED);
intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
MB_WRITE_COMMITTED);
}
/* Write Override enables in 0xD71 */
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
MB_WRITE_COMMITTED);
if (intel_encoder_is_c10phy(encoder))
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
intel_cx0_phy_transaction_end(encoder, wakeref);
}
/*
* Basic DP link rates with 38.4 MHz reference clock.
* Note: The tables below are with SSC. In non-ssc
* registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
* programmed 0.
*/
static const struct intel_c10pll_state mtl_c10_dp_rbr = {
.clock = 162000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x30,
.pll[3] = 0x1,
.pll[4] = 0x26,
.pll[5] = 0x0C,
.pll[6] = 0x98,
.pll[7] = 0x46,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r216 = {
.clock = 216000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xA2,
.pll[3] = 0x1,
.pll[4] = 0x33,
.pll[5] = 0x10,
.pll[6] = 0x75,
.pll[7] = 0xB3,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x85,
.pll[17] = 0x0F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r243 = {
.clock = 243000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0xDA,
.pll[3] = 0x1,
.pll[4] = 0x39,
.pll[5] = 0x12,
.pll[6] = 0xE3,
.pll[7] = 0xE9,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x20,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x85,
.pll[17] = 0x8F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
.clock = 270000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0xF8,
.pll[3] = 0x0,
.pll[4] = 0x20,
.pll[5] = 0x0A,
.pll[6] = 0x29,
.pll[7] = 0x10,
.pll[8] = 0x1, /* Verify */
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xA0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r324 = {
.clock = 324000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x30,
.pll[3] = 0x1,
.pll[4] = 0x26,
.pll[5] = 0x0C,
.pll[6] = 0x98,
.pll[7] = 0x46,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x85,
.pll[17] = 0x4F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r432 = {
.clock = 432000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xA2,
.pll[3] = 0x1,
.pll[4] = 0x33,
.pll[5] = 0x10,
.pll[6] = 0x75,
.pll[7] = 0xB3,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x85,
.pll[17] = 0x0F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
.clock = 540000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0xF8,
.pll[3] = 0,
.pll[4] = 0x20,
.pll[5] = 0x0A,
.pll[6] = 0x29,
.pll[7] = 0x10,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xA0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r675 = {
.clock = 675000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x3E,
.pll[3] = 0x1,
.pll[4] = 0xA8,
.pll[5] = 0x0C,
.pll[6] = 0x33,
.pll[7] = 0x54,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC8,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x85,
.pll[17] = 0x8F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
.clock = 810000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0x84,
.pll[3] = 0x1,
.pll[4] = 0x30,
.pll[5] = 0x0F,
.pll[6] = 0x3D,
.pll[7] = 0x98,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xF0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x84,
.pll[17] = 0x0F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
&mtl_c10_dp_rbr,
&mtl_c10_dp_hbr1,
&mtl_c10_dp_hbr2,
&mtl_c10_dp_hbr3,
NULL,
};
static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
&mtl_c10_dp_rbr,
&mtl_c10_edp_r216,
&mtl_c10_edp_r243,
&mtl_c10_dp_hbr1,
&mtl_c10_edp_r324,
&mtl_c10_edp_r432,
&mtl_c10_dp_hbr2,
&mtl_c10_edp_r675,
&mtl_c10_dp_hbr3,
NULL,
};
/* C20 basic DP 1.4 tables */
static const struct intel_c20pll_state mtl_c20_dp_rbr = {
.clock = 162000,
.tx = { 0xbe88, /* tx cfg0 */
0x5800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x50a8, /* mpllb cfg0 */
0x2120, /* mpllb cfg1 */
0xcd9a, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x5ab8, /* mpllb cfg4 */
0x4c34, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x6000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
.clock = 270000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x308c, /* mpllb cfg0 */
0x2110, /* mpllb cfg1 */
0xcc9c, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x4b9a, /* mpllb cfg4 */
0x3f81, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
.clock = 540000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x108c, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0xcc9c, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x4b9a, /* mpllb cfg4 */
0x3f81, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
.clock = 810000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x10d2, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0x8d98, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x7166, /* mpllb cfg4 */
0x5f42, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x7800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
/* C20 basic DP 2.0 tables */
static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
.clock = 1000000, /* 10 Gbps */
.tx = { 0xbe21, /* tx cfg0 */
0xe800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0700, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mplla = { 0x3104, /* mplla cfg0 */
0xd105, /* mplla cfg1 */
0xc025, /* mplla cfg2 */
0xc025, /* mplla cfg3 */
0x8c00, /* mplla cfg4 */
0x759a, /* mplla cfg5 */
0x4000, /* mplla cfg6 */
0x0003, /* mplla cfg7 */
0x3555, /* mplla cfg8 */
0x0001, /* mplla cfg9 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
.clock = 1350000, /* 13.5 Gbps */
.tx = { 0xbea0, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x015f, /* mpllb cfg0 */
0x2205, /* mpllb cfg1 */
0x1b17, /* mpllb cfg2 */
0xffc1, /* mpllb cfg3 */
0xe100, /* mpllb cfg4 */
0xbd00, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x4800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
.clock = 2000000, /* 20 Gbps */
.tx = { 0xbe20, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mplla = { 0x3104, /* mplla cfg0 */
0xd105, /* mplla cfg1 */
0xc025, /* mplla cfg2 */
0xc025, /* mplla cfg3 */
0xa6ab, /* mplla cfg4 */
0x8c00, /* mplla cfg5 */
0x4000, /* mplla cfg6 */
0x0003, /* mplla cfg7 */
0x3555, /* mplla cfg8 */
0x0001, /* mplla cfg9 */
},
};
static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
&mtl_c20_dp_rbr,
&mtl_c20_dp_hbr1,
&mtl_c20_dp_hbr2,
&mtl_c20_dp_hbr3,
&mtl_c20_dp_uhbr10,
&mtl_c20_dp_uhbr13_5,
&mtl_c20_dp_uhbr20,
NULL,
};
/*
* eDP link rates with 38.4 MHz reference clock.
*/
static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
.clock = 216000,
.tx = { 0xbe88,
0x4800,
0x0000,
},
.cmn = { 0x0500,
0x0005,
0x0000,
0x0000,
},
.mpllb = { 0x50e1,
0x2120,
0x8e18,
0xbfc1,
0x9000,
0x78f6,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
},
};
static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
.clock = 243000,
.tx = { 0xbe88,
0x4800,
0x0000,
},
.cmn = { 0x0500,
0x0005,
0x0000,
0x0000,
},
.mpllb = { 0x50fd,
0x2120,
0x8f18,
0xbfc1,
0xa200,
0x8814,
0x2000,
0x0001,
0x1000,
0x0000,
0x0000,
},
};
static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
.clock = 324000,
.tx = { 0xbe88,
0x4800,
0x0000,
},
.cmn = { 0x0500,
0x0005,
0x0000,
0x0000,
},
.mpllb = { 0x30a8,
0x2110,
0xcd9a,
0xbfc1,
0x6c00,
0x5ab8,
0x2000,
0x0001,
0x6000,
0x0000,
0x0000,
},
};
static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
.clock = 432000,
.tx = { 0xbe88,
0x4800,
0x0000,
},
.cmn = { 0x0500,
0x0005,
0x0000,
0x0000,
},
.mpllb = { 0x30e1,
0x2110,
0x8e18,
0xbfc1,
0x9000,
0x78f6,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
},
};
static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
.clock = 675000,
.tx = { 0xbe88,
0x4800,
0x0000,
},
.cmn = { 0x0500,
0x0005,
0x0000,
0x0000,
},
.mpllb = { 0x10af,
0x2108,
0xce1a,
0xbfc1,
0x7080,
0x5e80,
0x2000,
0x0001,
0x6400,
0x0000,
0x0000,
},
};
static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
&mtl_c20_dp_rbr,
&xe2hpd_c20_edp_r216,
&xe2hpd_c20_edp_r243,
&mtl_c20_dp_hbr1,
&xe2hpd_c20_edp_r324,
&xe2hpd_c20_edp_r432,
&mtl_c20_dp_hbr2,
&xe2hpd_c20_edp_r675,
&mtl_c20_dp_hbr3,
NULL,
};
static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
.clock = 1350000, /* 13.5 Gbps */
.tx = { 0xbea0, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x015f, /* mpllb cfg0 */
0x2205, /* mpllb cfg1 */
0x1b17, /* mpllb cfg2 */
0xffc1, /* mpllb cfg3 */
0xbd00, /* mpllb cfg4 */
0x9ec3, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x4800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
&mtl_c20_dp_rbr,
&mtl_c20_dp_hbr1,
&mtl_c20_dp_hbr2,
&mtl_c20_dp_hbr3,
&mtl_c20_dp_uhbr10,
&xe2hpd_c20_dp_uhbr13_5,
NULL,
};
/*
* HDMI link rates with 38.4 MHz reference clock.
*/
static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
.clock = 25200,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xB2,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xD,
.pll[16] = 0x6,
.pll[17] = 0x8F,
.pll[18] = 0x84,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
.clock = 27000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0xC0,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x80,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xD,
.pll[16] = 0x6,
.pll[17] = 0xCF,
.pll[18] = 0x84,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
.clock = 74250,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xB,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
.clock = 148500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xA,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
.clock = 594000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x8,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
/* Precomputed C10 HDMI PLL tables */
static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
.clock = 27027,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
.clock = 28320,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
.clock = 30240,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
.clock = 31500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
.clock = 36000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
.clock = 40000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
.clock = 49500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
.clock = 50000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
.clock = 57284,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
.clock = 58000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
.clock = 65000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
.clock = 71000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
.clock = 74176,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
.clock = 75000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
.clock = 78750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
.clock = 85500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
.clock = 88750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
.clock = 106500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
.clock = 108000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
.clock = 115500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
.clock = 119000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
.clock = 135000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
.clock = 138500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
.clock = 147160,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
.clock = 148352,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
.clock = 154000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
.clock = 162000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
.clock = 167000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
.clock = 197802,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
.clock = 198000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
.clock = 209800,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
.clock = 241500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
.clock = 262750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
.clock = 268500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
.clock = 296703,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
.clock = 297000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
.clock = 319750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
.clock = 497750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
.clock = 592000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
.clock = 593407,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
&mtl_c10_hdmi_25_2, /* Consolidated Table */
&mtl_c10_hdmi_27_0, /* Consolidated Table */
&mtl_c10_hdmi_27027,
&mtl_c10_hdmi_28320,
&mtl_c10_hdmi_30240,
&mtl_c10_hdmi_31500,
&mtl_c10_hdmi_36000,
&mtl_c10_hdmi_40000,
&mtl_c10_hdmi_49500,
&mtl_c10_hdmi_50000,
&mtl_c10_hdmi_57284,
&mtl_c10_hdmi_58000,
&mtl_c10_hdmi_65000,
&mtl_c10_hdmi_71000,
&mtl_c10_hdmi_74176,
&mtl_c10_hdmi_74_25, /* Consolidated Table */
&mtl_c10_hdmi_75000,
&mtl_c10_hdmi_78750,
&mtl_c10_hdmi_85500,
&mtl_c10_hdmi_88750,
&mtl_c10_hdmi_106500,
&mtl_c10_hdmi_108000,
&mtl_c10_hdmi_115500,
&mtl_c10_hdmi_119000,
&mtl_c10_hdmi_135000,
&mtl_c10_hdmi_138500,
&mtl_c10_hdmi_147160,
&mtl_c10_hdmi_148352,
&mtl_c10_hdmi_148_5, /* Consolidated Table */
&mtl_c10_hdmi_154000,
&mtl_c10_hdmi_162000,
&mtl_c10_hdmi_167000,
&mtl_c10_hdmi_197802,
&mtl_c10_hdmi_198000,
&mtl_c10_hdmi_209800,
&mtl_c10_hdmi_241500,
&mtl_c10_hdmi_262750,
&mtl_c10_hdmi_268500,
&mtl_c10_hdmi_296703,
&mtl_c10_hdmi_297000,
&mtl_c10_hdmi_319750,
&mtl_c10_hdmi_497750,
&mtl_c10_hdmi_592000,
&mtl_c10_hdmi_593407,
&mtl_c10_hdmi_594, /* Consolidated Table */
NULL,
};
static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
.clock = 25175,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0xa0d2, /* mpllb cfg0 */
0x7d80, /* mpllb cfg1 */
0x0906, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x0200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x0000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
.clock = 27000,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0xa0e0, /* mpllb cfg0 */
0x7d80, /* mpllb cfg1 */
0x0906, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x8000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
.clock = 74250,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x609a, /* mpllb cfg0 */
0x7d40, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
.clock = 148500,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x409a, /* mpllb cfg0 */
0x7d20, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
.clock = 594000,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x009a, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
.clock = 3000000,
.tx = { 0xbe98, /* tx cfg0 */
0x8800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x309c, /* mpllb cfg0 */
0x2110, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x2000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
.clock = 6000000,
.tx = { 0xbe98, /* tx cfg0 */
0x8800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x109c, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x2000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
.clock = 8000000,
.tx = { 0xbe98, /* tx cfg0 */
0x8800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x10d0, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0x4a06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0003, /* mpllb cfg7 */
0x2aaa, /* mpllb cfg8 */
0x0002, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
.clock = 10000000,
.tx = { 0xbe98, /* tx cfg0 */
0x8800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x1104, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0x0a06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0003, /* mpllb cfg7 */
0x3555, /* mpllb cfg8 */
0x0001, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
.clock = 12000000,
.tx = { 0xbe98, /* tx cfg0 */
0x8800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x1138, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0x5486, /* mpllb cfg2 */
0xfe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x4000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
&mtl_c20_hdmi_25_175,
&mtl_c20_hdmi_27_0,
&mtl_c20_hdmi_74_25,
&mtl_c20_hdmi_148_5,
&mtl_c20_hdmi_594,
&mtl_c20_hdmi_300,
&mtl_c20_hdmi_600,
&mtl_c20_hdmi_800,
&mtl_c20_hdmi_1000,
&mtl_c20_hdmi_1200,
NULL,
};
static int intel_c10_phy_check_hdmi_link_rate(int clock)
{
const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
int i;
for (i = 0; tables[i]; i++) {
if (clock == tables[i]->clock)
return MODE_OK;
}
return MODE_CLOCK_RANGE;
}
static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
return mtl_c10_edp_tables;
else
return mtl_c10_dp_tables;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
return mtl_c10_hdmi_tables;
}
MISSING_CASE(encoder->type);
return NULL;
}
static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
int i;
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (intel_panel_use_ssc(i915)) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
pll_state->ssc_enabled =
(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
}
}
if (pll_state->ssc_enabled)
return;
drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
for (i = 4; i < 9; i++)
pll_state->c10.pll[i] = 0;
}
static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c10pll_state * const *tables;
int i;
tables = intel_c10pll_tables_get(crtc_state, encoder);
if (!tables)
return -EINVAL;
for (i = 0; tables[i]; i++) {
if (crtc_state->port_clock == tables[i]->clock) {
crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
intel_c10pll_update_pll(crtc_state, encoder);
crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
return 0;
}
}
return -EINVAL;
}
static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
struct intel_c10pll_state *pll_state)
{
u8 lane = INTEL_CX0_LANE0;
intel_wakeref_t wakeref;
int i;
wakeref = intel_cx0_phy_transaction_begin(encoder);
/*
* According to C10 VDR Register programming Sequence we need
* to do this to read PHY internal registers from MsgBus.
*/
intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
intel_cx0_phy_transaction_end(encoder, wakeref);
}
static void intel_c10_pll_program(struct drm_i915_private *i915,
const struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
int i;
intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
/* Custom width needs to be programmed to 0 for both the phy lanes */
intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
MB_WRITE_COMMITTED);
intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
/* Program the pll values only for the master lane */
for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
pll_state->pll[i],
(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
}
static void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
const struct intel_c10pll_state *hw_state)
{
bool fracen;
int i;
unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
unsigned int multiplier, tx_clk_div;
fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
str_yes_no(fracen));
if (fracen) {
frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13];
frac_den = hw_state->pll[10] << 8 | hw_state->pll[9];
drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
frac_quot, frac_rem, frac_den);
}
multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
hw_state->pll[2]) / 2 + 16;
tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
drm_dbg_kms(&i915->drm,
"multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
}
static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
{
u64 datarate;
u64 mpll_tx_clk_div;
u64 vco_freq_shift;
u64 vco_freq;
u64 multiplier;
u64 mpll_multiplier;
u64 mpll_fracn_quot;
u64 mpll_fracn_rem;
u8 mpllb_ana_freq_vco;
u8 mpll_div_multiplier;
if (pixel_clock < 25175 || pixel_clock > 600000)
return -EINVAL;
datarate = ((u64)pixel_clock * 1000) * 10;
mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
vco_freq = (datarate << vco_freq_shift) >> 8;
multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
mpll_multiplier = 2 * (multiplier >> 32);
mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
mpll_fracn_rem = multiplier & 0xFFFF;
mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
datarate), 255);
if (vco_freq <= DATARATE_3000000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
else if (vco_freq <= DATARATE_3500000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
else if (vco_freq <= DATARATE_4000000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
else
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
pll_state->clock = pixel_clock;
pll_state->tx[0] = 0xbe88;
pll_state->tx[1] = 0x9800;
pll_state->tx[2] = 0x0000;
pll_state->cmn[0] = 0x0500;
pll_state->cmn[1] = 0x0005;
pll_state->cmn[2] = 0x0000;
pll_state->cmn[3] = 0x0000;
pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
MPLL_MULTIPLIER(mpll_multiplier));
pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) |
WORD_CLK_DIV |
MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
CP_PROP(CP_PROP_20) |
CP_INT(CP_INT_6));
pll_state->mpllb[3] = (V2I(V2I_2) |
CP_PROP_GS(CP_PROP_GS_30) |
CP_INT_GS(CP_INT_GS_28));
pll_state->mpllb[4] = 0x0000;
pll_state->mpllb[5] = 0x0000;
pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
pll_state->mpllb[7] = MPLL_FRACN_DEN;
pll_state->mpllb[8] = mpll_fracn_quot;
pll_state->mpllb[9] = mpll_fracn_rem;
pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1);
return 0;
}
static int intel_c20_phy_check_hdmi_link_rate(int clock)
{
const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
int i;
for (i = 0; tables[i]; i++) {
if (clock == tables[i]->clock)
return MODE_OK;
}
if (clock >= 25175 && clock <= 594000)
return MODE_OK;
return MODE_CLOCK_RANGE;
}
int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
{
struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
if (intel_encoder_is_c10phy(&dig_port->base))
return intel_c10_phy_check_hdmi_link_rate(clock);
return intel_c20_phy_check_hdmi_link_rate(clock);
}
static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
return xe2hpd_c20_edp_tables;
if (DISPLAY_VER_FULL(i915) == IP_VER(14, 1))
return xe2hpd_c20_dp_tables;
else
return mtl_c20_dp_tables;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
return mtl_c20_hdmi_tables;
}
MISSING_CASE(encoder->type);
return NULL;
}
static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c20pll_state * const *tables;
int i;
/* try computed C20 HDMI tables before using consolidated tables */
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
&crtc_state->dpll_hw_state.cx0pll.c20) == 0)
return 0;
}
tables = intel_c20_pll_tables_get(crtc_state, encoder);
if (!tables)
return -EINVAL;
for (i = 0; tables[i]; i++) {
if (crtc_state->port_clock == tables[i]->clock) {
crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
return 0;
}
}
return -EINVAL;
}
int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
if (intel_encoder_is_c10phy(encoder))
return intel_c10pll_calc_state(crtc_state, encoder);
return intel_c20pll_calc_state(crtc_state, encoder);
}
static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
{
return state->tx[0] & C20_PHY_USE_MPLLB;
}
static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
const struct intel_c20pll_state *pll_state)
{
unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
unsigned int multiplier, refclk = 38400;
unsigned int tx_clk_div;
unsigned int ref_clk_mpllb_div;
unsigned int fb_clk_div4_en;
unsigned int ref, vco;
unsigned int tx_rate_mult;
unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
if (intel_c20phy_use_mpllb(pll_state)) {
tx_rate_mult = 1;
frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
frac_quot = pll_state->mpllb[8];
frac_rem = pll_state->mpllb[9];
frac_den = pll_state->mpllb[7];
multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
fb_clk_div4_en = 0;
} else {
tx_rate_mult = 2;
frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
frac_quot = pll_state->mplla[8];
frac_rem = pll_state->mplla[9];
frac_den = pll_state->mplla[7];
multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
}
if (frac_en)
frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
else
frac = 0;
ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
}
static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
struct intel_c20pll_state *pll_state)
{
bool cntx;
intel_wakeref_t wakeref;
int i;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
wakeref = intel_cx0_phy_transaction_begin(encoder);
/* 1. Read current context selection */
cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
/* Read Tx configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
if (cntx)
pll_state->tx[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_B_TX_CNTX_CFG(i915, i));
else
pll_state->tx[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_A_TX_CNTX_CFG(i915, i));
}
/* Read common configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
if (cntx)
pll_state->cmn[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_B_CMN_CNTX_CFG(i915, i));
else
pll_state->cmn[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_A_CMN_CNTX_CFG(i915, i));
}
if (intel_c20phy_use_mpllb(pll_state)) {
/* MPLLB configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
if (cntx)
pll_state->mpllb[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_B_MPLLB_CNTX_CFG(i915, i));
else
pll_state->mpllb[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_A_MPLLB_CNTX_CFG(i915, i));
}
} else {
/* MPLLA configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
if (cntx)
pll_state->mplla[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_B_MPLLA_CNTX_CFG(i915, i));
else
pll_state->mplla[i] = intel_c20_sram_read(encoder,
INTEL_CX0_LANE0,
PHY_C20_A_MPLLA_CNTX_CFG(i915, i));
}
}
pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
intel_cx0_phy_transaction_end(encoder, wakeref);
}
static void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
const struct intel_c20pll_state *hw_state)
{
int i;
drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
if (intel_c20phy_use_mpllb(hw_state)) {
for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
} else {
for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
}
}
void intel_cx0pll_dump_hw_state(struct drm_i915_private *i915,
const struct intel_cx0pll_state *hw_state)
{
if (hw_state->use_c10)
intel_c10pll_dump_hw_state(i915, &hw_state->c10);
else
intel_c20pll_dump_hw_state(i915, &hw_state->c20);
}
static u8 intel_c20_get_dp_rate(u32 clock)
{
switch (clock) {
case 162000: /* 1.62 Gbps DP1.4 */
return 0;
case 270000: /* 2.7 Gbps DP1.4 */
return 1;
case 540000: /* 5.4 Gbps DP 1.4 */
return 2;
case 810000: /* 8.1 Gbps DP1.4 */
return 3;
case 216000: /* 2.16 Gbps eDP */
return 4;
case 243000: /* 2.43 Gbps eDP */
return 5;
case 324000: /* 3.24 Gbps eDP */
return 6;
case 432000: /* 4.32 Gbps eDP */
return 7;
case 1000000: /* 10 Gbps DP2.0 */
return 8;
case 1350000: /* 13.5 Gbps DP2.0 */
return 9;
case 2000000: /* 20 Gbps DP2.0 */
return 10;
case 648000: /* 6.48 Gbps eDP*/
return 11;
case 675000: /* 6.75 Gbps eDP*/
return 12;
default:
MISSING_CASE(clock);
return 0;
}
}
static u8 intel_c20_get_hdmi_rate(u32 clock)
{
if (clock >= 25175 && clock <= 600000)
return 0;
switch (clock) {
case 300000: /* 3 Gbps */
case 600000: /* 6 Gbps */
case 1200000: /* 12 Gbps */
return 1;
case 800000: /* 8 Gbps */
return 2;
case 1000000: /* 10 Gbps */
return 3;
default:
MISSING_CASE(clock);
return 0;
}
}
static bool is_dp2(u32 clock)
{
/* DP2.0 clock rates */
if (clock == 1000000 || clock == 1350000 || clock == 2000000)
return true;
return false;
}
static bool is_hdmi_frl(u32 clock)
{
switch (clock) {
case 300000: /* 3 Gbps */
case 600000: /* 6 Gbps */
case 800000: /* 8 Gbps */
case 1000000: /* 10 Gbps */
case 1200000: /* 12 Gbps */
return true;
default:
return false;
}
}
static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
/* banks should not be cleared for DPALT/USB4/TBT modes */
/* TODO: optimize re-calibration in legacy mode */
return intel_tc_port_in_legacy_mode(intel_dig_port);
}
static int intel_get_c20_custom_width(u32 clock, bool dp)
{
if (dp && is_dp2(clock))
return 2;
else if (is_hdmi_frl(clock))
return 1;
else
return 0;
}
static void intel_c20_pll_program(struct drm_i915_private *i915,
const struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
bool dp = false;
u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
u32 clock = crtc_state->port_clock;
bool cntx;
int i;
if (intel_crtc_has_dp_encoder(crtc_state))
dp = true;
/* 1. Read current context selection */
cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
/*
* 2. If there is a protocol switch from HDMI to DP or vice versa, clear
* the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
* Protocol switch is only applicable for MPLLA
*/
if (intel_c20_protocol_switch_valid(encoder)) {
for (i = 0; i < 4; i++)
intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
usleep_range(4000, 4100);
}
/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
/* 3.1 Tx configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
if (cntx)
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_A_TX_CNTX_CFG(i915, i),
pll_state->tx[i]);
else
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_B_TX_CNTX_CFG(i915, i),
pll_state->tx[i]);
}
/* 3.2 common configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
if (cntx)
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_A_CMN_CNTX_CFG(i915, i),
pll_state->cmn[i]);
else
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_B_CMN_CNTX_CFG(i915, i),
pll_state->cmn[i]);
}
/* 3.3 mpllb or mplla configuration */
if (intel_c20phy_use_mpllb(pll_state)) {
for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
if (cntx)
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_A_MPLLB_CNTX_CFG(i915, i),
pll_state->mpllb[i]);
else
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_B_MPLLB_CNTX_CFG(i915, i),
pll_state->mpllb[i]);
}
} else {
for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
if (cntx)
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_A_MPLLA_CNTX_CFG(i915, i),
pll_state->mplla[i]);
else
intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
PHY_C20_B_MPLLA_CNTX_CFG(i915, i),
pll_state->mplla[i]);
}
}
/* 4. Program custom width to match the link protocol */
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
PHY_C20_CUSTOM_WIDTH_MASK,
PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
MB_WRITE_COMMITTED);
/* 5. For DP or 6. For HDMI */
if (dp) {
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
MB_WRITE_COMMITTED);
} else {
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
is_hdmi_frl(clock) ? BIT(7) : 0,
MB_WRITE_COMMITTED);
intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
intel_c20_get_hdmi_rate(clock),
MB_WRITE_COMMITTED);
}
/*
* 7. Write Vendor specific registers to toggle context setting to load
* the updated programming toggle context bit
*/
intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
}
static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
const struct intel_c10pll_state *pll_state)
{
unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
int tmpclk = 0;
if (pll_state->pll[0] & C10_PLL0_FRACEN) {
frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13];
frac_den = pll_state->pll[10] << 8 | pll_state->pll[9];
}
multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
pll_state->pll[2]) / 2 + 16;
tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
10 << (tx_clk_div + 16));
tmpclk *= (hdmi_div ? 2 : 1);
return tmpclk;
}
static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
bool lane_reversal)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u32 val = 0;
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(i915, encoder->port),
XELPDP_PORT_REVERSAL,
lane_reversal ? XELPDP_PORT_REVERSAL : 0);
if (lane_reversal)
val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
val |= XELPDP_FORWARD_CLOCK_UNGATE;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
is_hdmi_frl(crtc_state->port_clock))
val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
else
val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
/* TODO: HDMI FRL */
/* DP2.0 10G and 20G rates enable MPLLA*/
if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
else
val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
XELPDP_SSC_ENABLE_PLLB, val);
}
static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
return val;
}
static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
return val;
}
static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
u8 lane_mask, u8 state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(i915, port);
int lane;
intel_de_rmw(i915, buf_ctl2_reg,
intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
intel_cx0_get_powerdown_state(lane_mask, state));
/* Wait for pending transactions.*/
for_each_cx0_lane_in_mask(lane_mask, lane)
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
phy_name(phy));
intel_cx0_bus_reset(encoder, lane);
}
intel_de_rmw(i915, buf_ctl2_reg,
intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
intel_cx0_get_powerdown_update(lane_mask));
/* Update Timeout Value */
if (intel_de_wait_custom(i915, buf_ctl2_reg,
intel_cx0_get_powerdown_update(lane_mask), 0,
XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
}
static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port),
XELPDP_POWER_STATE_READY_MASK,
XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(i915, port),
XELPDP_POWER_STATE_ACTIVE_MASK |
XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
XELPDP_PLL_LANE_STAGGERING_DELAY(0));
}
static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
return val;
}
static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
return val;
}
static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
bool lane_reversal)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum phy phy = intel_encoder_to_phy(encoder);
u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
: XELPDP_LANE_PIPE_RESET(0);
u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
XELPDP_LANE_PHY_CURRENT_STATUS(1))
: XELPDP_LANE_PHY_CURRENT_STATUS(0);
if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL1(i915, port),
XELPDP_PORT_BUF_SOC_PHY_READY,
XELPDP_PORT_BUF_SOC_PHY_READY,
XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset,
lane_pipe_reset);
if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL2(i915, port),
lane_phy_current_status, lane_phy_current_status,
XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
intel_cx0_get_pclk_refclk_request(owned_lane_mask),
intel_cx0_get_pclk_refclk_request(lane_mask));
if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
intel_cx0_get_pclk_refclk_ack(lane_mask),
XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
CX0_P2_STATE_RESET);
intel_cx0_setup_powerdown(encoder);
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, 0);
if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(i915, port),
lane_phy_current_status,
XELPDP_PORT_RESET_END_TIMEOUT))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
}
static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
struct intel_encoder *encoder, int lane_count,
bool lane_reversal)
{
int i;
u8 disables;
bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
if (intel_encoder_is_c10phy(encoder))
intel_cx0_rmw(encoder, owned_lane_mask,
PHY_C10_VDR_CONTROL(1), 0,
C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
if (lane_reversal)
disables = REG_GENMASK8(3, 0) >> lane_count;
else
disables = REG_GENMASK8(3, 0) << lane_count;
if (dp_alt_mode && lane_count == 1) {
disables &= ~REG_GENMASK8(1, 0);
disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
}
for (i = 0; i < 4; i++) {
int tx = i % 2 + 1;
u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
if (!(owned_lane_mask & lane_mask))
continue;
intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
CONTROL2_DISABLE_SINGLE_TX,
disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
MB_WRITE_COMMITTED);
}
if (intel_encoder_is_c10phy(encoder))
intel_cx0_rmw(encoder, owned_lane_mask,
PHY_C10_VDR_CONTROL(1), 0,
C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
}
static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
return val;
}
static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
return val;
}
static void intel_cx0pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
INTEL_CX0_LANE0;
intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
/*
* 1. Program PORT_CLOCK_CTL REGISTER to configure
* clock muxes, gating and SSC
*/
intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
/* 2. Bring PHY out of reset. */
intel_cx0_phy_lane_reset(encoder, lane_reversal);
/*
* 3. Change Phy power state to Ready.
* TODO: For DP alt mode use only one lane.
*/
intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
CX0_P2_STATE_READY);
/*
* 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
* (This is done inside intel_cx0_phy_transaction_begin(), since we would need
* the right timer thresholds for readouts too.)
*/
/* 5. Program PHY internal PLL internal registers. */
if (intel_encoder_is_c10phy(encoder))
intel_c10_pll_program(i915, crtc_state, encoder);
else
intel_c20_pll_program(i915, crtc_state, encoder);
/*
* 6. Program the enabled and disabled owned PHY lane
* transmitters over message bus
*/
intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
/*
* 7. Follow the Display Voltage Frequency Switching - Sequence
* Before Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 8. Program DDI_CLK_VALFREQ to match intended DDI
* clock frequency.
*/
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
crtc_state->port_clock);
/*
* 9. Set PORT_CLOCK_CTL register PCLK PLL Request
* LN<Lane for maxPCLK> to "1" to enable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
intel_cx0_get_pclk_pll_request(maxpclk_lane));
/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
intel_cx0_get_pclk_pll_ack(maxpclk_lane),
XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
/*
* 11. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/* TODO: enable TBT-ALT mode */
intel_cx0_phy_transaction_end(encoder, wakeref);
}
int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u32 clock;
u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
switch (clock) {
case XELPDP_DDI_CLOCK_SELECT_TBT_162:
return 162000;
case XELPDP_DDI_CLOCK_SELECT_TBT_270:
return 270000;
case XELPDP_DDI_CLOCK_SELECT_TBT_540:
return 540000;
case XELPDP_DDI_CLOCK_SELECT_TBT_810:
return 810000;
default:
MISSING_CASE(clock);
return 162000;
}
}
static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
{
switch (clock) {
case 162000:
return XELPDP_DDI_CLOCK_SELECT_TBT_162;
case 270000:
return XELPDP_DDI_CLOCK_SELECT_TBT_270;
case 540000:
return XELPDP_DDI_CLOCK_SELECT_TBT_540;
case 810000:
return XELPDP_DDI_CLOCK_SELECT_TBT_810;
default:
MISSING_CASE(clock);
return XELPDP_DDI_CLOCK_SELECT_TBT_162;
}
}
static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
u32 val = 0;
/*
* 1. Program PORT_CLOCK_CTL REGISTER to configure
* clock muxes, gating and SSC
*/
val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
val |= XELPDP_FORWARD_CLOCK_UNGATE;
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
/* 2. Read back PORT_CLOCK_CTL REGISTER */
val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
/*
* 3. Follow the Display Voltage Frequency Switching - Sequence
* Before Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
*/
val |= XELPDP_TBT_CLOCK_REQUEST;
intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), val);
/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_TBT_CLOCK_ACK,
XELPDP_TBT_CLOCK_ACK,
100, 0, NULL))
drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
encoder->base.base.id, encoder->base.name, phy_name(phy));
/*
* 6. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 7. Program DDI_CLK_VALFREQ to match intended DDI
* clock frequency.
*/
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
crtc_state->port_clock);
}
void intel_mtl_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
intel_mtl_tbt_pll_enable(encoder, crtc_state);
else
intel_cx0pll_enable(encoder, crtc_state);
}
static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
if (intel_encoder_is_c10phy(encoder))
return CX0_P2PG_STATE_DISABLE;
if (IS_BATTLEMAGE(i915) && encoder->port == PORT_A)
return CX0_P2PG_STATE_DISABLE;
return CX0_P4PG_STATE_DISABLE;
}
static void intel_cx0pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
/* 1. Change owned PHY lane power to Disable state. */
intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
cx0_power_control_disable_val(encoder));
/*
* 2. Follow the Display Voltage Frequency Switching Sequence Before
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
* to "0" to disable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
/* 4. Program DDI_CLK_VALFREQ to 0. */
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
/*
* 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
*/
if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
/*
* 6. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK, 0);
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_FORWARD_CLOCK_UNGATE, 0);
intel_cx0_phy_transaction_end(encoder, wakeref);
}
static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_encoder_to_phy(encoder);
/*
* 1. Follow the Display Voltage Frequency Switching Sequence Before
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_TBT_CLOCK_REQUEST, 0);
/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
encoder->base.base.id, encoder->base.name, phy_name(phy));
/*
* 4. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 5. Program PORT CLOCK CTRL register to disable and gate clocks
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK |
XELPDP_FORWARD_CLOCK_UNGATE, 0);
/* 6. Program DDI_CLK_VALFREQ to 0. */
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
}
void intel_mtl_pll_disable(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
intel_mtl_tbt_pll_disable(encoder);
else
intel_cx0pll_disable(encoder);
}
enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
/*
* TODO: Determine the PLL type from the SW state, once MTL PLL
* handling is done via the standard shared DPLL framework.
*/
u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
return ICL_PORT_DPLL_MG_PHY;
else
return ICL_PORT_DPLL_DEFAULT;
}
static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder,
struct intel_c10pll_state *mpllb_hw_state)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
int i;
for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
u8 expected = mpllb_sw_state->pll[i];
I915_STATE_WARN(i915, mpllb_hw_state->pll[i] != expected,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name, i,
expected, mpllb_hw_state->pll[i]);
}
I915_STATE_WARN(i915, mpllb_hw_state->tx != mpllb_sw_state->tx,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name,
mpllb_sw_state->tx, mpllb_hw_state->tx);
I915_STATE_WARN(i915, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name,
mpllb_sw_state->cmn, mpllb_hw_state->cmn);
}
void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
struct intel_cx0pll_state *pll_state)
{
pll_state->use_c10 = false;
if (intel_encoder_is_c10phy(encoder)) {
intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
pll_state->use_c10 = true;
} else {
intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
}
}
static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
const struct intel_c10pll_state *b)
{
if (a->tx != b->tx)
return false;
if (a->cmn != b->cmn)
return false;
if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
return false;
return true;
}
static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
const struct intel_c20pll_state *b)
{
if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
return false;
if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
return false;
if (a->tx[0] & C20_PHY_USE_MPLLB) {
if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
return false;
} else {
if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
return false;
}
return true;
}
bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
const struct intel_cx0pll_state *b)
{
if (a->use_c10 != b->use_c10)
return false;
if (a->use_c10)
return mtl_compare_hw_state_c10(&a->c10,
&b->c10);
else
return mtl_compare_hw_state_c20(&a->c20,
&b->c20);
}
int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
const struct intel_cx0pll_state *pll_state)
{
if (intel_encoder_is_c10phy(encoder))
return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
}
static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder,
struct intel_c20pll_state *mpll_hw_state)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
int i;
I915_STATE_WARN(i915, mpll_hw_state->clock != clock,
"[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
crtc->base.base.id, crtc->base.name,
mpll_sw_state->clock, mpll_hw_state->clock);
I915_STATE_WARN(i915, sw_use_mpllb != hw_use_mpllb,
"[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
crtc->base.base.id, crtc->base.name,
sw_use_mpllb, hw_use_mpllb);
if (hw_use_mpllb) {
for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
I915_STATE_WARN(i915, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
"[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
crtc->base.base.id, crtc->base.name, i,
mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
}
} else {
for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
I915_STATE_WARN(i915, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
"[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
crtc->base.base.id, crtc->base.name, i,
mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
}
}
for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
I915_STATE_WARN(i915, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
"[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
crtc->base.base.id, crtc->base.name, i,
mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
}
for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
I915_STATE_WARN(i915, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
"[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
crtc->base.base.id, crtc->base.name, i,
mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
}
}
void intel_cx0pll_state_verify(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_encoder *encoder;
struct intel_cx0pll_state mpll_hw_state = {};
if (DISPLAY_VER(i915) < 14)
return;
if (!new_crtc_state->hw.active)
return;
/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
if (!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state))
return;
encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
if (intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder)))
return;
intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
if (intel_encoder_is_c10phy(encoder))
intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
else
intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
}