blob: 3903f6ead6e6602daba0e26917ebbd6d8005afbf [file] [log] [blame]
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/export.h>
#include <linux/i2c.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/timekeeping.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_dp_tunnel.h>
#include <drm/display/drm_dsc_helper.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_probe_helper.h>
#include "g4x_dp.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_alpm.h"
#include "intel_atomic.h"
#include "intel_audio.h"
#include "intel_backlight.h"
#include "intel_combo_phy_regs.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_cx0_phy.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_driver.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_aux.h"
#include "intel_dp_hdcp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dp_tunnel.h"
#include "intel_dpio_phy.h"
#include "intel_dpll.h"
#include "intel_drrs.h"
#include "intel_encoder.h"
#include "intel_fifo_underrun.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_hotplug_irq.h"
#include "intel_lspcon.h"
#include "intel_lvds.h"
#include "intel_modeset_lock.h"
#include "intel_panel.h"
#include "intel_pch_display.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_tc.h"
#include "intel_vdsc.h"
#include "intel_vrr.h"
#include "intel_crtc_state_dump.h"
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE 2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
/* Max DSC line buffer depth supported by HW. */
#define INTEL_DP_DSC_MAX_LINE_BUF_DEPTH 13
/* DP DSC FEC Overhead factor in ppm = 1/(0.972261) = 1.028530 */
#define DP_DSC_FEC_OVERHEAD_FACTOR 1028530
/* Compliance test status bits */
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
/* With Single pipe configuration, HW is capable of supporting maximum
* of 4 slices per line.
*/
static const u8 valid_dsc_slicecount[] = {1, 2, 4};
/**
* intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*
* This function is not safe to use prior to encoder type being set.
*/
bool intel_dp_is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
return dig_port->base.type == INTEL_OUTPUT_EDP;
}
bool intel_dp_as_sdp_supported(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
return HAS_AS_SDP(i915) &&
drm_dp_as_sdp_supported(&intel_dp->aux, intel_dp->dpcd);
}
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
/* Is link rate UHBR and thus 128b/132b? */
bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state)
{
return drm_dp_is_uhbr_rate(crtc_state->port_clock);
}
/**
* intel_dp_link_symbol_size - get the link symbol size for a given link rate
* @rate: link rate in 10kbit/s units
*
* Returns the link symbol size in bits/symbol units depending on the link
* rate -> channel coding.
*/
int intel_dp_link_symbol_size(int rate)
{
return drm_dp_is_uhbr_rate(rate) ? 32 : 10;
}
/**
* intel_dp_link_symbol_clock - convert link rate to link symbol clock
* @rate: link rate in 10kbit/s units
*
* Returns the link symbol clock frequency in kHz units depending on the
* link rate and channel coding.
*/
int intel_dp_link_symbol_clock(int rate)
{
return DIV_ROUND_CLOSEST(rate * 10, intel_dp_link_symbol_size(rate));
}
static int max_dprx_rate(struct intel_dp *intel_dp)
{
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
return drm_dp_tunnel_max_dprx_rate(intel_dp->tunnel);
return drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
}
static int max_dprx_lane_count(struct intel_dp *intel_dp)
{
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
return drm_dp_tunnel_max_dprx_lane_count(intel_dp->tunnel);
return drm_dp_max_lane_count(intel_dp->dpcd);
}
static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp)
{
intel_dp->sink_rates[0] = 162000;
intel_dp->num_sink_rates = 1;
}
/* update sink rates from dpcd */
static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp)
{
static const int dp_rates[] = {
162000, 270000, 540000, 810000
};
int i, max_rate;
int max_lttpr_rate;
if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
static const int quirk_rates[] = { 162000, 270000, 324000 };
memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
return;
}
/*
* Sink rates for 8b/10b.
*/
max_rate = max_dprx_rate(intel_dp);
max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps);
if (max_lttpr_rate)
max_rate = min(max_rate, max_lttpr_rate);
for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
if (dp_rates[i] > max_rate)
break;
intel_dp->sink_rates[i] = dp_rates[i];
}
/*
* Sink rates for 128b/132b. If set, sink should support all 8b/10b
* rates and 10 Gbps.
*/
if (drm_dp_128b132b_supported(intel_dp->dpcd)) {
u8 uhbr_rates = 0;
BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3);
drm_dp_dpcd_readb(&intel_dp->aux,
DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates);
if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) {
/* We have a repeater */
if (intel_dp->lttpr_common_caps[0] >= 0x20 &&
intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] &
DP_PHY_REPEATER_128B132B_SUPPORTED) {
/* Repeater supports 128b/132b, valid UHBR rates */
uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
} else {
/* Does not support 128b/132b */
uhbr_rates = 0;
}
}
if (uhbr_rates & DP_UHBR10)
intel_dp->sink_rates[i++] = 1000000;
if (uhbr_rates & DP_UHBR13_5)
intel_dp->sink_rates[i++] = 1350000;
if (uhbr_rates & DP_UHBR20)
intel_dp->sink_rates[i++] = 2000000;
}
intel_dp->num_sink_rates = i;
}
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
intel_dp_set_dpcd_sink_rates(intel_dp);
if (intel_dp->num_sink_rates)
return;
drm_err(&dp_to_i915(intel_dp)->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name);
intel_dp_set_default_sink_rates(intel_dp);
}
static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp)
{
intel_dp->max_sink_lane_count = 1;
}
static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
intel_dp->max_sink_lane_count = max_dprx_lane_count(intel_dp);
switch (intel_dp->max_sink_lane_count) {
case 1:
case 2:
case 4:
return;
}
drm_err(&dp_to_i915(intel_dp)->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name,
intel_dp->max_sink_lane_count);
intel_dp_set_default_max_sink_lane_count(intel_dp);
}
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
int i;
/* Limit results by potentially reduced max rate */
for (i = 0; i < len; i++) {
if (rates[len - i - 1] <= max_rate)
return len - i;
}
return 0;
}
/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
int max_rate)
{
return intel_dp_rate_limit_len(intel_dp->common_rates,
intel_dp->num_common_rates, max_rate);
}
int intel_dp_common_rate(struct intel_dp *intel_dp, int index)
{
if (drm_WARN_ON(&dp_to_i915(intel_dp)->drm,
index < 0 || index >= intel_dp->num_common_rates))
return 162000;
return intel_dp->common_rates[index];
}
/* Theoretical max between source and sink */
int intel_dp_max_common_rate(struct intel_dp *intel_dp)
{
return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1);
}
int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port)
{
int vbt_max_lanes = intel_bios_dp_max_lane_count(dig_port->base.devdata);
int max_lanes = dig_port->max_lanes;
if (vbt_max_lanes)
max_lanes = min(max_lanes, vbt_max_lanes);
return max_lanes;
}
/* Theoretical max between source and sink */
int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
int source_max = intel_dp_max_source_lane_count(dig_port);
int sink_max = intel_dp->max_sink_lane_count;
int lane_max = intel_tc_port_max_lane_count(dig_port);
int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps);
if (lttpr_max)
sink_max = min(sink_max, lttpr_max);
return min3(source_max, sink_max, lane_max);
}
static int forced_lane_count(struct intel_dp *intel_dp)
{
return clamp(intel_dp->link.force_lane_count, 1, intel_dp_max_common_lane_count(intel_dp));
}
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
int lane_count;
if (intel_dp->link.force_lane_count)
lane_count = forced_lane_count(intel_dp);
else
lane_count = intel_dp->link.max_lane_count;
switch (lane_count) {
case 1:
case 2:
case 4:
return lane_count;
default:
MISSING_CASE(lane_count);
return 1;
}
}
static int intel_dp_min_lane_count(struct intel_dp *intel_dp)
{
if (intel_dp->link.force_lane_count)
return forced_lane_count(intel_dp);
return 1;
}
/*
* The required data bandwidth for a mode with given pixel clock and bpp. This
* is the required net bandwidth independent of the data bandwidth efficiency.
*
* TODO: check if callers of this functions should use
* intel_dp_effective_data_rate() instead.
*/
int
intel_dp_link_required(int pixel_clock, int bpp)
{
/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
return DIV_ROUND_UP(pixel_clock * bpp, 8);
}
/**
* intel_dp_effective_data_rate - Return the pixel data rate accounting for BW allocation overhead
* @pixel_clock: pixel clock in kHz
* @bpp_x16: bits per pixel .4 fixed point format
* @bw_overhead: BW allocation overhead in 1ppm units
*
* Return the effective pixel data rate in kB/sec units taking into account
* the provided SSC, FEC, DSC BW allocation overhead.
*/
int intel_dp_effective_data_rate(int pixel_clock, int bpp_x16,
int bw_overhead)
{
return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_clock * bpp_x16, bw_overhead),
1000000 * 16 * 8);
}
/**
* intel_dp_max_link_data_rate: Calculate the maximum rate for the given link params
* @intel_dp: Intel DP object
* @max_dprx_rate: Maximum data rate of the DPRX
* @max_dprx_lanes: Maximum lane count of the DPRX
*
* Calculate the maximum data rate for the provided link parameters taking into
* account any BW limitations by a DP tunnel attached to @intel_dp.
*
* Returns the maximum data rate in kBps units.
*/
int intel_dp_max_link_data_rate(struct intel_dp *intel_dp,
int max_dprx_rate, int max_dprx_lanes)
{
int max_rate = drm_dp_max_dprx_data_rate(max_dprx_rate, max_dprx_lanes);
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
max_rate = min(max_rate,
drm_dp_tunnel_available_bw(intel_dp->tunnel));
return max_rate;
}
bool intel_dp_has_joiner(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
/* eDP MSO is not compatible with joiner */
if (intel_dp->mso_link_count)
return false;
return DISPLAY_VER(dev_priv) >= 12 ||
(DISPLAY_VER(dev_priv) == 11 &&
encoder->port != PORT_A);
}
static int dg2_max_source_rate(struct intel_dp *intel_dp)
{
return intel_dp_is_edp(intel_dp) ? 810000 : 1350000;
}
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
if (intel_encoder_is_combo(encoder) && !intel_dp_is_edp(intel_dp))
return 540000;
return 810000;
}
static int ehl_max_source_rate(struct intel_dp *intel_dp)
{
if (intel_dp_is_edp(intel_dp))
return 540000;
return 810000;
}
static int mtl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
if (intel_encoder_is_c10phy(encoder))
return 810000;
if (DISPLAY_VER_FULL(to_i915(encoder->base.dev)) == IP_VER(14, 1))
return 1350000;
return 2000000;
}
static int vbt_max_link_rate(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int max_rate;
max_rate = intel_bios_dp_max_link_rate(encoder->devdata);
if (intel_dp_is_edp(intel_dp)) {
struct intel_connector *connector = intel_dp->attached_connector;
int edp_max_rate = connector->panel.vbt.edp.max_link_rate;
if (max_rate && edp_max_rate)
max_rate = min(max_rate, edp_max_rate);
else if (edp_max_rate)
max_rate = edp_max_rate;
}
return max_rate;
}
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
{
/* The values must be in increasing order */
static const int mtl_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000,
810000, 1000000, 2000000,
};
static const int icl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000,
1000000, 1350000,
};
static const int bxt_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000
};
static const int skl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000
};
static const int hsw_rates[] = {
162000, 270000, 540000
};
static const int g4x_rates[] = {
162000, 270000
};
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const int *source_rates;
int size, max_rate = 0, vbt_max_rate;
/* This should only be done once */
drm_WARN_ON(&dev_priv->drm,
intel_dp->source_rates || intel_dp->num_source_rates);
if (DISPLAY_VER(dev_priv) >= 14) {
source_rates = mtl_rates;
size = ARRAY_SIZE(mtl_rates);
max_rate = mtl_max_source_rate(intel_dp);
} else if (DISPLAY_VER(dev_priv) >= 11) {
source_rates = icl_rates;
size = ARRAY_SIZE(icl_rates);
if (IS_DG2(dev_priv))
max_rate = dg2_max_source_rate(intel_dp);
else if (IS_ALDERLAKE_P(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
max_rate = 810000;
else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv))
max_rate = ehl_max_source_rate(intel_dp);
else
max_rate = icl_max_source_rate(intel_dp);
} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
source_rates = bxt_rates;
size = ARRAY_SIZE(bxt_rates);
} else if (DISPLAY_VER(dev_priv) == 9) {
source_rates = skl_rates;
size = ARRAY_SIZE(skl_rates);
} else if ((IS_HASWELL(dev_priv) && !IS_HASWELL_ULX(dev_priv)) ||
IS_BROADWELL(dev_priv)) {
source_rates = hsw_rates;
size = ARRAY_SIZE(hsw_rates);
} else {
source_rates = g4x_rates;
size = ARRAY_SIZE(g4x_rates);
}
vbt_max_rate = vbt_max_link_rate(intel_dp);
if (max_rate && vbt_max_rate)
max_rate = min(max_rate, vbt_max_rate);
else if (vbt_max_rate)
max_rate = vbt_max_rate;
if (max_rate)
size = intel_dp_rate_limit_len(source_rates, size, max_rate);
intel_dp->source_rates = source_rates;
intel_dp->num_source_rates = size;
}
static int intersect_rates(const int *source_rates, int source_len,
const int *sink_rates, int sink_len,
int *common_rates)
{
int i = 0, j = 0, k = 0;
while (i < source_len && j < sink_len) {
if (source_rates[i] == sink_rates[j]) {
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
return k;
common_rates[k] = source_rates[i];
++k;
++i;
++j;
} else if (source_rates[i] < sink_rates[j]) {
++i;
} else {
++j;
}
}
return k;
}
/* return index of rate in rates array, or -1 if not found */
int intel_dp_rate_index(const int *rates, int len, int rate)
{
int i;
for (i = 0; i < len; i++)
if (rate == rates[i])
return i;
return -1;
}
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
drm_WARN_ON(&i915->drm,
!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
intel_dp->num_source_rates,
intel_dp->sink_rates,
intel_dp->num_sink_rates,
intel_dp->common_rates);
/* Paranoia, there should always be something in common. */
if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
intel_dp->common_rates[0] = 162000;
intel_dp->num_common_rates = 1;
}
}
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
u8 lane_count)
{
/*
* FIXME: we need to synchronize the current link parameters with
* hardware readout. Currently fast link training doesn't work on
* boot-up.
*/
if (link_rate == 0 ||
link_rate > intel_dp->link.max_rate)
return false;
if (lane_count == 0 ||
lane_count > intel_dp_max_lane_count(intel_dp))
return false;
return true;
}
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
return div_u64(mul_u32_u32(mode_clock, DP_DSC_FEC_OVERHEAD_FACTOR),
1000000U);
}
int intel_dp_bw_fec_overhead(bool fec_enabled)
{
/*
* TODO: Calculate the actual overhead for a given mode.
* The hard-coded 1/0.972261=2.853% overhead factor
* corresponds (for instance) to the 8b/10b DP FEC 2.4% +
* 0.453% DSC overhead. This is enough for a 3840 width mode,
* which has a DSC overhead of up to ~0.2%, but may not be
* enough for a 1024 width mode where this is ~0.8% (on a 4
* lane DP link, with 2 DSC slices and 8 bpp color depth).
*/
return fec_enabled ? DP_DSC_FEC_OVERHEAD_FACTOR : 1000000;
}
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 13)
return 17280 * 8;
else if (DISPLAY_VER(i915) >= 11)
return 7680 * 8;
else
return 6144 * 8;
}
u32 intel_dp_dsc_nearest_valid_bpp(struct drm_i915_private *i915, u32 bpp, u32 pipe_bpp)
{
u32 bits_per_pixel = bpp;
int i;
/* Error out if the max bpp is less than smallest allowed valid bpp */
if (bits_per_pixel < valid_dsc_bpp[0]) {
drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
bits_per_pixel, valid_dsc_bpp[0]);
return 0;
}
/* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */
if (DISPLAY_VER(i915) >= 13) {
bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1);
/*
* According to BSpec, 27 is the max DSC output bpp,
* 8 is the min DSC output bpp.
* While we can still clamp higher bpp values to 27, saving bandwidth,
* if it is required to oompress up to bpp < 8, means we can't do
* that and probably means we can't fit the required mode, even with
* DSC enabled.
*/
if (bits_per_pixel < 8) {
drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min 8\n",
bits_per_pixel);
return 0;
}
bits_per_pixel = min_t(u32, bits_per_pixel, 27);
} else {
/* Find the nearest match in the array of known BPPs from VESA */
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
if (bits_per_pixel < valid_dsc_bpp[i + 1])
break;
}
drm_dbg_kms(&i915->drm, "Set dsc bpp from %d to VESA %d\n",
bits_per_pixel, valid_dsc_bpp[i]);
bits_per_pixel = valid_dsc_bpp[i];
}
return bits_per_pixel;
}
static
u32 get_max_compressed_bpp_with_joiner(struct drm_i915_private *i915,
u32 mode_clock, u32 mode_hdisplay,
bool bigjoiner)
{
u32 max_bpp_small_joiner_ram;
/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / mode_hdisplay;
if (bigjoiner) {
int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24;
/* With bigjoiner multiple dsc engines are used in parallel so PPC is 2 */
int ppc = 2;
u32 max_bpp_bigjoiner =
i915->display.cdclk.max_cdclk_freq * ppc * bigjoiner_interface_bits /
intel_dp_mode_to_fec_clock(mode_clock);
max_bpp_small_joiner_ram *= 2;
return min(max_bpp_small_joiner_ram, max_bpp_bigjoiner);
}
return max_bpp_small_joiner_ram;
}
u16 intel_dp_dsc_get_max_compressed_bpp(struct drm_i915_private *i915,
u32 link_clock, u32 lane_count,
u32 mode_clock, u32 mode_hdisplay,
bool bigjoiner,
enum intel_output_format output_format,
u32 pipe_bpp,
u32 timeslots)
{
u32 bits_per_pixel, joiner_max_bpp;
/*
* Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
* (LinkSymbolClock)* 8 * (TimeSlots / 64)
* for SST -> TimeSlots is 64(i.e all TimeSlots that are available)
* for MST -> TimeSlots has to be calculated, based on mode requirements
*
* Due to FEC overhead, the available bw is reduced to 97.2261%.
* To support the given mode:
* Bandwidth required should be <= Available link Bandwidth * FEC Overhead
* =>ModeClock * bits_per_pixel <= Available Link Bandwidth * FEC Overhead
* =>bits_per_pixel <= Available link Bandwidth * FEC Overhead / ModeClock
* =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock) * 8 (TimeSlots / 64) /
* (ModeClock / FEC Overhead)
* =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock * TimeSlots) /
* (ModeClock / FEC Overhead * 8)
*/
bits_per_pixel = ((link_clock * lane_count) * timeslots) /
(intel_dp_mode_to_fec_clock(mode_clock) * 8);
/* Bandwidth required for 420 is half, that of 444 format */
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bits_per_pixel *= 2;
/*
* According to DSC 1.2a Section 4.1.1 Table 4.1 the maximum
* supported PPS value can be 63.9375 and with the further
* mention that for 420, 422 formats, bpp should be programmed double
* the target bpp restricting our target bpp to be 31.9375 at max.
*/
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bits_per_pixel = min_t(u32, bits_per_pixel, 31);
drm_dbg_kms(&i915->drm, "Max link bpp is %u for %u timeslots "
"total bw %u pixel clock %u\n",
bits_per_pixel, timeslots,
(link_clock * lane_count * 8),
intel_dp_mode_to_fec_clock(mode_clock));
joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, mode_clock,
mode_hdisplay, bigjoiner);
bits_per_pixel = min(bits_per_pixel, joiner_max_bpp);
bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(i915, bits_per_pixel, pipe_bpp);
return bits_per_pixel;
}
u8 intel_dp_dsc_get_slice_count(const struct intel_connector *connector,
int mode_clock, int mode_hdisplay,
bool bigjoiner)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
u8 min_slice_count, i;
int max_slice_width;
if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_0);
else
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_1);
/*
* Due to some DSC engine BW limitations, we need to enable second
* slice and VDSC engine, whenever we approach close enough to max CDCLK
*/
if (mode_clock >= ((i915->display.cdclk.max_cdclk_freq * 85) / 100))
min_slice_count = max_t(u8, min_slice_count, 2);
max_slice_width = drm_dp_dsc_sink_max_slice_width(connector->dp.dsc_dpcd);
if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
drm_dbg_kms(&i915->drm,
"Unsupported slice width %d by DP DSC Sink device\n",
max_slice_width);
return 0;
}
/* Also take into account max slice width */
min_slice_count = max_t(u8, min_slice_count,
DIV_ROUND_UP(mode_hdisplay,
max_slice_width));
/* Find the closest match to the valid slice count values */
for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner;
if (test_slice_count >
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, false))
break;
/* big joiner needs small joiner to be enabled */
if (bigjoiner && test_slice_count < 4)
continue;
if (min_slice_count <= test_slice_count)
return test_slice_count;
}
drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
min_slice_count);
return 0;
}
static bool source_can_output(struct intel_dp *intel_dp,
enum intel_output_format format)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
switch (format) {
case INTEL_OUTPUT_FORMAT_RGB:
return true;
case INTEL_OUTPUT_FORMAT_YCBCR444:
/*
* No YCbCr output support on gmch platforms.
* Also, ILK doesn't seem capable of DP YCbCr output.
* The displayed image is severly corrupted. SNB+ is fine.
*/
return !HAS_GMCH(i915) && !IS_IRONLAKE(i915);
case INTEL_OUTPUT_FORMAT_YCBCR420:
/* Platform < Gen 11 cannot output YCbCr420 format */
return DISPLAY_VER(i915) >= 11;
default:
MISSING_CASE(format);
return false;
}
}
static bool
dfp_can_convert_from_rgb(struct intel_dp *intel_dp,
enum intel_output_format sink_format)
{
if (!drm_dp_is_branch(intel_dp->dpcd))
return false;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444)
return intel_dp->dfp.rgb_to_ycbcr;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
return intel_dp->dfp.rgb_to_ycbcr &&
intel_dp->dfp.ycbcr_444_to_420;
return false;
}
static bool
dfp_can_convert_from_ycbcr444(struct intel_dp *intel_dp,
enum intel_output_format sink_format)
{
if (!drm_dp_is_branch(intel_dp->dpcd))
return false;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
return intel_dp->dfp.ycbcr_444_to_420;
return false;
}
static bool
dfp_can_convert(struct intel_dp *intel_dp,
enum intel_output_format output_format,
enum intel_output_format sink_format)
{
switch (output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
return dfp_can_convert_from_rgb(intel_dp, sink_format);
case INTEL_OUTPUT_FORMAT_YCBCR444:
return dfp_can_convert_from_ycbcr444(intel_dp, sink_format);
default:
MISSING_CASE(output_format);
return false;
}
return false;
}
static enum intel_output_format
intel_dp_output_format(struct intel_connector *connector,
enum intel_output_format sink_format)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
enum intel_output_format force_dsc_output_format =
intel_dp->force_dsc_output_format;
enum intel_output_format output_format;
if (force_dsc_output_format) {
if (source_can_output(intel_dp, force_dsc_output_format) &&
(!drm_dp_is_branch(intel_dp->dpcd) ||
sink_format != force_dsc_output_format ||
dfp_can_convert(intel_dp, force_dsc_output_format, sink_format)))
return force_dsc_output_format;
drm_dbg_kms(&i915->drm, "Cannot force DSC output format\n");
}
if (sink_format == INTEL_OUTPUT_FORMAT_RGB ||
dfp_can_convert_from_rgb(intel_dp, sink_format))
output_format = INTEL_OUTPUT_FORMAT_RGB;
else if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
dfp_can_convert_from_ycbcr444(intel_dp, sink_format))
output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
else
output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
drm_WARN_ON(&i915->drm, !source_can_output(intel_dp, output_format));
return output_format;
}
int intel_dp_min_bpp(enum intel_output_format output_format)
{
if (output_format == INTEL_OUTPUT_FORMAT_RGB)
return 6 * 3;
else
return 8 * 3;
}
int intel_dp_output_bpp(enum intel_output_format output_format, int bpp)
{
/*
* bpp value was assumed to RGB format. And YCbCr 4:2:0 output
* format of the number of bytes per pixel will be half the number
* of bytes of RGB pixel.
*/
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bpp /= 2;
return bpp;
}
static enum intel_output_format
intel_dp_sink_format(struct intel_connector *connector,
const struct drm_display_mode *mode)
{
const struct drm_display_info *info = &connector->base.display_info;
if (drm_mode_is_420_only(info, mode))
return INTEL_OUTPUT_FORMAT_YCBCR420;
return INTEL_OUTPUT_FORMAT_RGB;
}
static int
intel_dp_mode_min_output_bpp(struct intel_connector *connector,
const struct drm_display_mode *mode)
{
enum intel_output_format output_format, sink_format;
sink_format = intel_dp_sink_format(connector, mode);
output_format = intel_dp_output_format(connector, sink_format);
return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format));
}
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
int hdisplay)
{
/*
* Older platforms don't like hdisplay==4096 with DP.
*
* On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
* and frame counter increment), but we don't get vblank interrupts,
* and the pipe underruns immediately. The link also doesn't seem
* to get trained properly.
*
* On CHV the vblank interrupts don't seem to disappear but
* otherwise the symptoms are similar.
*
* TODO: confirm the behaviour on HSW+
*/
return hdisplay == 4096 && !HAS_DDI(dev_priv);
}
static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
int max_tmds_clock = intel_dp->dfp.max_tmds_clock;
/* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */
if (max_tmds_clock && info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
return max_tmds_clock;
}
static enum drm_mode_status
intel_dp_tmds_clock_valid(struct intel_dp *intel_dp,
int clock, int bpc,
enum intel_output_format sink_format,
bool respect_downstream_limits)
{
int tmds_clock, min_tmds_clock, max_tmds_clock;
if (!respect_downstream_limits)
return MODE_OK;
tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
min_tmds_clock = intel_dp->dfp.min_tmds_clock;
max_tmds_clock = intel_dp_max_tmds_clock(intel_dp);
if (min_tmds_clock && tmds_clock < min_tmds_clock)
return MODE_CLOCK_LOW;
if (max_tmds_clock && tmds_clock > max_tmds_clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static enum drm_mode_status
intel_dp_mode_valid_downstream(struct intel_connector *connector,
const struct drm_display_mode *mode,
int target_clock)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
const struct drm_display_info *info = &connector->base.display_info;
enum drm_mode_status status;
enum intel_output_format sink_format;
/* If PCON supports FRL MODE, check FRL bandwidth constraints */
if (intel_dp->dfp.pcon_max_frl_bw) {
int target_bw;
int max_frl_bw;
int bpp = intel_dp_mode_min_output_bpp(connector, mode);
target_bw = bpp * target_clock;
max_frl_bw = intel_dp->dfp.pcon_max_frl_bw;
/* converting bw from Gbps to Kbps*/
max_frl_bw = max_frl_bw * 1000000;
if (target_bw > max_frl_bw)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
if (intel_dp->dfp.max_dotclock &&
target_clock > intel_dp->dfp.max_dotclock)
return MODE_CLOCK_HIGH;
sink_format = intel_dp_sink_format(connector, mode);
/* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
status = intel_dp_tmds_clock_valid(intel_dp, target_clock,
8, sink_format, true);
if (status != MODE_OK) {
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
!connector->base.ycbcr_420_allowed ||
!drm_mode_is_420_also(info, mode))
return status;
sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
status = intel_dp_tmds_clock_valid(intel_dp, target_clock,
8, sink_format, true);
if (status != MODE_OK)
return status;
}
return MODE_OK;
}
bool intel_dp_need_joiner(struct intel_dp *intel_dp,
struct intel_connector *connector,
int hdisplay, int clock)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp_has_joiner(intel_dp))
return false;
return clock > i915->display.cdclk.max_dotclk_freq || hdisplay > 5120 ||
connector->force_bigjoiner_enable;
}
bool intel_dp_has_dsc(const struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (!HAS_DSC(i915))
return false;
if (connector->mst_port && !HAS_DSC_MST(i915))
return false;
if (connector->base.connector_type == DRM_MODE_CONNECTOR_eDP &&
connector->panel.vbt.edp.dsc_disable)
return false;
if (!drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd))
return false;
return true;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *_connector,
struct drm_display_mode *mode)
{
struct intel_connector *connector = to_intel_connector(_connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
const struct drm_display_mode *fixed_mode;
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
int max_dotclk = dev_priv->display.cdclk.max_dotclk_freq;
u16 dsc_max_compressed_bpp = 0;
u8 dsc_slice_count = 0;
enum drm_mode_status status;
bool dsc = false, joiner = false;
status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
if (status != MODE_OK)
return status;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
fixed_mode = intel_panel_fixed_mode(connector, mode);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
status = intel_panel_mode_valid(connector, mode);
if (status != MODE_OK)
return status;
target_clock = fixed_mode->clock;
}
if (intel_dp_need_joiner(intel_dp, connector,
mode->hdisplay, target_clock)) {
joiner = true;
max_dotclk *= 2;
}
if (target_clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
return MODE_H_ILLEGAL;
max_link_clock = intel_dp_max_link_rate(intel_dp);
max_lanes = intel_dp_max_lane_count(intel_dp);
max_rate = intel_dp_max_link_data_rate(intel_dp, max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock,
intel_dp_mode_min_output_bpp(connector, mode));
if (intel_dp_has_dsc(connector)) {
enum intel_output_format sink_format, output_format;
int pipe_bpp;
sink_format = intel_dp_sink_format(connector, mode);
output_format = intel_dp_output_format(connector, sink_format);
/*
* TBD pass the connector BPC,
* for now U8_MAX so that max BPC on that platform would be picked
*/
pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, U8_MAX);
/*
* Output bpp is stored in 6.4 format so right shift by 4 to get the
* integer value since we support only integer values of bpp.
*/
if (intel_dp_is_edp(intel_dp)) {
dsc_max_compressed_bpp =
drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd) >> 4;
dsc_slice_count =
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd,
true);
} else if (drm_dp_sink_supports_fec(connector->dp.fec_capability)) {
dsc_max_compressed_bpp =
intel_dp_dsc_get_max_compressed_bpp(dev_priv,
max_link_clock,
max_lanes,
target_clock,
mode->hdisplay,
joiner,
output_format,
pipe_bpp, 64);
dsc_slice_count =
intel_dp_dsc_get_slice_count(connector,
target_clock,
mode->hdisplay,
joiner);
}
dsc = dsc_max_compressed_bpp && dsc_slice_count;
}
if (intel_dp_joiner_needs_dsc(dev_priv, joiner) && !dsc)
return MODE_CLOCK_HIGH;
if (mode_rate > max_rate && !dsc)
return MODE_CLOCK_HIGH;
status = intel_dp_mode_valid_downstream(connector, mode, target_clock);
if (status != MODE_OK)
return status;
return intel_mode_valid_max_plane_size(dev_priv, mode, joiner);
}
bool intel_dp_source_supports_tps3(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 9 || IS_BROADWELL(i915) || IS_HASWELL(i915);
}
bool intel_dp_source_supports_tps4(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 10;
}
static void snprintf_int_array(char *str, size_t len,
const int *array, int nelem)
{
int i;
str[0] = '\0';
for (i = 0; i < nelem; i++) {
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
if (r >= len)
return;
str += r;
len -= r;
}
}
static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
char str[128]; /* FIXME: too big for stack? */
if (!drm_debug_enabled(DRM_UT_KMS))
return;
snprintf_int_array(str, sizeof(str),
intel_dp->source_rates, intel_dp->num_source_rates);
drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->sink_rates, intel_dp->num_sink_rates);
drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->common_rates, intel_dp->num_common_rates);
drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
}
static int forced_link_rate(struct intel_dp *intel_dp)
{
int len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.force_rate);
if (len == 0)
return intel_dp_common_rate(intel_dp, 0);
return intel_dp_common_rate(intel_dp, len - 1);
}
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
int len;
if (intel_dp->link.force_rate)
return forced_link_rate(intel_dp);
len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.max_rate);
return intel_dp_common_rate(intel_dp, len - 1);
}
static int
intel_dp_min_link_rate(struct intel_dp *intel_dp)
{
if (intel_dp->link.force_rate)
return forced_link_rate(intel_dp);
return intel_dp_common_rate(intel_dp, 0);
}
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int i = intel_dp_rate_index(intel_dp->sink_rates,
intel_dp->num_sink_rates, rate);
if (drm_WARN_ON(&i915->drm, i < 0))
i = 0;
return i;
}
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
u8 *link_bw, u8 *rate_select)
{
/* eDP 1.4 rate select method. */
if (intel_dp->use_rate_select) {
*link_bw = 0;
*rate_select =
intel_dp_rate_select(intel_dp, port_clock);
} else {
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
*rate_select = 0;
}
}
bool intel_dp_has_hdmi_sink(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
return connector->base.display_info.is_hdmi;
}
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (DISPLAY_VER(dev_priv) >= 12)
return true;
if (DISPLAY_VER(dev_priv) == 11 && encoder->port != PORT_A &&
!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
return true;
return false;
}
bool intel_dp_supports_fec(struct intel_dp *intel_dp,
const struct intel_connector *connector,
const struct intel_crtc_state *pipe_config)
{
return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
drm_dp_sink_supports_fec(connector->dp.fec_capability);
}
bool intel_dp_supports_dsc(const struct intel_connector *connector,
const struct intel_crtc_state *crtc_state)
{
if (!intel_dp_has_dsc(connector))
return false;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable)
return false;
return intel_dsc_source_support(crtc_state);
}
static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int bpc, bool respect_downstream_limits)
{
int clock = crtc_state->hw.adjusted_mode.crtc_clock;
/*
* Current bpc could already be below 8bpc due to
* FDI bandwidth constraints or other limits.
* HDMI minimum is 8bpc however.
*/
bpc = max(bpc, 8);
/*
* We will never exceed downstream TMDS clock limits while
* attempting deep color. If the user insists on forcing an
* out of spec mode they will have to be satisfied with 8bpc.
*/
if (!respect_downstream_limits)
bpc = 8;
for (; bpc >= 8; bpc -= 2) {
if (intel_hdmi_bpc_possible(crtc_state, bpc,
intel_dp_has_hdmi_sink(intel_dp)) &&
intel_dp_tmds_clock_valid(intel_dp, clock, bpc, crtc_state->sink_format,
respect_downstream_limits) == MODE_OK)
return bpc;
}
return -EINVAL;
}
static int intel_dp_max_bpp(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool respect_downstream_limits)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_connector *intel_connector = intel_dp->attached_connector;
int bpp, bpc;
bpc = crtc_state->pipe_bpp / 3;
if (intel_dp->dfp.max_bpc)
bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
if (intel_dp->dfp.min_tmds_clock) {
int max_hdmi_bpc;
max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc,
respect_downstream_limits);
if (max_hdmi_bpc < 0)
return 0;
bpc = min(bpc, max_hdmi_bpc);
}
bpp = bpc * 3;
if (intel_dp_is_edp(intel_dp)) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
intel_connector->panel.vbt.edp.bpp &&
intel_connector->panel.vbt.edp.bpp < bpp) {
drm_dbg_kms(&dev_priv->drm,
"clamping bpp for eDP panel to BIOS-provided %i\n",
intel_connector->panel.vbt.edp.bpp);
bpp = intel_connector->panel.vbt.edp.bpp;
}
}
return bpp;
}
/* Adjust link config limits based on compliance test requests. */
void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/* For DP Compliance we override the computed bpp for the pipe */
if (intel_dp->compliance.test_data.bpc != 0) {
int bpp = 3 * intel_dp->compliance.test_data.bpc;
limits->pipe.min_bpp = limits->pipe.max_bpp = bpp;
pipe_config->dither_force_disable = bpp == 6 * 3;
drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
}
/* Use values requested by Compliance Test Request */
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
int index;
/* Validate the compliance test data since max values
* might have changed due to link train fallback.
*/
if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
intel_dp->compliance.test_lane_count)) {
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
intel_dp->compliance.test_link_rate);
if (index >= 0)
limits->min_rate = limits->max_rate =
intel_dp->compliance.test_link_rate;
limits->min_lane_count = limits->max_lane_count =
intel_dp->compliance.test_lane_count;
}
}
}
static bool has_seamless_m_n(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
/*
* Seamless M/N reprogramming only implemented
* for BDW+ double buffered M/N registers so far.
*/
return HAS_DOUBLE_BUFFERED_M_N(i915) &&
intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS;
}
static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_connector *connector = to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/* FIXME a bit of a mess wrt clock vs. crtc_clock */
if (has_seamless_m_n(connector))
return intel_panel_highest_mode(connector, adjusted_mode)->clock;
else
return adjusted_mode->crtc_clock;
}
/* Optimize link config in order: max bpp, min clock, min lanes */
static int
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state,
const struct link_config_limits *limits)
{
int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state);
int mode_rate, link_rate, link_avail;
for (bpp = to_bpp_int(limits->link.max_bpp_x16);
bpp >= to_bpp_int(limits->link.min_bpp_x16);
bpp -= 2 * 3) {
int link_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp);
mode_rate = intel_dp_link_required(clock, link_bpp);
for (i = 0; i < intel_dp->num_common_rates; i++) {
link_rate = intel_dp_common_rate(intel_dp, i);
if (link_rate < limits->min_rate ||
link_rate > limits->max_rate)
continue;
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
link_avail = intel_dp_max_link_data_rate(intel_dp,
link_rate,
lane_count);
if (mode_rate <= link_avail) {
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = link_rate;
return 0;
}
}
}
}
return -EINVAL;
}
static
u8 intel_dp_dsc_max_src_input_bpc(struct drm_i915_private *i915)
{
/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
if (DISPLAY_VER(i915) >= 12)
return 12;
if (DISPLAY_VER(i915) == 11)
return 10;
return 0;
}
int intel_dp_dsc_compute_max_bpp(const struct intel_connector *connector,
u8 max_req_bpc)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
int i, num_bpc;
u8 dsc_bpc[3] = {};
u8 dsc_max_bpc;
dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915);
if (!dsc_max_bpc)
return dsc_max_bpc;
dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc);
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd,
dsc_bpc);
for (i = 0; i < num_bpc; i++) {
if (dsc_max_bpc >= dsc_bpc[i])
return dsc_bpc[i] * 3;
}
return 0;
}
static int intel_dp_source_dsc_version_minor(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 14 ? 2 : 1;
}
static int intel_dp_sink_dsc_version_minor(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
{
return (dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >>
DP_DSC_MINOR_SHIFT;
}
static int intel_dp_get_slice_height(int vactive)
{
int slice_height;
/*
* VDSC 1.2a spec in Section 3.8 Options for Slices implies that 108
* lines is an optimal slice height, but any size can be used as long as
* vertical active integer multiple and maximum vertical slice count
* requirements are met.
*/
for (slice_height = 108; slice_height <= vactive; slice_height += 2)
if (vactive % slice_height == 0)
return slice_height;
/*
* Highly unlikely we reach here as most of the resolutions will end up
* finding appropriate slice_height in above loop but returning
* slice_height as 2 here as it should work with all resolutions.
*/
return 2;
}
static int intel_dp_dsc_compute_params(const struct intel_connector *connector,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
int ret;
/*
* RC_MODEL_SIZE is currently a constant across all configurations.
*
* FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and
* DP_DSC_RC_BUF_SIZE for this.
*/
vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST;
vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay;
vdsc_cfg->slice_height = intel_dp_get_slice_height(vdsc_cfg->pic_height);
ret = intel_dsc_compute_params(crtc_state);
if (ret)
return ret;
vdsc_cfg->dsc_version_major =
(connector->dp.dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
vdsc_cfg->dsc_version_minor =
min(intel_dp_source_dsc_version_minor(i915),
intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd));
if (vdsc_cfg->convert_rgb)
vdsc_cfg->convert_rgb =
connector->dp.dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
DP_DSC_RGB;
vdsc_cfg->line_buf_depth = min(INTEL_DP_DSC_MAX_LINE_BUF_DEPTH,
drm_dp_dsc_sink_line_buf_depth(connector->dp.dsc_dpcd));
if (!vdsc_cfg->line_buf_depth) {
drm_dbg_kms(&i915->drm,
"DSC Sink Line Buffer Depth invalid\n");
return -EINVAL;
}
vdsc_cfg->block_pred_enable =
connector->dp.dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
return drm_dsc_compute_rc_parameters(vdsc_cfg);
}
static bool intel_dp_dsc_supports_format(const struct intel_connector *connector,
enum intel_output_format output_format)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
u8 sink_dsc_format;
switch (output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
sink_dsc_format = DP_DSC_RGB;
break;
case INTEL_OUTPUT_FORMAT_YCBCR444:
sink_dsc_format = DP_DSC_YCbCr444;
break;
case INTEL_OUTPUT_FORMAT_YCBCR420:
if (min(intel_dp_source_dsc_version_minor(i915),
intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)) < 2)
return false;
sink_dsc_format = DP_DSC_YCbCr420_Native;
break;
default:
return false;
}
return drm_dp_dsc_sink_supports_format(connector->dp.dsc_dpcd, sink_dsc_format);
}
static bool is_bw_sufficient_for_dsc_config(u16 compressed_bppx16, u32 link_clock,
u32 lane_count, u32 mode_clock,
enum intel_output_format output_format,
int timeslots)
{
u32 available_bw, required_bw;
available_bw = (link_clock * lane_count * timeslots * 16) / 8;
required_bw = compressed_bppx16 * (intel_dp_mode_to_fec_clock(mode_clock));
return available_bw > required_bw;
}
static int dsc_compute_link_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
u16 compressed_bppx16,
int timeslots)
{
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
int link_rate, lane_count;
int i;
for (i = 0; i < intel_dp->num_common_rates; i++) {
link_rate = intel_dp_common_rate(intel_dp, i);
if (link_rate < limits->min_rate || link_rate > limits->max_rate)
continue;
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
if (!is_bw_sufficient_for_dsc_config(compressed_bppx16, link_rate,
lane_count, adjusted_mode->clock,
pipe_config->output_format,
timeslots))
continue;
pipe_config->lane_count = lane_count;
pipe_config->port_clock = link_rate;
return 0;
}
}
return -EINVAL;
}
static
u16 intel_dp_dsc_max_sink_compressed_bppx16(const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int bpc)
{
u16 max_bppx16 = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd);
if (max_bppx16)
return max_bppx16;
/*
* If support not given in DPCD 67h, 68h use the Maximum Allowed bit rate
* values as given in spec Table 2-157 DP v2.0
*/
switch (pipe_config->output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
case INTEL_OUTPUT_FORMAT_YCBCR444:
return (3 * bpc) << 4;
case INTEL_OUTPUT_FORMAT_YCBCR420:
return (3 * (bpc / 2)) << 4;
default:
MISSING_CASE(pipe_config->output_format);
break;
}
return 0;
}
int intel_dp_dsc_sink_min_compressed_bpp(struct intel_crtc_state *pipe_config)
{
/* From Mandatory bit rate range Support Table 2-157 (DP v2.0) */
switch (pipe_config->output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
case INTEL_OUTPUT_FORMAT_YCBCR444:
return 8;
case INTEL_OUTPUT_FORMAT_YCBCR420:
return 6;
default:
MISSING_CASE(pipe_config->output_format);
break;
}
return 0;
}
int intel_dp_dsc_sink_max_compressed_bpp(const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int bpc)
{
return intel_dp_dsc_max_sink_compressed_bppx16(connector,
pipe_config, bpc) >> 4;
}
static int dsc_src_min_compressed_bpp(void)
{
/* Min Compressed bpp supported by source is 8 */
return 8;
}
static int dsc_src_max_compressed_bpp(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/*
* Max Compressed bpp for Gen 13+ is 27bpp.
* For earlier platform is 23bpp. (Bspec:49259).
*/
if (DISPLAY_VER(i915) < 13)
return 23;
else
return 27;
}
/*
* From a list of valid compressed bpps try different compressed bpp and find a
* suitable link configuration that can support it.
*/
static int
icl_dsc_compute_link_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int dsc_max_bpp,
int dsc_min_bpp,
int pipe_bpp,
int timeslots)
{
int i, ret;
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1);
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp); i++) {
if (valid_dsc_bpp[i] < dsc_min_bpp)
continue;
if (valid_dsc_bpp[i] > dsc_max_bpp)
break;
ret = dsc_compute_link_config(intel_dp,
pipe_config,
limits,
valid_dsc_bpp[i] << 4,
timeslots);
if (ret == 0) {
pipe_config->dsc.compressed_bpp_x16 =
to_bpp_x16(valid_dsc_bpp[i]);
return 0;
}
}
return -EINVAL;
}
/*
* From XE_LPD onwards we supports compression bpps in steps of 1 up to
* uncompressed bpp-1. So we start from max compressed bpp and see if any
* link configuration is able to support that compressed bpp, if not we
* step down and check for lower compressed bpp.
*/
static int
xelpd_dsc_compute_link_config(struct intel_dp *intel_dp,
const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int dsc_max_bpp,
int dsc_min_bpp,
int pipe_bpp,
int timeslots)
{
u8 bppx16_incr = drm_dp_dsc_sink_bpp_incr(connector->dp.dsc_dpcd);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u16 compressed_bppx16;
u8 bppx16_step;
int ret;
if (DISPLAY_VER(i915) < 14 || bppx16_incr <= 1)
bppx16_step = 16;
else
bppx16_step = 16 / bppx16_incr;
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp << 4, (pipe_bpp << 4) - bppx16_step);
dsc_min_bpp = dsc_min_bpp << 4;
for (compressed_bppx16 = dsc_max_bpp;
compressed_bppx16 >= dsc_min_bpp;
compressed_bppx16 -= bppx16_step) {
if (intel_dp->force_dsc_fractional_bpp_en &&
!to_bpp_frac(compressed_bppx16))
continue;
ret = dsc_compute_link_config(intel_dp,
pipe_config,
limits,
compressed_bppx16,
timeslots);
if (ret == 0) {
pipe_config->dsc.compressed_bpp_x16 = compressed_bppx16;
if (intel_dp->force_dsc_fractional_bpp_en &&
to_bpp_frac(compressed_bppx16))
drm_dbg_kms(&i915->drm, "Forcing DSC fractional bpp\n");
return 0;
}
}
return -EINVAL;
}
static int dsc_compute_compressed_bpp(struct intel_dp *intel_dp,
const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int pipe_bpp,
int timeslots)
{
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp;
int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp;
int dsc_joiner_max_bpp;
dsc_src_min_bpp = dsc_src_min_compressed_bpp();
dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config);
dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp);
dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16));
dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp);
dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector,
pipe_config,
pipe_bpp / 3);
dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp;
dsc_joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, adjusted_mode->clock,
adjusted_mode->hdisplay,
pipe_config->joiner_pipes);
dsc_max_bpp = min(dsc_max_bpp, dsc_joiner_max_bpp);
dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16));
if (DISPLAY_VER(i915) >= 13)
return xelpd_dsc_compute_link_config(intel_dp, connector, pipe_config, limits,
dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots);
return icl_dsc_compute_link_config(intel_dp, pipe_config, limits,
dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots);
}
static
u8 intel_dp_dsc_min_src_input_bpc(struct drm_i915_private *i915)
{
/* Min DSC Input BPC for ICL+ is 8 */
return HAS_DSC(i915) ? 8 : 0;
}
static
bool is_dsc_pipe_bpp_sufficient(struct drm_i915_private *i915,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int pipe_bpp)
{
u8 dsc_max_bpc, dsc_min_bpc, dsc_max_pipe_bpp, dsc_min_pipe_bpp;
dsc_max_bpc = min(intel_dp_dsc_max_src_input_bpc(i915), conn_state->max_requested_bpc);
dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915);
dsc_max_pipe_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp);
dsc_min_pipe_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp);
return pipe_bpp >= dsc_min_pipe_bpp &&
pipe_bpp <= dsc_max_pipe_bpp;
}
static
int intel_dp_force_dsc_pipe_bpp(struct intel_dp *intel_dp,
struct drm_connector_state *conn_state,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int forced_bpp;
if (!intel_dp->force_dsc_bpc)
return 0;
forced_bpp = intel_dp->force_dsc_bpc * 3;
if (is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, forced_bpp)) {
drm_dbg_kms(&i915->drm, "Input DSC BPC forced to %d\n", intel_dp->force_dsc_bpc);
return forced_bpp;
}
drm_dbg_kms(&i915->drm, "Cannot force DSC BPC:%d, due to DSC BPC limits\n",
intel_dp->force_dsc_bpc);
return 0;
}
static int intel_dp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int timeslots)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
const struct intel_connector *connector =
to_intel_connector(conn_state->connector);
u8 max_req_bpc = conn_state->max_requested_bpc;
u8 dsc_max_bpc, dsc_max_bpp;
u8 dsc_min_bpc, dsc_min_bpp;
u8 dsc_bpc[3] = {};
int forced_bpp, pipe_bpp;
int num_bpc, i, ret;
forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits);
if (forced_bpp) {
ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config,
limits, forced_bpp, timeslots);
if (ret == 0) {
pipe_config->pipe_bpp = forced_bpp;
return 0;
}
}
dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915);
if (!dsc_max_bpc)
return -EINVAL;
dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc);
dsc_max_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp);
dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915);
dsc_min_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp);
/*
* Get the maximum DSC bpc that will be supported by any valid
* link configuration and compressed bpp.
*/
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc);
for (i = 0; i < num_bpc; i++) {
pipe_bpp = dsc_bpc[i] * 3;
if (pipe_bpp < dsc_min_bpp)
break;
if (pipe_bpp > dsc_max_bpp)
continue;
ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config,
limits, pipe_bpp, timeslots);
if (ret == 0) {
pipe_config->pipe_bpp = pipe_bpp;
return 0;
}
}
return -EINVAL;
}
static int intel_edp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
int pipe_bpp, forced_bpp;
int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp;
int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp;
forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits);
if (forced_bpp) {
pipe_bpp = forced_bpp;
} else {
int max_bpc = min(limits->pipe.max_bpp / 3, (int)conn_state->max_requested_bpc);
/* For eDP use max bpp that can be supported with DSC. */
pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, max_bpc);
if (!is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, pipe_bpp)) {
drm_dbg_kms(&i915->drm,
"Computed BPC is not in DSC BPC limits\n");
return -EINVAL;
}
}
pipe_config->port_clock = limits->max_rate;
pipe_config->lane_count = limits->max_lane_count;
dsc_src_min_bpp = dsc_src_min_compressed_bpp();
dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config);
dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp);
dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16));
dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp);
dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector,
pipe_config,
pipe_bpp / 3);
dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp;
dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16));
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1);
pipe_config->dsc.compressed_bpp_x16 =
to_bpp_x16(max(dsc_min_bpp, dsc_max_bpp));
pipe_config->pipe_bpp = pipe_bpp;
return 0;
}
int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int timeslots,
bool compute_pipe_bpp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct intel_connector *connector =
to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
int ret;
pipe_config->fec_enable = pipe_config->fec_enable ||
(!intel_dp_is_edp(intel_dp) &&
intel_dp_supports_fec(intel_dp, connector, pipe_config));
if (!intel_dp_supports_dsc(connector, pipe_config))
return -EINVAL;
if (!intel_dp_dsc_supports_format(connector, pipe_config->output_format))
return -EINVAL;
/*
* compute pipe bpp is set to false for DP MST DSC case
* and compressed_bpp is calculated same time once
* vpci timeslots are allocated, because overall bpp
* calculation procedure is bit different for MST case.
*/
if (compute_pipe_bpp) {
if (intel_dp_is_edp(intel_dp))
ret = intel_edp_dsc_compute_pipe_bpp(intel_dp, pipe_config,
conn_state, limits);
else
ret = intel_dp_dsc_compute_pipe_bpp(intel_dp, pipe_config,
conn_state, limits, timeslots);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"No Valid pipe bpp for given mode ret = %d\n", ret);
return ret;
}
}
/* Calculate Slice count */
if (intel_dp_is_edp(intel_dp)) {
pipe_config->dsc.slice_count =
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd,
true);
if (!pipe_config->dsc.slice_count) {
drm_dbg_kms(&dev_priv->drm, "Unsupported Slice Count %d\n",
pipe_config->dsc.slice_count);
return -EINVAL;
}
} else {
u8 dsc_dp_slice_count;
dsc_dp_slice_count =
intel_dp_dsc_get_slice_count(connector,
adjusted_mode->crtc_clock,
adjusted_mode->crtc_hdisplay,
pipe_config->joiner_pipes);
if (!dsc_dp_slice_count) {
drm_dbg_kms(&dev_priv->drm,
"Compressed Slice Count not supported\n");
return -EINVAL;
}
pipe_config->dsc.slice_count = dsc_dp_slice_count;
}
/*
* VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
* is greater than the maximum Cdclock and if slice count is even
* then we need to use 2 VDSC instances.
*/
if (pipe_config->joiner_pipes || pipe_config->dsc.slice_count > 1)
pipe_config->dsc.dsc_split = true;
ret = intel_dp_dsc_compute_params(connector, pipe_config);
if (ret < 0) {
drm_dbg_kms(&dev_priv->drm,
"Cannot compute valid DSC parameters for Input Bpp = %d"
"Compressed BPP = " BPP_X16_FMT "\n",
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16));
return ret;
}
pipe_config->dsc.compression_enable = true;
drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
"Compressed Bpp = " BPP_X16_FMT " Slice Count = %d\n",
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16),
pipe_config->dsc.slice_count);
return 0;
}
/**
* intel_dp_compute_config_link_bpp_limits - compute output link bpp limits
* @intel_dp: intel DP
* @crtc_state: crtc state
* @dsc: DSC compression mode
* @limits: link configuration limits
*
* Calculates the output link min, max bpp values in @limits based on the
* pipe bpp range, @crtc_state and @dsc mode.
*
* Returns %true in case of success.
*/
bool
intel_dp_compute_config_link_bpp_limits(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool dsc,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int max_link_bpp_x16;
max_link_bpp_x16 = min(crtc_state->max_link_bpp_x16,
to_bpp_x16(limits->pipe.max_bpp));
if (!dsc) {
max_link_bpp_x16 = rounddown(max_link_bpp_x16, to_bpp_x16(2 * 3));
if (max_link_bpp_x16 < to_bpp_x16(limits->pipe.min_bpp))
return false;
limits->link.min_bpp_x16 = to_bpp_x16(limits->pipe.min_bpp);
} else {
/*
* TODO: set the DSC link limits already here, atm these are
* initialized only later in intel_edp_dsc_compute_pipe_bpp() /
* intel_dp_dsc_compute_pipe_bpp()
*/
limits->link.min_bpp_x16 = 0;
}
limits->link.max_bpp_x16 = max_link_bpp_x16;
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][CRTC:%d:%s] DP link limits: pixel clock %d kHz DSC %s max lanes %d max rate %d max pipe_bpp %d max link_bpp " BPP_X16_FMT "\n",
encoder->base.base.id, encoder->base.name,
crtc->base.base.id, crtc->base.name,
adjusted_mode->crtc_clock,
dsc ? "on" : "off",
limits->max_lane_count,
limits->max_rate,
limits->pipe.max_bpp,
BPP_X16_ARGS(limits->link.max_bpp_x16));
return true;
}
static bool
intel_dp_compute_config_limits(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
bool respect_downstream_limits,
bool dsc,
struct link_config_limits *limits)
{
limits->min_rate = intel_dp_min_link_rate(intel_dp);
limits->max_rate = intel_dp_max_link_rate(intel_dp);
/* FIXME 128b/132b SST support missing */
limits->max_rate = min(limits->max_rate, 810000);
limits->min_rate = min(limits->min_rate, limits->max_rate);
limits->min_lane_count = intel_dp_min_lane_count(intel_dp);
limits->max_lane_count = intel_dp_max_lane_count(intel_dp);
limits->pipe.min_bpp = intel_dp_min_bpp(crtc_state->output_format);
limits->pipe.max_bpp = intel_dp_max_bpp(intel_dp, crtc_state,
respect_downstream_limits);
if (intel_dp->use_max_params) {
/*
* Use the maximum clock and number of lanes the eDP panel
* advertizes being capable of in case the initial fast
* optimal params failed us. The panels are generally
* designed to support only a single clock and lane
* configuration, and typically on older panels these
* values correspond to the native resolution of the panel.
*/
limits->min_lane_count = limits->max_lane_count;
limits->min_rate = limits->max_rate;
}
intel_dp_adjust_compliance_config(intel_dp, crtc_state, limits);
return intel_dp_compute_config_link_bpp_limits(intel_dp,
crtc_state,
dsc,
limits);
}
int intel_dp_config_required_rate(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
int bpp = crtc_state->dsc.compression_enable ?
to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) :
crtc_state->pipe_bpp;
return intel_dp_link_required(adjusted_mode->crtc_clock, bpp);
}
bool intel_dp_joiner_needs_dsc(struct drm_i915_private *i915, bool use_joiner)
{
/*
* Pipe joiner needs compression up to display 12 due to bandwidth
* limitation. DG2 onwards pipe joiner can be enabled without
* compression.
*/
return DISPLAY_VER(i915) < 13 && use_joiner;
}
static int
intel_dp_compute_link_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
bool respect_downstream_limits)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct link_config_limits limits;
bool dsc_needed, joiner_needs_dsc;
int ret = 0;
if (pipe_config->fec_enable &&
!intel_dp_supports_fec(intel_dp, connector, pipe_config))
return -EINVAL;
if (intel_dp_need_joiner(intel_dp, connector,
adjusted_mode->crtc_hdisplay,
adjusted_mode->crtc_clock))
pipe_config->joiner_pipes = GENMASK(crtc->pipe + 1, crtc->pipe);
joiner_needs_dsc = intel_dp_joiner_needs_dsc(i915, pipe_config->joiner_pipes);
dsc_needed = joiner_needs_dsc || intel_dp->force_dsc_en ||
!intel_dp_compute_config_limits(intel_dp, pipe_config,
respect_downstream_limits,
false,
&limits);
if (!dsc_needed) {
/*
* Optimize for slow and wide for everything, because there are some
* eDP 1.3 and 1.4 panels don't work well with fast and narrow.
*/
ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
conn_state, &limits);
if (ret)
dsc_needed = true;
}
if (dsc_needed) {
drm_dbg_kms(&i915->drm, "Try DSC (fallback=%s, joiner=%s, force=%s)\n",
str_yes_no(ret), str_yes_no(joiner_needs_dsc),
str_yes_no(intel_dp->force_dsc_en));
if (!intel_dp_compute_config_limits(intel_dp, pipe_config,
respect_downstream_limits,
true,
&limits))
return -EINVAL;
ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
conn_state, &limits, 64, true);
if (ret < 0)
return ret;
}
drm_dbg_kms(&i915->drm,
"DP lane count %d clock %d bpp input %d compressed " BPP_X16_FMT " link rate required %d available %d\n",
pipe_config->lane_count, pipe_config->port_clock,
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16),
intel_dp_config_required_rate(pipe_config),
intel_dp_max_link_data_rate(intel_dp,
pipe_config->port_clock,
pipe_config->lane_count));
return 0;
}
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
const struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
/*
* Our YCbCr output is always limited range.
* crtc_state->limited_color_range only applies to RGB,
* and it must never be set for YCbCr or we risk setting
* some conflicting bits in TRANSCONF which will mess up
* the colors on the monitor.
*/
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
return false;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
return crtc_state->pipe_bpp != 18 &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
return intel_conn_state->broadcast_rgb ==
INTEL_BROADCAST_RGB_LIMITED;
}
}
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
enum port port)
{
if (IS_G4X(dev_priv))
return false;
if (DISPLAY_VER(dev_priv) < 12 && port == PORT_A)
return false;
return true;
}
static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state,
struct drm_dp_vsc_sdp *vsc)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (crtc_state->has_panel_replay) {
/*
* Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223
* VSC SDP supporting 3D stereo, Panel Replay, and Pixel
* Encoding/Colorimetry Format indication.
*/
vsc->revision = 0x7;
} else {
/*
* Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
* VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
* Colorimetry Format indication.
*/
vsc->revision = 0x5;
}
vsc->length = 0x13;
/* DP 1.4a spec, Table 2-120 */
switch (crtc_state->output_format) {
case INTEL_OUTPUT_FORMAT_YCBCR444:
vsc->pixelformat = DP_PIXELFORMAT_YUV444;
break;
case INTEL_OUTPUT_FORMAT_YCBCR420:
vsc->pixelformat = DP_PIXELFORMAT_YUV420;
break;
case INTEL_OUTPUT_FORMAT_RGB:
default:
vsc->pixelformat = DP_PIXELFORMAT_RGB;
}
switch (conn_state->colorspace) {
case DRM_MODE_COLORIMETRY_BT709_YCC:
vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
break;
case DRM_MODE_COLORIMETRY_XVYCC_601:
vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
break;
case DRM_MODE_COLORIMETRY_XVYCC_709:
vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
break;
case DRM_MODE_COLORIMETRY_SYCC_601:
vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
break;
case DRM_MODE_COLORIMETRY_OPYCC_601:
vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
break;
case DRM_MODE_COLORIMETRY_BT2020_CYCC:
vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
break;
case DRM_MODE_COLORIMETRY_BT2020_RGB:
vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
break;
case DRM_MODE_COLORIMETRY_BT2020_YCC:
vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
break;
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
break;
default:
/*
* RGB->YCBCR color conversion uses the BT.709
* color space.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
else
vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
break;
}
vsc->bpc = crtc_state->pipe_bpp / 3;
/* only RGB pixelformat supports 6 bpc */
drm_WARN_ON(&dev_priv->drm,
vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
/* all YCbCr are always limited range */
vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
}
static void intel_dp_compute_as_sdp(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct drm_dp_as_sdp *as_sdp = &crtc_state->infoframes.as_sdp;
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
if (!crtc_state->vrr.enable ||
!intel_dp_as_sdp_supported(intel_dp))
return;
crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC);
/* Currently only DP_AS_SDP_AVT_FIXED_VTOTAL mode supported */
as_sdp->sdp_type = DP_SDP_ADAPTIVE_SYNC;
as_sdp->length = 0x9;
as_sdp->duration_incr_ms = 0;
as_sdp->duration_incr_ms = 0;
if (crtc_state->cmrr.enable) {
as_sdp->mode = DP_AS_SDP_FAVT_TRR_REACHED;
as_sdp->vtotal = adjusted_mode->vtotal;
as_sdp->target_rr = drm_mode_vrefresh(adjusted_mode);
as_sdp->target_rr_divider = true;
} else {
as_sdp->mode = DP_AS_SDP_AVT_FIXED_VTOTAL;
as_sdp->vtotal = adjusted_mode->vtotal;
as_sdp->target_rr = 0;
}
}
static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_dp_vsc_sdp *vsc;
if ((!intel_dp->colorimetry_support ||
!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) &&
!crtc_state->has_psr)
return;
vsc = &crtc_state->infoframes.vsc;
crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
vsc->sdp_type = DP_SDP_VSC;
/* Needs colorimetry */
if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
vsc);
} else if (crtc_state->has_panel_replay) {
/*
* [Panel Replay without colorimetry info]
* Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223
* VSC SDP supporting 3D stereo + Panel Replay.
*/
vsc->revision = 0x6;
vsc->length = 0x10;
} else if (crtc_state->has_sel_update) {
/*
* [PSR2 without colorimetry]
* Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
* 3D stereo + PSR/PSR2 + Y-coordinate.
*/
vsc->revision = 0x4;
vsc->length = 0xe;
} else {
/*
* [PSR1]
* Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
* VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
* higher).
*/
vsc->revision = 0x2;
vsc->length = 0x8;
}
}
static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
int ret;
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
if (!conn_state->hdr_output_metadata)
return;
ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
if (ret) {
drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
return;
}
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
}
static bool can_enable_drrs(struct intel_connector *connector,
const struct intel_crtc_state *pipe_config,
const struct drm_display_mode *downclock_mode)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (pipe_config->vrr.enable)
return false;
/*
* DRRS and PSR can't be enable together, so giving preference to PSR
* as it allows more power-savings by complete shutting down display,
* so to guarantee this, intel_drrs_compute_config() must be called
* after intel_psr_compute_config().
*/
if (pipe_config->has_psr)
return false;
/* FIXME missing FDI M2/N2 etc. */
if (pipe_config->has_pch_encoder)
return false;
if (!intel_cpu_transcoder_has_drrs(i915, pipe_config->cpu_transcoder))
return false;
return downclock_mode &&
intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS;
}
static void
intel_dp_drrs_compute_config(struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int link_bpp_x16)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
const struct drm_display_mode *downclock_mode =
intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode);
int pixel_clock;
/*
* FIXME all joined pipes share the same transcoder.
* Need to account for that when updating M/N live.
*/
if (has_seamless_m_n(connector) && !pipe_config->joiner_pipes)
pipe_config->update_m_n = true;
if (!can_enable_drrs(connector, pipe_config, downclock_mode)) {
if (intel_cpu_transcoder_has_m2_n2(i915, pipe_config->cpu_transcoder))
intel_zero_m_n(&pipe_config->dp_m2_n2);
return;
}
if (IS_IRONLAKE(i915) || IS_SANDYBRIDGE(i915) || IS_IVYBRIDGE(i915))
pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay;
pipe_config->has_drrs = true;
pixel_clock = downclock_mode->clock;
if (pipe_config->splitter.enable)
pixel_clock /= pipe_config->splitter.link_count;
intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, pixel_clock,
pipe_config->port_clock,
intel_dp_bw_fec_overhead(pipe_config->fec_enable),
&pipe_config->dp_m2_n2);
/* FIXME: abstract this better */
if (pipe_config->splitter.enable)
pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count;
}
static bool intel_dp_has_audio(struct intel_encoder *encoder,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
if (!intel_dp_port_has_audio(i915, encoder->port))
return false;
if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
return connector->base.display_info.has_audio;
else
return intel_conn_state->force_audio == HDMI_AUDIO_ON;
}
static int
intel_dp_compute_output_format(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
bool respect_downstream_limits)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
bool ycbcr_420_only;
int ret;
ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
if (ycbcr_420_only && !connector->base.ycbcr_420_allowed) {
drm_dbg_kms(&i915->drm,
"YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
} else {
crtc_state->sink_format = intel_dp_sink_format(connector, adjusted_mode);
}
crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format);
ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state,
respect_downstream_limits);
if (ret) {
if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
!connector->base.ycbcr_420_allowed ||
!drm_mode_is_420_also(info, adjusted_mode))
return ret;
crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
crtc_state->output_format = intel_dp_output_format(connector,
crtc_state->sink_format);
ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state,
respect_downstream_limits);
}
return ret;
}
void
intel_dp_audio_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
pipe_config->has_audio =
intel_dp_has_audio(encoder, conn_state) &&
intel_audio_compute_config(encoder, pipe_config, conn_state);
pipe_config->sdp_split_enable = pipe_config->has_audio &&
intel_dp_is_uhbr(pipe_config);
}
static void intel_dp_queue_modeset_retry_work(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
drm_connector_get(&connector->base);
if (!queue_work(i915->unordered_wq, &connector->modeset_retry_work))
drm_connector_put(&connector->base);
}
/* NOTE: @state is only valid for MST links and can be %NULL for SST. */
void
intel_dp_queue_modeset_retry_for_link(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_connector *connector;
struct intel_digital_connector_state *conn_state;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int i;
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
intel_dp_queue_modeset_retry_work(intel_dp->attached_connector);
return;
}
if (drm_WARN_ON(&i915->drm, !state))
return;
for_each_new_intel_connector_in_state(state, connector, conn_state, i) {
if (!conn_state->base.crtc)
continue;
if (connector->mst_port == intel_dp)
intel_dp_queue_modeset_retry_work(connector);
}
}
int
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_atomic_state *state = to_intel_atomic_state(conn_state->state);
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
const struct drm_display_mode *fixed_mode;
struct intel_connector *connector = intel_dp->attached_connector;
int ret = 0, link_bpp_x16;
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && encoder->port != PORT_A)
pipe_config->has_pch_encoder = true;
fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
ret = intel_panel_compute_config(connector, adjusted_mode);
if (ret)
return ret;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return -EINVAL;
if (!connector->base.interlace_allowed &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return -EINVAL;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return -EINVAL;
if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
return -EINVAL;
/*
* Try to respect downstream TMDS clock limits first, if
* that fails assume the user might know something we don't.
*/
ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true);
if (ret)
ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false);
if (ret)
return ret;
if ((intel_dp_is_edp(intel_dp) && fixed_mode) ||
pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
ret = intel_panel_fitting(pipe_config, conn_state);
if (ret)
return ret;
}
pipe_config->limited_color_range =
intel_dp_limited_color_range(pipe_config, conn_state);
pipe_config->enhanced_framing =
drm_dp_enhanced_frame_cap(intel_dp->dpcd);
if (pipe_config->dsc.compression_enable)
link_bpp_x16 = pipe_config->dsc.compressed_bpp_x16;
else
link_bpp_x16 = to_bpp_x16(intel_dp_output_bpp(pipe_config->output_format,
pipe_config->pipe_bpp));
if (intel_dp->mso_link_count) {
int n = intel_dp->mso_link_count;
int overlap = intel_dp->mso_pixel_overlap;
pipe_config->splitter.enable = true;
pipe_config->splitter.link_count = n;
pipe_config->splitter.pixel_overlap = overlap;
drm_dbg_kms(&dev_priv->drm, "MSO link count %d, pixel overlap %d\n",
n, overlap);
adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap;
adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap;
adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap;
adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap;
adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap;
adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap;
adjusted_mode->crtc_clock /= n;
}
intel_dp_audio_compute_config(encoder, pipe_config, conn_state);
intel_link_compute_m_n(link_bpp_x16,
pipe_config->lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
intel_dp_bw_fec_overhead(pipe_config->fec_enable),
&pipe_config->dp_m_n);
/* FIXME: abstract this better */
if (pipe_config->splitter.enable)
pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count;
if (!HAS_DDI(dev_priv))
g4x_dp_set_clock(encoder, pipe_config);
intel_vrr_compute_config(pipe_config, conn_state);
intel_dp_compute_as_sdp(intel_dp, pipe_config);
intel_psr_compute_config(intel_dp, pipe_config, conn_state);
intel_alpm_lobf_compute_config(intel_dp, pipe_config, conn_state);
intel_dp_drrs_compute_config(connector, pipe_config, link_bpp_x16);
intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
return intel_dp_tunnel_atomic_compute_stream_bw(state, intel_dp, connector,
pipe_config);
}
void intel_dp_set_link_params(struct intel_dp *intel_dp,
int link_rate, int lane_count)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp->link_trained = false;
intel_dp->link_rate = link_rate;
intel_dp->lane_count = lane_count;
}
void intel_dp_reset_link_params(struct intel_dp *intel_dp)
{
intel_dp->link.max_lane_count = intel_dp_max_common_lane_count(intel_dp);
intel_dp->link.max_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->link.retrain_disabled = false;
intel_dp->link.seq_train_failures = 0;
}
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp_is_edp(intel_dp))
return;
drm_dbg_kms(&i915->drm, "\n");
intel_backlight_enable(crtc_state, conn_state);
intel_pps_backlight_on(intel_dp);
}
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp_is_edp(intel_dp))
return;
drm_dbg_kms(&i915->drm, "\n");
intel_pps_backlight_off(intel_dp);
intel_backlight_disable(old_conn_state);
}
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
/*
* DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
* be capable of signalling downstream hpd with a long pulse.
* Whether or not that means D3 is safe to use is not clear,
* but let's assume so until proven otherwise.
*
* FIXME should really check all downstream ports...
*/
return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
drm_dp_is_branch(intel_dp->dpcd) &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}
static int
write_dsc_decompression_flag(struct drm_dp_aux *aux, u8 flag, bool set)
{
int err;
u8 val;
err = drm_dp_dpcd_readb(aux, DP_DSC_ENABLE, &val);
if (err < 0)
return err;
if (set)
val |= flag;
else
val &= ~flag;
return drm_dp_dpcd_writeb(aux, DP_DSC_ENABLE, val);
}
static void
intel_dp_sink_set_dsc_decompression(struct intel_connector *connector,
bool enable)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (write_dsc_decompression_flag(connector->dp.dsc_decompression_aux,
DP_DECOMPRESSION_EN, enable) < 0)
drm_dbg_kms(&i915->drm,
"Failed to %s sink decompression state\n",
str_enable_disable(enable));
}
static void
intel_dp_sink_set_dsc_passthrough(const struct intel_connector *connector,
bool enable)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct drm_dp_aux *aux = connector->port ?
connector->port->passthrough_aux : NULL;
if (!aux)
return;
if (write_dsc_decompression_flag(aux,
DP_DSC_PASSTHROUGH_EN, enable) < 0)
drm_dbg_kms(&i915->drm,
"Failed to %s sink compression passthrough state\n",
str_enable_disable(enable));
}
static int intel_dp_dsc_aux_ref_count(struct intel_atomic_state *state,
const struct intel_connector *connector,
bool for_get_ref)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct drm_connector *_connector_iter;
struct drm_connector_state *old_conn_state;
struct drm_connector_state *new_conn_state;
int ref_count = 0;
int i;
/*
* On SST the decompression AUX device won't be shared, each connector
* uses for this its own AUX targeting the sink device.
*/
if (!connector->mst_port)
return connector->dp.dsc_decompression_enabled ? 1 : 0;
for_each_oldnew_connector_in_state(&state->base, _connector_iter,
old_conn_state, new_conn_state, i) {
const struct intel_connector *
connector_iter = to_intel_connector(_connector_iter);
if (connector_iter->mst_port != connector->mst_port)
continue;
if (!connector_iter->dp.dsc_decompression_enabled)
continue;
drm_WARN_ON(&i915->drm,
(for_get_ref && !new_conn_state->crtc) ||
(!for_get_ref && !old_conn_state->crtc));
if (connector_iter->dp.dsc_decompression_aux ==
connector->dp.dsc_decompression_aux)
ref_count++;
}
return ref_count;
}
static bool intel_dp_dsc_aux_get_ref(struct intel_atomic_state *state,
struct intel_connector *connector)
{
bool ret = intel_dp_dsc_aux_ref_count(state, connector, true) == 0;
connector->dp.dsc_decompression_enabled = true;
return ret;
}
static bool intel_dp_dsc_aux_put_ref(struct intel_atomic_state *state,
struct intel_connector *connector)
{
connector->dp.dsc_decompression_enabled = false;
return intel_dp_dsc_aux_ref_count(state, connector, false) == 0;
}
/**
* intel_dp_sink_enable_decompression - Enable DSC decompression in sink/last branch device
* @state: atomic state
* @connector: connector to enable the decompression for
* @new_crtc_state: new state for the CRTC driving @connector
*
* Enable the DSC decompression if required in the %DP_DSC_ENABLE DPCD
* register of the appropriate sink/branch device. On SST this is always the
* sink device, whereas on MST based on each device's DSC capabilities it's
* either the last branch device (enabling decompression in it) or both the
* last branch device (enabling passthrough in it) and the sink device
* (enabling decompression in it).
*/
void intel_dp_sink_enable_decompression(struct intel_atomic_state *state,
struct intel_connector *connector,
const struct intel_crtc_state *new_crtc_state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
if (!new_crtc_state->dsc.compression_enable)
return;
if (drm_WARN_ON(&i915->drm,
!connector->dp.dsc_decompression_aux ||
connector->dp.dsc_decompression_enabled))
return;
if (!intel_dp_dsc_aux_get_ref(state, connector))
return;
intel_dp_sink_set_dsc_passthrough(connector, true);
intel_dp_sink_set_dsc_decompression(connector, true);
}
/**
* intel_dp_sink_disable_decompression - Disable DSC decompression in sink/last branch device
* @state: atomic state
* @connector: connector to disable the decompression for
* @old_crtc_state: old state for the CRTC driving @connector
*
* Disable the DSC decompression if required in the %DP_DSC_ENABLE DPCD
* register of the appropriate sink/branch device, corresponding to the
* sequence in intel_dp_sink_enable_decompression().
*/
void intel_dp_sink_disable_decompression(struct intel_atomic_state *state,
struct intel_connector *connector,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
if (!old_crtc_state->dsc.compression_enable)
return;
if (drm_WARN_ON(&i915->drm,
!connector->dp.dsc_decompression_aux ||
!connector->dp.dsc_decompression_enabled))
return;
if (!intel_dp_dsc_aux_put_ref(state, connector))
return;
intel_dp_sink_set_dsc_decompression(connector, false);
intel_dp_sink_set_dsc_passthrough(connector, false);
}
static void
intel_edp_init_source_oui(struct intel_dp *intel_dp, bool careful)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 oui[] = { 0x00, 0xaa, 0x01 };
u8 buf[3] = {};
/*
* During driver init, we want to be careful and avoid changing the source OUI if it's
* already set to what we want, so as to avoid clearing any state by accident
*/
if (careful) {
if (drm_dp_dpcd_read(&intel_dp->aux, DP_SOURCE_OUI, buf, sizeof(buf)) < 0)
drm_err(&i915->drm, "Failed to read source OUI\n");
if (memcmp(oui, buf, sizeof(oui)) == 0)
return;
}
if (drm_dp_dpcd_write(&intel_dp->aux, DP_SOURCE_OUI, oui, sizeof(oui)) < 0)
drm_err(&i915->drm, "Failed to write source OUI\n");
intel_dp->last_oui_write = jiffies;
}
void intel_dp_wait_source_oui(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] Performing OUI wait (%u ms)\n",
connector->base.base.id, connector->base.name,
connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout);
wait_remaining_ms_from_jiffies(intel_dp->last_oui_write,
connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout);
}
/* If the device supports it, try to set the power state appropriately */
void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DP_SET_POWER_D0) {
if (downstream_hpd_needs_d0(intel_dp))
return;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
} else {
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
lspcon_resume(dp_to_dig_port(intel_dp));
/* Write the source OUI as early as possible */
if (intel_dp_is_edp(intel_dp))
intel_edp_init_source_oui(intel_dp, false);
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
if (ret == 1)
break;
msleep(1);
}
if (ret == 1 && lspcon->active)
lspcon_wait_pcon_mode(lspcon);
}
if (ret != 1)
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n",
encoder->base.base.id, encoder->base.name,
mode == DP_SET_POWER_D0 ? "D0" : "D3");
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp);
/**
* intel_dp_sync_state - sync the encoder state during init/resume
* @encoder: intel encoder to sync
* @crtc_state: state for the CRTC connected to the encoder
*
* Sync any state stored in the encoder wrt. HW state during driver init
* and system resume.
*/
void intel_dp_sync_state(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
bool dpcd_updated = false;
/*
* Don't clobber DPCD if it's been already read out during output
* setup (eDP) or detect.
*/
if (crtc_state && intel_dp->dpcd[DP_DPCD_REV] == 0) {
intel_dp_get_dpcd(intel_dp);
dpcd_updated = true;
}
intel_dp_tunnel_resume(intel_dp, crtc_state, dpcd_updated);
if (crtc_state)
intel_dp_reset_link_params(intel_dp);
}
bool intel_dp_initial_fastset_check(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
bool fastset = true;
/*
* If BIOS has set an unsupported or non-standard link rate for some
* reason force an encoder recompute and full modeset.
*/
if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates,
crtc_state->port_clock) < 0) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to unsupported link rate\n",
encoder->base.base.id, encoder->base.name);
crtc_state->uapi.connectors_changed = true;
fastset = false;
}
/*
* FIXME hack to force full modeset when DSC is being used.
*
* As long as we do not have full state readout and config comparison
* of crtc_state->dsc, we have no way to ensure reliable fastset.
* Remove once we have readout for DSC.
*/
if (crtc_state->dsc.compression_enable) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to DSC being enabled\n",
encoder->base.base.id, encoder->base.name);
crtc_state->uapi.mode_changed = true;
fastset = false;
}
if (CAN_PANEL_REPLAY(intel_dp)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Forcing full modeset to compute panel replay state\n",
encoder->base.base.id, encoder->base.name);
crtc_state->uapi.mode_changed = true;
fastset = false;
}
return fastset;
}
static void intel_dp_get_pcon_dsc_cap(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/* Clear the cached register set to avoid using stale values */
memset(intel_dp->pcon_dsc_dpcd, 0, sizeof(intel_dp->pcon_dsc_dpcd));
if (drm_dp_dpcd_read(&intel_dp->aux, DP_PCON_DSC_ENCODER,
intel_dp->pcon_dsc_dpcd,
sizeof(intel_dp->pcon_dsc_dpcd)) < 0)
drm_err(&i915->drm, "Failed to read DPCD register 0x%x\n",
DP_PCON_DSC_ENCODER);
drm_dbg_kms(&i915->drm, "PCON ENCODER DSC DPCD: %*ph\n",
(int)sizeof(intel_dp->pcon_dsc_dpcd), intel_dp->pcon_dsc_dpcd);
}
static int intel_dp_pcon_get_frl_mask(u8 frl_bw_mask)
{
int bw_gbps[] = {9, 18, 24, 32, 40, 48};
int i;
for (i = ARRAY_SIZE(bw_gbps) - 1; i >= 0; i--) {
if (frl_bw_mask & (1 << i))
return bw_gbps[i];
}
return 0;
}
static int intel_dp_pcon_set_frl_mask(int max_frl)
{
switch (max_frl) {
case 48:
return DP_PCON_FRL_BW_MASK_48GBPS;
case 40:
return DP_PCON_FRL_BW_MASK_40GBPS;
case 32:
return DP_PCON_FRL_BW_MASK_32GBPS;
case 24:
return DP_PCON_FRL_BW_MASK_24GBPS;
case 18:
return DP_PCON_FRL_BW_MASK_18GBPS;
case 9:
return DP_PCON_FRL_BW_MASK_9GBPS;
}
return 0;
}
static int intel_dp_hdmi_sink_max_frl(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
int max_frl_rate;
int max_lanes, rate_per_lane;
int max_dsc_lanes, dsc_rate_per_lane;
max_lanes = connector->display_info.hdmi.max_lanes;
rate_per_lane = connector->display_info.hdmi.max_frl_rate_per_lane;
max_frl_rate = max_lanes * rate_per_lane;
if (connector->display_info.hdmi.dsc_cap.v_1p2) {
max_dsc_lanes = connector->display_info.hdmi.dsc_cap.max_lanes;
dsc_rate_per_lane = connector->display_info.hdmi.dsc_cap.max_frl_rate_per_lane;
if (max_dsc_lanes && dsc_rate_per_lane)
max_frl_rate = min(max_frl_rate, max_dsc_lanes * dsc_rate_per_lane);
}
return max_frl_rate;
}
static bool
intel_dp_pcon_is_frl_trained(struct intel_dp *intel_dp,
u8 max_frl_bw_mask, u8 *frl_trained_mask)
{
if (drm_dp_pcon_hdmi_link_active(&intel_dp->aux) &&
drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, frl_trained_mask) == DP_PCON_HDMI_MODE_FRL &&
*frl_trained_mask >= max_frl_bw_mask)
return true;
return false;
}
static int intel_dp_pcon_start_frl_training(struct intel_dp *intel_dp)
{
#define TIMEOUT_FRL_READY_MS 500
#define TIMEOUT_HDMI_LINK_ACTIVE_MS 1000
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int max_frl_bw, max_pcon_frl_bw, max_edid_frl_bw, ret;
u8 max_frl_bw_mask = 0, frl_trained_mask;
bool is_active;
max_pcon_frl_bw = intel_dp->dfp.pcon_max_frl_bw;
drm_dbg(&i915->drm, "PCON max rate = %d Gbps\n", max_pcon_frl_bw);
max_edid_frl_bw = intel_dp_hdmi_sink_max_frl(intel_dp);
drm_dbg(&i915->drm, "Sink max rate from EDID = %d Gbps\n", max_edid_frl_bw);
max_frl_bw = min(max_edid_frl_bw, max_pcon_frl_bw);
if (max_frl_bw <= 0)
return -EINVAL;
max_frl_bw_mask = intel_dp_pcon_set_frl_mask(max_frl_bw);
drm_dbg(&i915->drm, "MAX_FRL_BW_MASK = %u\n", max_frl_bw_mask);
if (intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask))
goto frl_trained;
ret = drm_dp_pcon_frl_prepare(&intel_dp->aux, false);
if (ret < 0)
return ret;
/* Wait for PCON to be FRL Ready */
wait_for(is_active = drm_dp_pcon_is_frl_ready(&intel_dp->aux) == true, TIMEOUT_FRL_READY_MS);
if (!is_active)
return -ETIMEDOUT;
ret = drm_dp_pcon_frl_configure_1(&intel_dp->aux, max_frl_bw,
DP_PCON_ENABLE_SEQUENTIAL_LINK);
if (ret < 0)
return ret;
ret = drm_dp_pcon_frl_configure_2(&intel_dp->aux, max_frl_bw_mask,
DP_PCON_FRL_LINK_TRAIN_NORMAL);
if (ret < 0)
return ret;
ret = drm_dp_pcon_frl_enable(&intel_dp->aux);
if (ret < 0)
return ret;
/*
* Wait for FRL to be completed
* Check if the HDMI Link is up and active.
*/
wait_for(is_active =
intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask),
TIMEOUT_HDMI_LINK_ACTIVE_MS);
if (!is_active)
return -ETIMEDOUT;
frl_trained:
drm_dbg(&i915->drm, "FRL_TRAINED_MASK = %u\n", frl_trained_mask);
intel_dp->frl.trained_rate_gbps = intel_dp_pcon_get_frl_mask(frl_trained_mask);
intel_dp->frl.is_trained = true;
drm_dbg(&i915->drm, "FRL trained with : %d Gbps\n", intel_dp->frl.trained_rate_gbps);
return 0;
}
static bool intel_dp_is_hdmi_2_1_sink(struct intel_dp *intel_dp)
{
if (drm_dp_is_branch(intel_dp->dpcd) &&
intel_dp_has_hdmi_sink(intel_dp) &&
intel_dp_hdmi_sink_max_frl(intel_dp) > 0)
return true;
return false;
}
static
int intel_dp_pcon_set_tmds_mode(struct intel_dp *intel_dp)
{
int ret;
u8 buf = 0;
/* Set PCON source control mode */
buf |= DP_PCON_ENABLE_SOURCE_CTL_MODE;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
if (ret < 0)
return ret;
/* Set HDMI LINK ENABLE */
buf |= DP_PCON_ENABLE_HDMI_LINK;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
if (ret < 0)
return ret;
return 0;
}
void intel_dp_check_frl_training(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
/*
* Always go for FRL training if:
* -PCON supports SRC_CTL_MODE (VESA DP2.0-HDMI2.1 PCON Spec Draft-1 Sec-7)
* -sink is HDMI2.1
*/
if (!(intel_dp->downstream_ports[2] & DP_PCON_SOURCE_CTL_MODE) ||
!intel_dp_is_hdmi_2_1_sink(intel_dp) ||
intel_dp->frl.is_trained)
return;
if (intel_dp_pcon_start_frl_training(intel_dp) < 0) {
int ret, mode;
drm_dbg(&dev_priv->drm, "Couldn't set FRL mode, continuing with TMDS mode\n");
ret = intel_dp_pcon_set_tmds_mode(intel_dp);
mode = drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, NULL);
if (ret < 0 || mode != DP_PCON_HDMI_MODE_TMDS)
drm_dbg(&dev_priv->drm, "Issue with PCON, cannot set TMDS mode\n");
} else {
drm_dbg(&dev_priv->drm, "FRL training Completed\n");
}
}
static int
intel_dp_pcon_dsc_enc_slice_height(const struct intel_crtc_state *crtc_state)
{
int vactive = crtc_state->hw.adjusted_mode.vdisplay;
return intel_hdmi_dsc_get_slice_height(vactive);
}
static int
intel_dp_pcon_dsc_enc_slices(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
int hdmi_throughput = connector->display_info.hdmi.dsc_cap.clk_per_slice;
int hdmi_max_slices = connector->display_info.hdmi.dsc_cap.max_slices;
int pcon_max_slices = drm_dp_pcon_dsc_max_slices(intel_dp->pcon_dsc_dpcd);
int pcon_max_slice_width = drm_dp_pcon_dsc_max_slice_width(intel_dp->pcon_dsc_dpcd);
return intel_hdmi_dsc_get_num_slices(crtc_state, pcon_max_slices,
pcon_max_slice_width,
hdmi_max_slices, hdmi_throughput);
}
static int
intel_dp_pcon_dsc_enc_bpp(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int num_slices, int slice_width)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
int output_format = crtc_state->output_format;
bool hdmi_all_bpp = connector->display_info.hdmi.dsc_cap.all_bpp;
int pcon_fractional_bpp = drm_dp_pcon_dsc_bpp_incr(intel_dp->pcon_dsc_dpcd);
int hdmi_max_chunk_bytes =
connector->display_info.hdmi.dsc_cap.total_chunk_kbytes * 1024;
return intel_hdmi_dsc_get_bpp(pcon_fractional_bpp, slice_width,
num_slices, output_format, hdmi_all_bpp,
hdmi_max_chunk_bytes);
}
void
intel_dp_pcon_dsc_configure(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 pps_param[6];
int slice_height;
int slice_width;
int num_slices;
int bits_per_pixel;
int ret;
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct drm_connector *connector;
bool hdmi_is_dsc_1_2;
if (!intel_dp_is_hdmi_2_1_sink(intel_dp))
return;
if (!intel_connector)
return;
connector = &intel_connector->base;
hdmi_is_dsc_1_2 = connector->display_info.hdmi.dsc_cap.v_1p2;
if (!drm_dp_pcon_enc_is_dsc_1_2(intel_dp->pcon_dsc_dpcd) ||
!hdmi_is_dsc_1_2)
return;
slice_height = intel_dp_pcon_dsc_enc_slice_height(crtc_state);
if (!slice_height)
return;
num_slices = intel_dp_pcon_dsc_enc_slices(intel_dp, crtc_state);
if (!num_slices)
return;
slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay,
num_slices);
bits_per_pixel = intel_dp_pcon_dsc_enc_bpp(intel_dp, crtc_state,
num_slices, slice_width);
if (!bits_per_pixel)
return;
pps_param[0] = slice_height & 0xFF;
pps_param[1] = slice_height >> 8;
pps_param[2] = slice_width & 0xFF;
pps_param[3] = slice_width >> 8;
pps_param[4] = bits_per_pixel & 0xFF;
pps_param[5] = (bits_per_pixel >> 8) & 0x3;
ret = drm_dp_pcon_pps_override_param(&intel_dp->aux, pps_param);
if (ret < 0)
drm_dbg_kms(&i915->drm, "Failed to set pcon DSC\n");
}
void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
bool ycbcr444_to_420 = false;
bool rgb_to_ycbcr = false;
u8 tmp;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
return;
if (!drm_dp_is_branch(intel_dp->dpcd))
return;
tmp = intel_dp_has_hdmi_sink(intel_dp) ? DP_HDMI_DVI_OUTPUT_CONFIG : 0;
if (drm_dp_dpcd_writeb(&intel_dp->aux,
DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
drm_dbg_kms(&i915->drm, "Failed to %s protocol converter HDMI mode\n",
str_enable_disable(intel_dp_has_hdmi_sink(intel_dp)));
if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
switch (crtc_state->output_format) {
case INTEL_OUTPUT_FORMAT_YCBCR420:
break;
case INTEL_OUTPUT_FORMAT_YCBCR444:
ycbcr444_to_420 = true;
break;
case INTEL_OUTPUT_FORMAT_RGB:
rgb_to_ycbcr = true;
ycbcr444_to_420 = true;
break;
default:
MISSING_CASE(crtc_state->output_format);
break;
}
} else if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) {
switch (crtc_state->output_format) {
case INTEL_OUTPUT_FORMAT_YCBCR444:
break;
case INTEL_OUTPUT_FORMAT_RGB:
rgb_to_ycbcr = true;
break;
default:
MISSING_CASE(crtc_state->output_format);
break;
}
}
tmp = ycbcr444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
if (drm_dp_dpcd_writeb(&intel_dp->aux,
DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
drm_dbg_kms(&i915->drm,
"Failed to %s protocol converter YCbCr 4:2:0 conversion mode\n",
str_enable_disable(intel_dp->dfp.ycbcr_444_to_420));
tmp = rgb_to_ycbcr ? DP_CONVERSION_BT709_RGB_YCBCR_ENABLE : 0;
if (drm_dp_pcon_convert_rgb_to_ycbcr(&intel_dp->aux, tmp) < 0)
drm_dbg_kms(&i915->drm,
"Failed to %s protocol converter RGB->YCbCr conversion mode\n",
str_enable_disable(tmp));
}
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
u8 dprx = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
&dprx) != 1)
return false;
return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}
static void intel_dp_read_dsc_dpcd(struct drm_dp_aux *aux,
u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
{
if (drm_dp_dpcd_read(aux, DP_DSC_SUPPORT, dsc_dpcd,
DP_DSC_RECEIVER_CAP_SIZE) < 0) {
drm_err(aux->drm_dev,
"Failed to read DPCD register 0x%x\n",
DP_DSC_SUPPORT);
return;
}
drm_dbg_kms(aux->drm_dev, "DSC DPCD: %*ph\n",
DP_DSC_RECEIVER_CAP_SIZE,
dsc_dpcd);
}
void intel_dp_get_dsc_sink_cap(u8 dpcd_rev, struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
/*
* Clear the cached register set to avoid using stale values
* for the sinks that do not support DSC.
*/
memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd));
/* Clear fec_capable to avoid using stale values */
connector->dp.fec_capability = 0;
if (dpcd_rev < DP_DPCD_REV_14)
return;
intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux,
connector->dp.dsc_dpcd);
if (drm_dp_dpcd_readb(connector->dp.dsc_decompression_aux, DP_FEC_CAPABILITY,
&connector->dp.fec_capability) < 0) {
drm_err(&i915->drm, "Failed to read FEC DPCD register\n");
return;
}
drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
connector->dp.fec_capability);
}
static void intel_edp_get_dsc_sink_cap(u8 edp_dpcd_rev, struct intel_connector *connector)
{
if (edp_dpcd_rev < DP_EDP_14)
return;
intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, connector->dp.dsc_dpcd);
}
static void intel_edp_mso_mode_fixup(struct intel_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
int n = intel_dp->mso_link_count;
int overlap = intel_dp->mso_pixel_overlap;
if (!mode || !n)
return;
mode->hdisplay = (mode->hdisplay - overlap) * n;
mode->hsync_start = (mode->hsync_start - overlap) * n;
mode->hsync_end = (mode->hsync_end - overlap) * n;
mode->htotal = (mode->htotal - overlap) * n;
mode->clock *= n;
drm_mode_set_name(mode);
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] using generated MSO mode: " DRM_MODE_FMT "\n",
connector->base.base.id, connector->base.name,
DRM_MODE_ARG(mode));
}
void intel_edp_fixup_vbt_bpp(struct intel_encoder *encoder, int pipe_bpp)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_connector *connector = intel_dp->attached_connector;
if (connector->panel.vbt.edp.bpp && pipe_bpp > connector->panel.vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
drm_dbg_kms(&dev_priv->drm,
"pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_bpp, connector->panel.vbt.edp.bpp);
connector->panel.vbt.edp.bpp = pipe_bpp;
}
}
static void intel_edp_mso_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_display_info *info = &connector->base.display_info;
u8 mso;
if (intel_dp->edp_dpcd[0] < DP_EDP_14)
return;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_EDP_MSO_LINK_CAPABILITIES, &mso) != 1) {
drm_err(&i915->drm, "Failed to read MSO cap\n");
return;
}
/* Valid configurations are SST or MSO 2x1, 2x2, 4x1 */
mso &= DP_EDP_MSO_NUMBER_OF_LINKS_MASK;
if (mso % 2 || mso > drm_dp_max_lane_count(intel_dp->dpcd)) {
drm_err(&i915->drm, "Invalid MSO link count cap %u\n", mso);
mso = 0;
}
if (mso) {
drm_dbg_kms(&i915->drm, "Sink MSO %ux%u configuration, pixel overlap %u\n",
mso, drm_dp_max_lane_count(intel_dp->dpcd) / mso,
info->mso_pixel_overlap);
if (!HAS_MSO(i915)) {
drm_err(&i915->drm, "No source MSO support, disabling\n");
mso = 0;
}
}
intel_dp->mso_link_count = mso;
intel_dp->mso_pixel_overlap = mso ? info->mso_pixel_overlap : 0;
}
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp, struct intel_connector *connector)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
/* this function is meant to be called only once */
drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
return false;
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
/*
* Read the eDP display control registers.
*
* Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
* DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
* set, but require eDP 1.4+ detection (e.g. for supported link rates
* method). The display control registers should read zero if they're
* not supported anyway.
*/
if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
sizeof(intel_dp->edp_dpcd)) {
drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
(int)sizeof(intel_dp->edp_dpcd),
intel_dp->edp_dpcd);
intel_dp->use_max_params = intel_dp->edp_dpcd[0] < DP_EDP_14;
}
/*
* This has to be called after intel_dp->edp_dpcd is filled, PSR checks
* for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
*/
intel_psr_init_dpcd(intel_dp);
/* Clear the default sink rates */
intel_dp->num_sink_rates = 0;
/* Read the eDP 1.4+ supported link rates. */
if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
int i;
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
int val = le16_to_cpu(sink_rates[i]);
if (val == 0)
break;
/* Value read multiplied by 200kHz gives the per-lane
* link rate in kHz. The source rates are, however,
* stored in terms of LS_Clk kHz. The full conversion
* back to symbols is
* (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
*/
intel_dp->sink_rates[i] = (val * 200) / 10;
}
intel_dp->num_sink_rates = i;
}
/*
* Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
* default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
*/
if (intel_dp->num_sink_rates)
intel_dp->use_rate_select = true;
else
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_max_sink_lane_count(intel_dp);
/* Read the eDP DSC DPCD registers */
if (HAS_DSC(dev_priv))
intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0],
connector);
/*
* If needed, program our source OUI so we can make various Intel-specific AUX services
* available (such as HDR backlight controls)
*/
intel_edp_init_source_oui(intel_dp, true);
return true;
}
static bool
intel_dp_has_sink_count(struct intel_dp *intel_dp)
{
if (!intel_dp->attached_connector)
return false;
return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
intel_dp->dpcd,
&intel_dp->desc);
}
void intel_dp_update_sink_caps(struct intel_dp *intel_dp)
{
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_max_sink_lane_count(intel_dp);
intel_dp_set_common_rates(intel_dp);
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
int ret;
if (intel_dp_init_lttpr_and_dprx_caps(intel_dp) < 0)
return false;
/*
* Don't clobber cached eDP rates. Also skip re-reading
* the OUI/ID since we know it won't change.
*/
if (!intel_dp_is_edp(intel_dp)) {
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
intel_dp_update_sink_caps(intel_dp);
}
if (intel_dp_has_sink_count(intel_dp)) {
ret = drm_dp_read_sink_count(&intel_dp->aux);
if (ret < 0)
return false;
/*
* Sink count can change between short pulse hpd hence
* a member variable in intel_dp will track any changes
* between short pulse interrupts.
*/
intel_dp->sink_count = ret;
/*
* SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
* a dongle is present but no display. Unless we require to know
* if a dongle is present or not, we don't need to update
* downstream port information. So, an early return here saves
* time from performing other operations which are not required.
*/
if (!intel_dp->sink_count)
return false;
}
return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
intel_dp->downstream_ports) == 0;
}
static const char *intel_dp_mst_mode_str(enum drm_dp_mst_mode mst_mode)
{
if (mst_mode == DRM_DP_MST)
return "MST";
else if (mst_mode == DRM_DP_SST_SIDEBAND_MSG)
return "SST w/ sideband messaging";
else
return "SST";
}
static enum drm_dp_mst_mode
intel_dp_mst_mode_choose(struct intel_dp *intel_dp,
enum drm_dp_mst_mode sink_mst_mode)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!i915->display.params.enable_dp_mst)
return DRM_DP_SST;
if (!intel_dp_mst_source_support(intel_dp))
return DRM_DP_SST;
if (sink_mst_mode == DRM_DP_SST_SIDEBAND_MSG &&
!(intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B))
return DRM_DP_SST;
return sink_mst_mode;
}
static enum drm_dp_mst_mode
intel_dp_mst_detect(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum drm_dp_mst_mode sink_mst_mode;
enum drm_dp_mst_mode mst_detect;
sink_mst_mode = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
mst_detect = intel_dp_mst_mode_choose(intel_dp, sink_mst_mode);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s -> enable: %s\n",
encoder->base.base.id, encoder->base.name,
str_yes_no(intel_dp_mst_source_support(intel_dp)),
intel_dp_mst_mode_str(sink_mst_mode),
str_yes_no(i915->display.params.enable_dp_mst),
intel_dp_mst_mode_str(mst_detect));
return mst_detect;
}
static void
intel_dp_mst_configure(struct intel_dp *intel_dp)
{
if (!intel_dp_mst_source_support(intel_dp))
return;
intel_dp->is_mst = intel_dp->mst_detect != DRM_DP_SST;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
/* Avoid stale info on the next detect cycle. */
intel_dp->mst_detect = DRM_DP_SST;
}
static void
intel_dp_mst_disconnect(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp->is_mst)
return;
drm_dbg_kms(&i915->drm, "MST device may have disappeared %d vs %d\n",
intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
}
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *esi)
{
return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 4) == 4;
}
static bool intel_dp_ack_sink_irq_esi(struct intel_dp *intel_dp, u8 esi[4])
{
int retry;
for (retry = 0; retry < 3; retry++) {
if (drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI + 1,
&esi[1], 3) == 3)
return true;
}
return false;
}
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
/*
* As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
* of Color Encoding Format and Content Color Gamut], in order to
* sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
return true;
switch (conn_state->colorspace) {
case DRM_MODE_COLORIMETRY_SYCC_601:
case DRM_MODE_COLORIMETRY_OPYCC_601:
case DRM_MODE_COLORIMETRY_BT2020_YCC:
case DRM_MODE_COLORIMETRY_BT2020_RGB:
case DRM_MODE_COLORIMETRY_BT2020_CYCC:
return true;
default:
break;
}
return false;
}
static ssize_t intel_dp_as_sdp_pack(const struct drm_dp_as_sdp *as_sdp,
struct dp_sdp *sdp, size_t size)
{
size_t length = sizeof(struct dp_sdp);
if (size < length)
return -ENOSPC;
memset(sdp, 0, size);
/* Prepare AS (Adaptive Sync) SDP Header */
sdp->sdp_header.HB0 = 0;
sdp->sdp_header.HB1 = as_sdp->sdp_type;
sdp->sdp_header.HB2 = 0x02;
sdp->sdp_header.HB3 = as_sdp->length;
/* Fill AS (Adaptive Sync) SDP Payload */
sdp->db[0] = as_sdp->mode;
sdp->db[1] = as_sdp->vtotal & 0xFF;
sdp->db[2] = (as_sdp->vtotal >> 8) & 0xFF;
sdp->db[3] = as_sdp->target_rr & 0xFF;
sdp->db[4] = (as_sdp->target_rr >> 8) & 0x3;
if (as_sdp->target_rr_divider)
sdp->db[4] |= 0x20;
return length;
}
static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(struct drm_i915_private *i915,
const struct hdmi_drm_infoframe *drm_infoframe,
struct dp_sdp *sdp,
size_t size)
{
size_t length = sizeof(struct dp_sdp);
const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
ssize_t len;
if (size < length)
return -ENOSPC;
memset(sdp, 0, size);
len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
if (len < 0) {
drm_dbg_kms(&i915->drm, "buffer size is smaller than hdr metadata infoframe\n");
return -ENOSPC;
}
if (len != infoframe_size) {
drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n");
return -ENOSPC;
}
/*
* Set up the infoframe sdp packet for HDR static metadata.
* Prepare VSC Header for SU as per DP 1.4a spec,
* Table 2-100 and Table 2-101
*/
/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
sdp->sdp_header.HB0 = 0;
/*
* Packet Type 80h + Non-audio INFOFRAME Type value
* HDMI_INFOFRAME_TYPE_DRM: 0x87
* - 80h + Non-audio INFOFRAME Type value
* - InfoFrame Type: 0x07
* [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
*/
sdp->sdp_header.HB1 = drm_infoframe->type;
/*
* Least Significant Eight Bits of (Data Byte Count – 1)
* infoframe_size - 1
*/
sdp->sdp_header.HB2 = 0x1D;
/* INFOFRAME SDP Version Number */
sdp->sdp_header.HB3 = (0x13 << 2);
/* CTA Header Byte 2 (INFOFRAME Version Number) */
sdp->db[0] = drm_infoframe->version;
/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
sdp->db[1] = drm_infoframe->length;
/*
* Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
* HDMI_INFOFRAME_HEADER_SIZE
*/
BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
HDMI_DRM_INFOFRAME_SIZE);
/*
* Size of DP infoframe sdp packet for HDR static metadata consists of
* - DP SDP Header(struct dp_sdp_header): 4 bytes
* - Two Data Blocks: 2 bytes
* CTA Header Byte2 (INFOFRAME Version Number)
* CTA Header Byte3 (Length of INFOFRAME)
* - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
*
* Prior to GEN11's GMP register size is identical to DP HDR static metadata
* infoframe size. But GEN11+ has larger than that size, write_infoframe
* will pad rest of the size.
*/
return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
}
static void intel_write_dp_sdp(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct dp_sdp sdp = {};
ssize_t len;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
switch (type) {
case DP_SDP_VSC:
len = drm_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp);
break;
case HDMI_PACKET_TYPE_GAMUT_METADATA:
len = intel_dp_hdr_metadata_infoframe_sdp_pack(dev_priv,
&crtc_state->infoframes.drm.drm,
&sdp, sizeof(sdp));
break;
case DP_SDP_ADAPTIVE_SYNC:
len = intel_dp_as_sdp_pack(&crtc_state->infoframes.as_sdp, &sdp,
sizeof(sdp));
break;
default:
MISSING_CASE(type);
return;
}
if (drm_WARN_ON(&dev_priv->drm, len < 0))
return;
dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
}
void intel_dp_set_infoframes(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
i915_reg_t reg = HSW_TVIDEO_DIP_CTL(dev_priv,
crtc_state->cpu_transcoder);
u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
if (HAS_AS_SDP(dev_priv))
dip_enable |= VIDEO_DIP_ENABLE_AS_ADL;
u32 val = intel_de_read(dev_priv, reg) & ~dip_enable;
/* TODO: Sanitize DSC enabling wrt. intel_dsc_dp_pps_write(). */
if (!enable && HAS_DSC(dev_priv))
val &= ~VDIP_ENABLE_PPS;
/* When PSR is enabled, this routine doesn't disable VSC DIP */
if (!crtc_state->has_psr)
val &= ~VIDEO_DIP_ENABLE_VSC_HSW;
intel_de_write(dev_priv, reg, val);
intel_de_posting_read(dev_priv, reg);
if (!enable)
return;
intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
intel_write_dp_sdp(encoder, crtc_state, DP_SDP_ADAPTIVE_SYNC);
intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
}
static
int intel_dp_as_sdp_unpack(struct drm_dp_as_sdp *as_sdp,
const void *buffer, size_t size)
{
const struct dp_sdp *sdp = buffer;
if (size < sizeof(struct dp_sdp))
return -EINVAL;
memset(as_sdp, 0, sizeof(*as_sdp));
if (sdp->sdp_header.HB0 != 0)
return -EINVAL;
if (sdp->sdp_header.HB1 != DP_SDP_ADAPTIVE_SYNC)
return -EINVAL;
if (sdp->sdp_header.HB2 != 0x02)
return -EINVAL;
if ((sdp->sdp_header.HB3 & 0x3F) != 9)
return -EINVAL;
as_sdp->length = sdp->sdp_header.HB3 & DP_ADAPTIVE_SYNC_SDP_LENGTH;
as_sdp->mode = sdp->db[0] & DP_ADAPTIVE_SYNC_SDP_OPERATION_MODE;
as_sdp->vtotal = (sdp->db[2] << 8) | sdp->db[1];
as_sdp->target_rr = (u64)sdp->db[3] | ((u64)sdp->db[4] & 0x3);
as_sdp->target_rr_divider = sdp->db[4] & 0x20 ? true : false;
return 0;
}
static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
const void *buffer, size_t size)
{
const struct dp_sdp *sdp = buffer;
if (size < sizeof(struct dp_sdp))
return -EINVAL;
memset(vsc, 0, sizeof(*vsc));
if (sdp->sdp_header.HB0 != 0)
return -EINVAL;
if (sdp->sdp_header.HB1 != DP_SDP_VSC)
return -EINVAL;
vsc->sdp_type = sdp->sdp_header.HB1;
vsc->revision = sdp->sdp_header.HB2;
vsc->length = sdp->sdp_header.HB3;
if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
(sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe) ||
(sdp->sdp_header.HB2 == 0x6 && sdp->sdp_header.HB3 == 0x10)) {
/*
* - HB2 = 0x2, HB3 = 0x8
* VSC SDP supporting 3D stereo + PSR
* - HB2 = 0x4, HB3 = 0xe
* VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
* first scan line of the SU region (applies to eDP v1.4b
* and higher).
* - HB2 = 0x6, HB3 = 0x10
* VSC SDP supporting 3D stereo + Panel Replay.
*/
return 0;
} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
/*
* - HB2 = 0x5, HB3 = 0x13
* VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
* Format.
*/
vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
vsc->colorimetry = sdp->db[16] & 0xf;
vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
switch (sdp->db[17] & 0x7) {
case 0x0:
vsc->bpc = 6;
break;
case 0x1:
vsc->bpc = 8;
break;
case 0x2:
vsc->bpc = 10;
break;
case 0x3:
vsc->bpc = 12;
break;
case 0x4:
vsc->bpc = 16;
break;
default:
MISSING_CASE(sdp->db[17] & 0x7);
return -EINVAL;
}
vsc->content_type = sdp->db[18] & 0x7;
} else {
return -EINVAL;
}
return 0;
}
static void
intel_read_dp_as_sdp(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_dp_as_sdp *as_sdp)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
unsigned int type = DP_SDP_ADAPTIVE_SYNC;
struct dp_sdp sdp = {};
int ret;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
sizeof(sdp));
ret = intel_dp_as_sdp_unpack(as_sdp, &sdp, sizeof(sdp));
if (ret)
drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP AS SDP\n");
}
static int
intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
const void *buffer, size_t size)
{
int ret;
const struct dp_sdp *sdp = buffer;
if (size < sizeof(struct dp_sdp))
return -EINVAL;
if (sdp->sdp_header.HB0 != 0)
return -EINVAL;
if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
return -EINVAL;
/*
* Least Significant Eight Bits of (Data Byte Count – 1)
* 1Dh (i.e., Data Byte Count = 30 bytes).
*/
if (sdp->sdp_header.HB2 != 0x1D)
return -EINVAL;
/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
if ((sdp->sdp_header.HB3 & 0x3) != 0)
return -EINVAL;
/* INFOFRAME SDP Version Number */
if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
return -EINVAL;
/* CTA Header Byte 2 (INFOFRAME Version Number) */
if (sdp->db[0] != 1)
return -EINVAL;
/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
return -EINVAL;
ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
HDMI_DRM_INFOFRAME_SIZE);
return ret;
}
static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_dp_vsc_sdp *vsc)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
unsigned int type = DP_SDP_VSC;
struct dp_sdp sdp = {};
int ret;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
if (ret)
drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
}
static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct hdmi_drm_infoframe *drm_infoframe)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
struct dp_sdp sdp = {};
int ret;
if ((crtc_state->infoframes.enable &
intel_hdmi_infoframe_enable(type)) == 0)
return;
dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
sizeof(sdp));
ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
sizeof(sdp));
if (ret)
drm_dbg_kms(&dev_priv->drm,
"Failed to unpack DP HDR Metadata Infoframe SDP\n");
}
void intel_read_dp_sdp(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
unsigned int type)
{
switch (type) {
case DP_SDP_VSC:
intel_read_dp_vsc_sdp(encoder, crtc_state,
&crtc_state->infoframes.vsc);
break;
case HDMI_PACKET_TYPE_GAMUT_METADATA:
intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
&crtc_state->infoframes.drm.drm);
break;
case DP_SDP_ADAPTIVE_SYNC:
intel_read_dp_as_sdp(encoder, crtc_state,
&crtc_state->infoframes.as_sdp);
break;
default:
MISSING_CASE(type);
break;
}
}
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int status = 0;
int test_link_rate;
u8 test_lane_count, test_link_bw;
/* (DP CTS 1.2)
* 4.3.1.11
*/
/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
&test_lane_count);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "Lane count read failed\n");
return DP_TEST_NAK;
}
test_lane_count &= DP_MAX_LANE_COUNT_MASK;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
&test_link_bw);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
return DP_TEST_NAK;
}
test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
/* Validate the requested link rate and lane count */
if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
test_lane_count))
return DP_TEST_NAK;
intel_dp->compliance.test_lane_count = test_lane_count;
intel_dp->compliance.test_link_rate = test_link_rate;
return DP_TEST_ACK;
}
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 test_pattern;
u8 test_misc;
__be16 h_width, v_height;
int status = 0;
/* Read the TEST_PATTERN (DP CTS 3.1.5) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
&test_pattern);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
return DP_TEST_NAK;
}
if (test_pattern != DP_COLOR_RAMP)
return DP_TEST_NAK;
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
&h_width, 2);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "H Width read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
&v_height, 2);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "V Height read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
&test_misc);
if (status <= 0) {
drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
return DP_TEST_NAK;
}
if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
return DP_TEST_NAK;
if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
return DP_TEST_NAK;
switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
case DP_TEST_BIT_DEPTH_6:
intel_dp->compliance.test_data.bpc = 6;
break;
case DP_TEST_BIT_DEPTH_8:
intel_dp->compliance.test_data.bpc = 8;
break;
default:
return DP_TEST_NAK;
}
intel_dp->compliance.test_data.video_pattern = test_pattern;
intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = true;
return DP_TEST_ACK;
}
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 test_result = DP_TEST_ACK;
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
if (intel_connector->detect_edid == NULL ||
connector->edid_corrupt ||
intel_dp->aux.i2c_defer_count > 6) {
/* Check EDID read for NACKs, DEFERs and corruption
* (DP CTS 1.2 Core r1.1)
* 4.2.2.4 : Failed EDID read, I2C_NAK
* 4.2.2.5 : Failed EDID read, I2C_DEFER
* 4.2.2.6 : EDID corruption detected
* Use failsafe mode for all cases
*/
if (intel_dp->aux.i2c_nack_count > 0 ||
intel_dp->aux.i2c_defer_count > 0)
drm_dbg_kms(&i915->drm,
"EDID read had %d NACKs, %d DEFERs\n",
intel_dp->aux.i2c_nack_count,
intel_dp->aux.i2c_defer_count);
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
} else {
/* FIXME: Get rid of drm_edid_raw() */
const struct edid *block = drm_edid_raw(intel_connector->detect_edid);
/* We have to write the checksum of the last block read */
block += block->extensions;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
block->checksum) <= 0)
drm_dbg_kms(&i915->drm,
"Failed to write EDID checksum\n");
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
}
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = true;
return test_result;
}
static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
struct drm_dp_phy_test_params *data =
&intel_dp->compliance.test_data.phytest;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum pipe pipe = crtc->pipe;
u32 pattern_val;
switch (data->phy_pattern) {
case DP_LINK_QUAL_PATTERN_DISABLE:
drm_dbg_kms(&dev_priv->drm, "Disable Phy Test Pattern\n");
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
if (DISPLAY_VER(dev_priv) >= 10)
intel_de_rmw(dev_priv, dp_tp_ctl_reg(encoder, crtc_state),
DP_TP_CTL_TRAIN_PAT4_SEL_MASK | DP_TP_CTL_LINK_TRAIN_MASK,
DP_TP_CTL_LINK_TRAIN_NORMAL);
break;
case DP_LINK_QUAL_PATTERN_D10_2:
drm_dbg_kms(&dev_priv->drm, "Set D10.2 Phy Test Pattern\n");
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
break;
case DP_LINK_QUAL_PATTERN_ERROR_RATE:
drm_dbg_kms(&dev_priv->drm, "Set Error Count Phy Test Pattern\n");
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
DDI_DP_COMP_CTL_ENABLE |
DDI_DP_COMP_CTL_SCRAMBLED_0);
break;
case DP_LINK_QUAL_PATTERN_PRBS7:
drm_dbg_kms(&dev_priv->drm, "Set PRBS7 Phy Test Pattern\n");
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
break;
case DP_LINK_QUAL_PATTERN_80BIT_CUSTOM:
/*
* FIXME: Ideally pattern should come from DPCD 0x250. As
* current firmware of DPR-100 could not set it, so hardcoding
* now for complaince test.
*/
drm_dbg_kms(&dev_priv->drm,
"Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
pattern_val = 0x3e0f83e0;
intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
pattern_val = 0x0f83e0f8;
intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
pattern_val = 0x0000f83e;
intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
DDI_DP_COMP_CTL_ENABLE |
DDI_DP_COMP_CTL_CUSTOM80);
break;
case DP_LINK_QUAL_PATTERN_CP2520_PAT_1:
/*
* FIXME: Ideally pattern should come from DPCD 0x24A. As
* current firmware of DPR-100 could not set it, so hardcoding
* now for complaince test.
*/
drm_dbg_kms(&dev_priv->drm, "Set HBR2 compliance Phy Test Pattern\n");
pattern_val = 0xFB;
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
pattern_val);
break;
case DP_LINK_QUAL_PATTERN_CP2520_PAT_3:
if (DISPLAY_VER(dev_priv) < 10) {
drm_warn(&dev_priv->drm, "Platform does not support TPS4\n");
break;
}
drm_dbg_kms(&dev_priv->drm, "Set TPS4 compliance Phy Test Pattern\n");
intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
intel_de_rmw(dev_priv, dp_tp_ctl_reg(encoder, crtc_state),
DP_TP_CTL_TRAIN_PAT4_SEL_MASK | DP_TP_CTL_LINK_TRAIN_MASK,
DP_TP_CTL_TRAIN_PAT4_SEL_TP4A | DP_TP_CTL_LINK_TRAIN_PAT4);
break;
default:
drm_warn(&dev_priv->drm, "Invalid Phy Test Pattern\n");
}
}
static void intel_dp_process_phy_request(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct drm_dp_phy_test_params *data =
&intel_dp->compliance.test_data.phytest;
u8 link_status[DP_LINK_STATUS_SIZE];
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX,
link_status) < 0) {
drm_dbg_kms(&i915->drm, "failed to get link status\n");
return;
}
/* retrieve vswing & pre-emphasis setting */
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX,
link_status);
intel_dp_set_signal_levels(intel_dp, crtc_state, DP_PHY_DPRX);
intel_dp_phy_pattern_update(intel_dp, crtc_state);
drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
intel_dp->train_set, crtc_state->lane_count);
drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
intel_dp->dpcd[DP_DPCD_REV]);
}
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct drm_dp_phy_test_params *data =
&intel_dp->compliance.test_data.phytest;
if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
drm_dbg_kms(&i915->drm, "DP Phy Test pattern AUX read failure\n");
return DP_TEST_NAK;
}
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = true;
return DP_TEST_ACK;
}
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 response = DP_TEST_NAK;
u8 request = 0;
int status;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
if (status <= 0) {
drm_dbg_kms(&i915->drm,
"Could not read test request from sink\n");
goto update_status;
}
switch (request) {
case DP_TEST_LINK_TRAINING:
drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
response = intel_dp_autotest_link_training(intel_dp);
break;
case DP_TEST_LINK_VIDEO_PATTERN:
drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
response = intel_dp_autotest_video_pattern(intel_dp);
break;
case DP_TEST_LINK_EDID_READ:
drm_dbg_kms(&i915->drm, "EDID test requested\n");
response = intel_dp_autotest_edid(intel_dp);
break;
case DP_TEST_LINK_PHY_TEST_PATTERN:
drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
response = intel_dp_autotest_phy_pattern(intel_dp);
break;
default:
drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
request);
break;
}
if (response & DP_TEST_ACK)
intel_dp->compliance.test_type = request;
update_status:
status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
if (status <= 0)
drm_dbg_kms(&i915->drm,
"Could not write test response to sink\n");
}
static bool intel_dp_link_ok(struct intel_dp *intel_dp,
u8 link_status[DP_LINK_STATUS_SIZE])
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
bool uhbr = intel_dp->link_rate >= 1000000;
bool ok;
if (uhbr)
ok = drm_dp_128b132b_lane_channel_eq_done(link_status,
intel_dp->lane_count);
else
ok = drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
if (ok)
return true;
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] %s link not ok, retraining\n",
encoder->base.base.id, encoder->base.name,
uhbr ? "128b/132b" : "8b/10b");
return false;
}
static void
intel_dp_mst_hpd_irq(struct intel_dp *intel_dp, u8 *esi, u8 *ack)
{
bool handled = false;
drm_dp_mst_hpd_irq_handle_event(&intel_dp->mst_mgr, esi, ack, &handled);
if (esi[1] & DP_CP_IRQ) {
intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
ack[1] |= DP_CP_IRQ;
}
}
static bool intel_dp_mst_link_status(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 link_status[DP_LINK_STATUS_SIZE] = {};
const size_t esi_link_status_size = DP_LINK_STATUS_SIZE - 2;
if (drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS_ESI, link_status,
esi_link_status_size) != esi_link_status_size) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to read link status\n",
encoder->base.base.id, encoder->base.name);
return false;
}
return intel_dp_link_ok(intel_dp, link_status);
}
/**
* intel_dp_check_mst_status - service any pending MST interrupts, check link status
* @intel_dp: Intel DP struct
*
* Read any pending MST interrupts, call MST core to handle these and ack the
* interrupts. Check if the main and AUX link state is ok.
*
* Returns:
* - %true if pending interrupts were serviced (or no interrupts were
* pending) w/o detecting an error condition.
* - %false if an error condition - like AUX failure or a loss of link - is
* detected, or another condition - like a DP tunnel BW state change - needs
* servicing from the hotplug work.
*/
static bool
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
bool link_ok = true;
bool reprobe_needed = false;
drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
for (;;) {
u8 esi[4] = {};
u8 ack[4] = {};
if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
drm_dbg_kms(&i915->drm,
"failed to get ESI - device may have failed\n");
link_ok = false;
break;
}
drm_dbg_kms(&i915->drm, "DPRX ESI: %4ph\n", esi);
if (intel_dp->active_mst_links > 0 && link_ok &&
esi[3] & LINK_STATUS_CHANGED) {
if (!intel_dp_mst_link_status(intel_dp))
link_ok = false;
ack[3] |= LINK_STATUS_CHANGED;
}
intel_dp_mst_hpd_irq(intel_dp, esi, ack);
if (esi[3] & DP_TUNNELING_IRQ) {
if (drm_dp_tunnel_handle_irq(i915->display.dp_tunnel_mgr,
&intel_dp->aux))
reprobe_needed = true;
ack[3] |= DP_TUNNELING_IRQ;
}
if (!memchr_inv(ack, 0, sizeof(ack)))
break;
if (!intel_dp_ack_sink_irq_esi(intel_dp, ack))
drm_dbg_kms(&i915->drm, "Failed to ack ESI\n");
if (ack[1] & (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY))
drm_dp_mst_hpd_irq_send_new_request(&intel_dp->mst_mgr);
}
if (!link_ok || intel_dp->link.force_retrain)
intel_encoder_link_check_queue_work(encoder, 0);
return !reprobe_needed;
}
static void
intel_dp_handle_hdmi_link_status_change(struct intel_dp *intel_dp)
{
bool is_active;
u8 buf = 0;
is_active = drm_dp_pcon_hdmi_link_active(&intel_dp->aux);
if (intel_dp->frl.is_trained && !is_active) {
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf) < 0)
return;
buf &= ~DP_PCON_ENABLE_HDMI_LINK;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf) < 0)
return;
drm_dp_pcon_hdmi_frl_link_error_count(&intel_dp->aux, &intel_dp->attached_connector->base);
intel_dp->frl.is_trained = false;
/* Restart FRL training or fall back to TMDS mode */
intel_dp_check_frl_training(intel_dp);
}
}
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
u8 link_status[DP_LINK_STATUS_SIZE];
if (!intel_dp->link_trained)
return false;
/*
* While PSR source HW is enabled, it will control main-link sending
* frames, enabling and disabling it so trying to do a retrain will fail
* as the link would or not be on or it could mix training patterns
* and frame data at the same time causing retrain to fail.
* Also when exiting PSR, HW will retrain the link anyways fixing
* any link status error.
*/
if (intel_psr_enabled(intel_dp))
return false;
if (intel_dp->link.force_retrain)
return true;
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX,
link_status) < 0)
return false;
/*
* Validate the cached values of intel_dp->link_rate and
* intel_dp->lane_count before attempting to retrain.
*
* FIXME would be nice to user the crtc state here, but since
* we need to call this from the short HPD handler that seems
* a bit hard.
*/
if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
intel_dp->lane_count))
return false;
if (intel_dp->link.retrain_disabled)
return false;
if (intel_dp->link.seq_train_failures)
return true;
/* Retrain if link not ok */
return !intel_dp_link_ok(intel_dp, link_status);
}
static bool intel_dp_has_connector(struct intel_dp *intel_dp,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_encoder *encoder;
enum pipe pipe;
if (!conn_state->best_encoder)
return false;
/* SST */
encoder = &dp_to_dig_port(intel_dp)->base;
if (conn_state->best_encoder == &encoder->base)
return true;
/* MST */
for_each_pipe(i915, pipe) {
encoder = &intel_dp->mst_encoders[pipe]->base;
if (conn_state->best_encoder == &encoder->base)
return true;
}
return false;
}
int intel_dp_get_active_pipes(struct intel_dp *intel_dp,
struct drm_modeset_acquire_ctx *ctx,
u8 *pipe_mask)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct drm_connector_list_iter conn_iter;
struct intel_connector *connector;
int ret = 0;
*pipe_mask = 0;
drm_connector_list_iter_begin(&i915->drm, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
struct drm_connector_state *conn_state =
connector->base.state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
if (!intel_dp_has_connector(intel_dp, conn_state))
continue;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
continue;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
break;
crtc_state = to_intel_crtc_state(crtc->base.state);
drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
if (!crtc_state->hw.active)
continue;
if (conn_state->commit)
drm_WARN_ON(&i915->drm,
!wait_for_completion_timeout(&conn_state->commit->hw_done,
msecs_to_jiffies(5000)));
*pipe_mask |= BIT(crtc->pipe);
}
drm_connector_list_iter_end(&conn_iter);
return ret;
}
static bool intel_dp_is_connected(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
return connector->base.status == connector_status_connected ||
intel_dp->is_mst;
}
static int intel_dp_retrain_link(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_crtc *crtc;
bool mst_output = false;
u8 pipe_mask;
int ret;
if (!intel_dp_is_connected(intel_dp))
return 0;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
if (!intel_dp_needs_link_retrain(intel_dp))
return 0;
ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask);
if (ret)
return ret;
if (pipe_mask == 0)
return 0;
if (!intel_dp_needs_link_retrain(intel_dp))
return 0;
drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link (forced %s)\n",
encoder->base.base.id, encoder->base.name,
str_yes_no(intel_dp->link.force_retrain));
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
mst_output = true;
break;
}
/* Suppress underruns caused by re-training */
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
if (crtc_state->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), false);
}
/* TODO: use a modeset for SST as well. */
if (mst_output) {
ret = intel_modeset_commit_pipes(dev_priv, pipe_mask, ctx);
if (ret && ret != -EDEADLK)
drm_dbg_kms(&dev_priv->drm,
"[ENCODER:%d:%s] link retraining failed: %pe\n",
encoder->base.base.id, encoder->base.name,
ERR_PTR(ret));
goto out;
}
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
intel_dp_check_frl_training(intel_dp);
intel_dp_pcon_dsc_configure(intel_dp, crtc_state);
intel_dp_start_link_train(NULL, intel_dp, crtc_state);
intel_dp_stop_link_train(intel_dp, crtc_state);
break;
}
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
/* Keep underrun reporting disabled until things are stable */
intel_crtc_wait_for_next_vblank(crtc);
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc_state->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), true);
}
out:
if (ret != -EDEADLK)
intel_dp->link.force_retrain = false;
return ret;
}
void intel_dp_link_check(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct drm_modeset_acquire_ctx ctx;
int ret;
intel_modeset_lock_ctx_retry(&ctx, NULL, 0, ret)
ret = intel_dp_retrain_link(encoder, &ctx);
drm_WARN_ON(&i915->drm, ret);
}
void intel_dp_check_link_state(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
if (!intel_dp_is_connected(intel_dp))
return;
if (!intel_dp_needs_link_retrain(intel_dp))
return;
intel_encoder_link_check_queue_work(encoder, 0);
}
static int intel_dp_prep_phy_test(struct intel_dp *intel_dp,
struct drm_modeset_acquire_ctx *ctx,
u8 *pipe_mask)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct drm_connector_list_iter conn_iter;
struct intel_connector *connector;
int ret = 0;
*pipe_mask = 0;
drm_connector_list_iter_begin(&i915->drm, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
struct drm_connector_state *conn_state =
connector->base.state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
if (!intel_dp_has_connector(intel_dp, conn_state))
continue;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
continue;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
break;
crtc_state = to_intel_crtc_state(crtc->base.state);
drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
if (!crtc_state->hw.active)
continue;
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done))
continue;
*pipe_mask |= BIT(crtc->pipe);
}
drm_connector_list_iter_end(&conn_iter);
return ret;
}
static int intel_dp_do_phy_test(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_crtc *crtc;
u8 pipe_mask;
int ret;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
ret = intel_dp_prep_phy_test(intel_dp, ctx, &pipe_mask);
if (ret)
return ret;
if (pipe_mask == 0)
return 0;
drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] PHY test\n",
encoder->base.base.id, encoder->base.name);
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
/* test on the MST master transcoder */
if (DISPLAY_VER(dev_priv) >= 12 &&
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) &&
!intel_dp_mst_is_master_trans(crtc_state))
continue;
intel_dp_process_phy_request(intel_dp, crtc_state);
break;
}
return 0;
}
void intel_dp_phy_test(struct intel_encoder *encoder)
{
struct drm_modeset_acquire_ctx ctx;
int ret;
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
ret = intel_dp_do_phy_test(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
drm_WARN(encoder->base.dev, ret,
"Acquiring modeset locks failed with %i\n", ret);
}
static void intel_dp_check_device_service_irq(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 val;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
return;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
if (val & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (val & DP_CP_IRQ)
intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
if (val & DP_SINK_SPECIFIC_IRQ)
drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
}
static bool intel_dp_check_link_service_irq(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
bool reprobe_needed = false;
u8 val;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return false;
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_LINK_SERVICE_IRQ_VECTOR_ESI0, &val) != 1 || !val)
return false;
if ((val & DP_TUNNELING_IRQ) &&
drm_dp_tunnel_handle_irq(i915->display.dp_tunnel_mgr,
&intel_dp->aux))
reprobe_needed = true;
if (drm_dp_dpcd_writeb(&intel_dp->aux,
DP_LINK_SERVICE_IRQ_VECTOR_ESI0, val) != 1)
return reprobe_needed;
if (val & HDMI_LINK_STATUS_CHANGED)
intel_dp_handle_hdmi_link_status_change(intel_dp);
return reprobe_needed;
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*
* intel_dp_short_pulse - handles short pulse interrupts
* when full detection is not required.
* Returns %true if short pulse is handled and full detection
* is NOT required and %false otherwise.
*/
static bool
intel_dp_short_pulse(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u8 old_sink_count = intel_dp->sink_count;
bool reprobe_needed = false;
bool ret;
/*
* Clearing compliance test variables to allow capturing
* of values for next automated test request.
*/
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
/*
* Now read the DPCD to see if it's actually running
* If the current value of sink count doesn't match with
* the value that was stored earlier or dpcd read failed
* we need to do full detection
*/
ret = intel_dp_get_dpcd(intel_dp);
if ((old_sink_count != intel_dp->sink_count) || !ret) {
/* No need to proceed if we are going to do full detect */
return false;
}
intel_dp_check_device_service_irq(intel_dp);
reprobe_needed = intel_dp_check_link_service_irq(intel_dp);
/* Handle CEC interrupts, if any */
drm_dp_cec_irq(&intel_dp->aux);
intel_dp_check_link_state(intel_dp);
intel_psr_short_pulse(intel_dp);
switch (intel_dp->compliance.test_type) {
case DP_TEST_LINK_TRAINING:
drm_dbg_kms(&dev_priv->drm,
"Link Training Compliance Test requested\n");
/* Send a Hotplug Uevent to userspace to start modeset */
drm_kms_helper_hotplug_event(&dev_priv->drm);
break;
case DP_TEST_LINK_PHY_TEST_PATTERN:
drm_dbg_kms(&dev_priv->drm,
"PHY test pattern Compliance Test requested\n");
/*
* Schedule long hpd to do the test
*
* FIXME get rid of the ad-hoc phy test modeset code
* and properly incorporate it into the normal modeset.
*/
reprobe_needed = true;
}
return !reprobe_needed;
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
u8 *dpcd = intel_dp->dpcd;
u8 type;
if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
return connector_status_connected;
lspcon_resume(dig_port);
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
intel_dp->mst_detect = intel_dp_mst_detect(intel_dp);
/* if there's no downstream port, we're done */
if (!drm_dp_is_branch(dpcd))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
if (intel_dp_has_sink_count(intel_dp) &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
return intel_dp->sink_count ?
connector_status_connected : connector_status_disconnected;
}
if (intel_dp->mst_detect == DRM_DP_MST)
return connector_status_connected;
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(&intel_dp->aux.ddc))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA ||
type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
} else {
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_TYPE_MASK;
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
type == DP_DWN_STRM_PORT_TYPE_OTHER)
return connector_status_unknown;
}
/* Anything else is out of spec, warn and ignore */
drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
return connector_status_connected;
}
void intel_digital_port_lock(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (dig_port->lock)
dig_port->lock(dig_port);
}
void intel_digital_port_unlock(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (dig_port->unlock)
dig_port->unlock(dig_port);
}
/*
* intel_digital_port_connected_locked - is the specified port connected?
* @encoder: intel_encoder
*
* In cases where there's a connector physically connected but it can't be used
* by our hardware we also return false, since the rest of the driver should
* pretty much treat the port as disconnected. This is relevant for type-C
* (starting on ICL) where there's ownership involved.
*
* The caller must hold the lock acquired by calling intel_digital_port_lock()
* when calling this function.
*
* Return %true if port is connected, %false otherwise.
*/
bool intel_digital_port_connected_locked(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool is_glitch_free = intel_tc_port_handles_hpd_glitches(dig_port);
bool is_connected = false;
intel_wakeref_t wakeref;
with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) {
unsigned long wait_expires = jiffies + msecs_to_jiffies_timeout(4);
do {
is_connected = dig_port->connected(encoder);
if (is_connected || is_glitch_free)
break;
usleep_range(10, 30);
} while (time_before(jiffies, wait_expires));
}
return is_connected;
}
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
bool ret;
intel_digital_port_lock(encoder);
ret = intel_digital_port_connected_locked(encoder);
intel_digital_port_unlock(encoder);
return ret;
}
static const struct drm_edid *
intel_dp_get_edid(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_edid *fixed_edid = connector->panel.fixed_edid;
/* Use panel fixed edid if we have one */
if (fixed_edid) {
/* invalid edid */
if (IS_ERR(fixed_edid))
return NULL;
return drm_edid_dup(fixed_edid);
}
return drm_edid_read_ddc(&connector->base, &intel_dp->aux.ddc);
}
static void
intel_dp_update_dfp(struct intel_dp *intel_dp,
const struct drm_edid *drm_edid)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
intel_dp->dfp.max_bpc =
drm_dp_downstream_max_bpc(intel_dp->dpcd,
intel_dp->downstream_ports, drm_edid);
intel_dp->dfp.max_dotclock =
drm_dp_downstream_max_dotclock(intel_dp->dpcd,
intel_dp->downstream_ports);
intel_dp->dfp.min_tmds_clock =
drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
intel_dp->downstream_ports,
drm_edid);
intel_dp->dfp.max_tmds_clock =
drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
intel_dp->downstream_ports,
drm_edid);
intel_dp->dfp.pcon_max_frl_bw =
drm_dp_get_pcon_max_frl_bw(intel_dp->dpcd,
intel_dp->downstream_ports);
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d, PCON Max FRL BW %dGbps\n",
connector->base.base.id, connector->base.name,
intel_dp->dfp.max_bpc,
intel_dp->dfp.max_dotclock,
intel_dp->dfp.min_tmds_clock,
intel_dp->dfp.max_tmds_clock,
intel_dp->dfp.pcon_max_frl_bw);
intel_dp_get_pcon_dsc_cap(intel_dp);
}
static bool
intel_dp_can_ycbcr420(struct intel_dp *intel_dp)
{
if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420) &&
(!drm_dp_is_branch(intel_dp->dpcd) || intel_dp->dfp.ycbcr420_passthrough))
return true;
if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_RGB) &&
dfp_can_convert_from_rgb(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420))
return true;
if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR444) &&
dfp_can_convert_from_ycbcr444(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420))
return true;
return false;
}
static void
intel_dp_update_420(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
intel_dp->dfp.ycbcr420_passthrough =
drm_dp_downstream_420_passthrough(intel_dp->dpcd,
intel_dp->downstream_ports);
/* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */
intel_dp->dfp.ycbcr_444_to_420 =
dp_to_dig_port(intel_dp)->lspcon.active ||
drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
intel_dp->downstream_ports);
intel_dp->dfp.rgb_to_ycbcr =
drm_dp_downstream_rgb_to_ycbcr_conversion(intel_dp->dpcd,
intel_dp->downstream_ports,
DP_DS_HDMI_BT709_RGB_YCBCR_CONV);
connector->base.ycbcr_420_allowed = intel_dp_can_ycbcr420(intel_dp);
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] RGB->YcbCr conversion? %s, YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
connector->base.base.id, connector->base.name,
str_yes_no(intel_dp->dfp.rgb_to_ycbcr),
str_yes_no(connector->base.ycbcr_420_allowed),
str_yes_no(intel_dp->dfp.ycbcr_444_to_420));
}
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_edid *drm_edid;
bool vrr_capable;
intel_dp_unset_edid(intel_dp);
drm_edid = intel_dp_get_edid(intel_dp);
connector->detect_edid = drm_edid;
/* Below we depend on display info having been updated */
drm_edid_connector_update(&connector->base, drm_edid);
vrr_capable = intel_vrr_is_capable(connector);
drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] VRR capable: %s\n",
connector->base.base.id, connector->base.name, str_yes_no(vrr_capable));
drm_connector_set_vrr_capable_property(&connector->base, vrr_capable);
intel_dp_update_dfp(intel_dp, drm_edid);
intel_dp_update_420(intel_dp);
drm_dp_cec_attach(&intel_dp->aux,
connector->base.display_info.source_physical_address);
}
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
drm_dp_cec_unset_edid(&intel_dp->aux);
drm_edid_free(connector->detect_edid);
connector->detect_edid = NULL;
intel_dp->dfp.max_bpc = 0;
intel_dp->dfp.max_dotclock = 0;
intel_dp->dfp.min_tmds_clock = 0;
intel_dp->dfp.max_tmds_clock = 0;
intel_dp->dfp.pcon_max_frl_bw = 0;
intel_dp->dfp.ycbcr_444_to_420 = false;
connector->base.ycbcr_420_allowed = false;
drm_connector_set_vrr_capable_property(&connector->base,
false);
}
static void
intel_dp_detect_dsc_caps(struct intel_dp *intel_dp, struct intel_connector *connector)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
if (!HAS_DSC(i915))
return;
if (intel_dp_is_edp(intel_dp))
intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0],
connector);
else
intel_dp_get_dsc_sink_cap(intel_dp->dpcd[DP_DPCD_REV],
connector);
}
static int
intel_dp_detect(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_connector *intel_connector =
to_intel_connector(connector);
struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
enum drm_connector_status status;
int ret;
drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
drm_WARN_ON(&dev_priv->drm,
!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
if (!intel_display_device_enabled(dev_priv))
return connector_status_disconnected;
if (!intel_display_driver_check_access(dev_priv))
return connector->status;
/* Can't disconnect eDP */
if (intel_dp_is_edp(intel_dp))
status = edp_detect(intel_dp);
else if (intel_digital_port_connected(encoder))
status = intel_dp_detect_dpcd(intel_dp);
else
status = connector_status_disconnected;
if (status == connector_status_disconnected) {
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
memset(intel_connector->dp.dsc_dpcd, 0, sizeof(intel_connector->dp.dsc_dpcd));
intel_dp->psr.sink_panel_replay_support = false;
intel_dp->psr.sink_panel_replay_su_support = false;
intel_dp_mst_disconnect(intel_dp);
intel_dp_tunnel_disconnect(intel_dp);
goto out;
}
ret = intel_dp_tunnel_detect(intel_dp, ctx);
if (ret == -EDEADLK)
return ret;
if (ret == 1)
intel_connector->base.epoch_counter++;
if (!intel_dp_is_edp(intel_dp))
intel_psr_init_dpcd(intel_dp);
intel_dp_detect_dsc_caps(intel_dp, intel_connector);
intel_dp_mst_configure(intel_dp);
if (intel_dp->reset_link_params) {
intel_dp_reset_link_params(intel_dp);
intel_dp->reset_link_params = false;
}
intel_dp_print_rates(intel_dp);
if (intel_dp->is_mst) {
/*
* If we are in MST mode then this connector
* won't appear connected or have anything
* with EDID on it
*/
status = connector_status_disconnected;
goto out;
}
/*
* Some external monitors do not signal loss of link synchronization
* with an IRQ_HPD, so force a link status check.
*
* TODO: this probably became redundant, so remove it: the link state
* is rechecked/recovered now after modesets, where the loss of
* synchronization tends to occur.
*/
if (!intel_dp_is_edp(intel_dp))
intel_dp_check_link_state(intel_dp);
/*
* Clearing NACK and defer counts to get their exact values
* while reading EDID which are required by Compliance tests
* 4.2.2.4 and 4.2.2.5
*/
intel_dp->aux.i2c_nack_count = 0;
intel_dp->aux.i2c_defer_count = 0;
intel_dp_set_edid(intel_dp);
if (intel_dp_is_edp(intel_dp) ||
to_intel_connector(connector)->detect_edid)
status = connector_status_connected;
intel_dp_check_device_service_irq(intel_dp);
out:
if (status != connector_status_connected && !intel_dp->is_mst)
intel_dp_unset_edid(intel_dp);
if (!intel_dp_is_edp(intel_dp))
drm_dp_set_subconnector_property(connector,
status,
intel_dp->dpcd,
intel_dp->downstream_ports);
return status;
}
static void
intel_dp_force(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &dig_port->base;
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
if (!intel_display_driver_check_access(dev_priv))
return;
intel_dp_unset_edid(intel_dp);
if (connector->status != connector_status_connected)
return;
intel_dp_set_edid(intel_dp);
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
int num_modes;
/* drm_edid_connector_update() done in ->detect() or ->force() */
num_modes = drm_edid_connector_add_modes(connector);
/* Also add fixed mode, which may or may not be present in EDID */
if (intel_dp_is_edp(intel_attached_dp(intel_connector)))
num_modes += intel_panel_get_modes(intel_connector);
if (num_modes)
return num_modes;
if (!intel_connector->detect_edid) {
struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
struct drm_display_mode *mode;
mode = drm_dp_downstream_mode(connector->dev,
intel_dp->dpcd,
intel_dp->downstream_ports);
if (mode) {
drm_mode_probed_add(connector, mode);
num_modes++;
}
}
return num_modes;
}
static int
intel_dp_connector_register(struct drm_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->dev);
struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_lspcon *lspcon = &dig_port->lspcon;
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
intel_dp->aux.name, connector->kdev->kobj.name);
intel_dp->aux.dev = connector->kdev;
ret = drm_dp_aux_register(&intel_dp->aux);
if (!ret)
drm_dp_cec_register_connector(&intel_dp->aux, connector);
if (!intel_bios_encoder_is_lspcon(dig_port->base.devdata))
return ret;
/*
* ToDo: Clean this up to handle lspcon init and resume more
* efficiently and streamlined.
*/
if (lspcon_init(dig_port)) {
lspcon_detect_hdr_capability(lspcon);
if (lspcon->hdr_supported)
drm_connector_attach_hdr_output_metadata_property(connector);
}
return ret;
}
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
drm_dp_cec_unregister_connector(&intel_dp->aux);
drm_dp_aux_unregister(&intel_dp->aux);
intel_connector_unregister(connector);
}
void intel_dp_connector_sync_state(struct intel_connector *connector,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (crtc_state && crtc_state->dsc.compression_enable) {
drm_WARN_ON(&i915->drm, !connector->dp.dsc_decompression_aux);
connector->dp.dsc_decompression_enabled = true;
} else {
connector->dp.dsc_decompression_enabled = false;
}
}
void intel_dp_encoder_flush_work(struct drm_encoder *_encoder)
{
struct intel_encoder *encoder = to_intel_encoder(_encoder);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &dig_port->dp;
intel_encoder_link_check_flush_work(encoder);
intel_dp_mst_encoder_cleanup(dig_port);
intel_dp_tunnel_destroy(intel_dp);
intel_pps_vdd_off_sync(intel_dp);
/*
* Ensure power off delay is respected on module remove, so that we can
* reduce delays at driver probe. See pps_init_timestamps().
*/
intel_pps_wait_power_cycle(intel_dp);
intel_dp_aux_fini(intel_dp);
}
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
intel_pps_vdd_off_sync(intel_dp);
intel_dp_tunnel_suspend(intel_dp);
}
void intel_dp_encoder_shutdown(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
intel_pps_wait_power_cycle(intel_dp);
}
static int intel_modeset_tile_group(struct intel_atomic_state *state,
int tile_group_id)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct drm_connector_list_iter conn_iter;
struct drm_connector *connector;
int ret = 0;
drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
if (!connector->has_tile ||
connector->tile_group->id != tile_group_id)
continue;
conn_state = drm_atomic_get_connector_state(&state->base,
connector);
if (IS_ERR(conn_state)) {
ret = PTR_ERR(conn_state);
break;
}
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
continue;
crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
if (ret)
break;
}
drm_connector_list_iter_end(&conn_iter);
return ret;
}
static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
if (transcoders == 0)
return 0;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state;
int ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->hw.enable)
continue;
if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
continue;
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
if (ret)
return ret;
ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
if (ret)
return ret;
transcoders &= ~BIT(crtc_state->cpu_transcoder);
}
drm_WARN_ON(&dev_priv->drm, transcoders != 0);
return 0;
}
static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
struct drm_connector *connector)
{
const struct drm_connector_state *old_conn_state =
drm_atomic_get_old_connector_state(&state->base, connector);
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc *crtc;
u8 transcoders;
crtc = to_intel_crtc(old_conn_state->crtc);
if (!crtc)
return 0;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
if (!old_crtc_state->hw.active)
return 0;
transcoders = old_crtc_state->sync_mode_slaves_mask;
if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
transcoders |= BIT(old_crtc_state->master_transcoder);
return intel_modeset_affected_transcoders(state,
transcoders);
}
static int intel_dp_connector_atomic_check(struct drm_connector *conn,
struct drm_atomic_state *_state)
{
struct drm_i915_private *dev_priv = to_i915(conn->dev);
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(_state, conn);
struct intel_connector *intel_conn = to_intel_connector(conn);
struct intel_dp *intel_dp = enc_to_intel_dp(intel_conn->encoder);
int ret;
ret = intel_digital_connector_atomic_check(conn, &state->base);
if (ret)
return ret;
if (intel_dp_mst_source_support(intel_dp)) {
ret = drm_dp_mst_root_conn_atomic_check(conn_state, &intel_dp->mst_mgr);
if (ret)
return ret;
}
if (!intel_connector_needs_modeset(state, conn))
return 0;
ret = intel_dp_tunnel_atomic_check_state(state,
intel_dp,
intel_conn);
if (ret)
return ret;
/*
* We don't enable port sync on BDW due to missing w/as and
* due to not having adjusted the modeset sequence appropriately.
*/
if (DISPLAY_VER(dev_priv) < 9)
return 0;
if (conn->has_tile) {
ret = intel_modeset_tile_group(state, conn->tile_group->id);
if (ret)
return ret;
}
return intel_modeset_synced_crtcs(state, conn);
}
static void intel_dp_oob_hotplug_event(struct drm_connector *connector,
enum drm_connector_status hpd_state)
{
struct intel_encoder *encoder = intel_attached_encoder(to_intel_connector(connector));
struct drm_i915_private *i915 = to_i915(connector->dev);
bool hpd_high = hpd_state == connector_status_connected;
unsigned int hpd_pin = encoder->hpd_pin;
bool need_work = false;
spin_lock_irq(&i915->irq_lock);
if (hpd_high != test_bit(hpd_pin, &i915->display.hotplug.oob_hotplug_last_state)) {
i915->display.hotplug.event_bits |= BIT(hpd_pin);
__assign_bit(hpd_pin, &i915->display.hotplug.oob_hotplug_last_state, hpd_high);
need_work = true;
}
spin_unlock_irq(&i915->irq_lock);
if (need_work)
intel_hpd_schedule_detection(i915);
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.force = intel_dp_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.late_register = intel_dp_connector_register,
.early_unregister = intel_dp_connector_unregister,
.destroy = intel_connector_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
.oob_hotplug_event = intel_dp_oob_hotplug_event,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.detect_ctx = intel_dp_detect,
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.atomic_check = intel_dp_connector_atomic_check,
};
enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_dp *intel_dp = &dig_port->dp;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
if (dig_port->base.type == INTEL_OUTPUT_EDP &&
(long_hpd || !intel_pps_have_panel_power_or_vdd(intel_dp))) {
/*
* vdd off can generate a long/short pulse on eDP which
* would require vdd on to handle it, and thus we
* would end up in an endless cycle of
* "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
*/
drm_dbg_kms(&i915->drm,
"ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
long_hpd ? "long" : "short",
dig_port->base.base.base.id,
dig_port->base.base.name);
return IRQ_HANDLED;
}
drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
dig_port->base.base.base.id,
dig_port->base.base.name,
long_hpd ? "long" : "short");
/*
* TBT DP tunnels require the GFX driver to read out the DPRX caps in
* response to long HPD pulses. The DP hotplug handler does that,
* however the hotplug handler may be blocked by another
* connector's/encoder's hotplug handler. Since the TBT CM may not
* complete the DP tunnel BW request for the latter connector/encoder
* waiting for this encoder's DPRX read, perform a dummy read here.
*/
if (long_hpd)
intel_dp_read_dprx_caps(intel_dp, dpcd);
if (long_hpd) {
intel_dp->reset_link_params = true;
return IRQ_NONE;
}
if (intel_dp->is_mst) {
if (!intel_dp_check_mst_status(intel_dp))
return IRQ_NONE;
} else if (!intel_dp_short_pulse(intel_dp)) {
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static bool _intel_dp_is_port_edp(struct drm_i915_private *dev_priv,
const struct intel_bios_encoder_data *devdata,
enum port port)
{
/*
* eDP not supported on g4x. so bail out early just
* for a bit extra safety in case the VBT is bonkers.
*/
if (DISPLAY_VER(dev_priv) < 5)
return false;
if (DISPLAY_VER(dev_priv) < 9 && port == PORT_A)
return true;
return devdata && intel_bios_encoder_supports_edp(devdata);
}
bool intel_dp_is_port_edp(struct drm_i915_private *i915, enum port port)
{
const struct intel_bios_encoder_data *devdata =
intel_bios_encoder_data_lookup(i915, port);
return _intel_dp_is_port_edp(i915, devdata, port);
}
bool
intel_dp_has_gamut_metadata_dip(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum port port = encoder->port;
if (intel_bios_encoder_is_lspcon(encoder->devdata))
return false;
if (DISPLAY_VER(i915) >= 11)
return true;
if (port == PORT_A)
return false;
if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
DISPLAY_VER(i915) >= 9)
return true;
return false;
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
enum port port = dp_to_dig_port(intel_dp)->base.port;
if (!intel_dp_is_edp(intel_dp))
drm_connector_attach_dp_subconnector_property(connector);
if (!IS_G4X(dev_priv) && port != PORT_A)
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
if (HAS_GMCH(dev_priv))
drm_connector_attach_max_bpc_property(connector, 6, 10);
else if (DISPLAY_VER(dev_priv) >= 5)
drm_connector_attach_max_bpc_property(connector, 6, 12);
/* Register HDMI colorspace for case of lspcon */
if (intel_bios_encoder_is_lspcon(dp_to_dig_port(intel_dp)->base.devdata)) {
drm_connector_attach_content_type_property(connector);
intel_attach_hdmi_colorspace_property(connector);
} else {
intel_attach_dp_colorspace_property(connector);
}
if (intel_dp_has_gamut_metadata_dip(&dp_to_dig_port(intel_dp)->base))
drm_connector_attach_hdr_output_metadata_property(connector);
if (HAS_VRR(dev_priv))
drm_connector_attach_vrr_capable_property(connector);
}
static void
intel_edp_add_properties(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_i915_private *i915 = to_i915(connector->base.dev);
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(connector);
intel_attach_scaling_mode_property(&connector->base);
drm_connector_set_panel_orientation_with_quirk(&connector->base,
i915->display.vbt.orientation,
fixed_mode->hdisplay,
fixed_mode->vdisplay);
}
static void intel_edp_backlight_setup(struct intel_dp *intel_dp,
struct intel_connector *connector)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
enum pipe pipe = INVALID_PIPE;
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
/*
* Figure out the current pipe for the initial backlight setup.
* If the current pipe isn't valid, try the PPS pipe, and if that
* fails just assume pipe A.
*/
pipe = vlv_active_pipe(intel_dp);
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = intel_dp->pps.pps_pipe;
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = PIPE_A;
}
intel_backlight_setup(connector, pipe);
}
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
struct intel_connector *intel_connector)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct drm_connector *connector = &intel_connector->base;
struct drm_display_mode *fixed_mode;
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
bool has_dpcd;
const struct drm_edid *drm_edid;
if (!intel_dp_is_edp(intel_dp))
return true;
/*
* On IBX/CPT we may get here with LVDS already registered. Since the
* driver uses the only internal power sequencer available for both
* eDP and LVDS bail out early in this case to prevent interfering
* with an already powered-on LVDS power sequencer.
*/
if (intel_get_lvds_encoder(dev_priv)) {
drm_WARN_ON(&dev_priv->drm,
!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
drm_info(&dev_priv->drm,
"LVDS was detected, not registering eDP\n");
return false;
}
intel_bios_init_panel_early(dev_priv, &intel_connector->panel,
encoder->devdata);
if (!intel_pps_init(intel_dp)) {
drm_info(&dev_priv->drm,
"[ENCODER:%d:%s] unusable PPS, disabling eDP\n",
encoder->base.base.id, encoder->base.name);
/*
* The BIOS may have still enabled VDD on the PPS even
* though it's unusable. Make sure we turn it back off
* and to release the power domain references/etc.
*/
goto out_vdd_off;
}
/*
* Enable HPD sense for live status check.
* intel_hpd_irq_setup() will turn it off again
* if it's no longer needed later.
*
* The DPCD probe below will make sure VDD is on.
*/
intel_hpd_enable_detection(encoder);
intel_alpm_init_dpcd(intel_dp);
/* Cache DPCD and EDID for edp. */
has_dpcd = intel_edp_init_dpcd(intel_dp, intel_connector);
if (!has_dpcd) {
/* if this fails, presume the device is a ghost */
drm_info(&dev_priv->drm,
"[ENCODER:%d:%s] failed to retrieve link info, disabling eDP\n",
encoder->base.base.id, encoder->base.name);
goto out_vdd_off;
}
/*
* VBT and straps are liars. Also check HPD as that seems
* to be the most reliable piece of information available.
*
* ... expect on devices that forgot to hook HPD up for eDP
* (eg. Acer Chromebook C710), so we'll check it only if multiple
* ports are attempting to use the same AUX CH, according to VBT.
*/
if (intel_bios_dp_has_shared_aux_ch(encoder->devdata)) {
/*
* If this fails, presume the DPCD answer came
* from some other port using the same AUX CH.
*
* FIXME maybe cleaner to check this before the
* DPCD read? Would need sort out the VDD handling...
*/
if (!intel_digital_port_connected(encoder)) {
drm_info(&dev_priv->drm,
"[ENCODER:%d:%s] HPD is down, disabling eDP\n",
encoder->base.base.id, encoder->base.name);
goto out_vdd_off;
}
/*
* Unfortunately even the HPD based detection fails on
* eg. Asus B360M-A (CFL+CNP), so as a last resort fall
* back to checking for a VGA branch device. Only do this
* on known affected platforms to minimize false positives.
*/
if (DISPLAY_VER(dev_priv) == 9 && drm_dp_is_branch(intel_dp->dpcd) &&
(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) ==
DP_DWN_STRM_PORT_TYPE_ANALOG) {
drm_info(&dev_priv->drm,
"[ENCODER:%d:%s] VGA converter detected, disabling eDP\n",
encoder->base.base.id, encoder->base.name);
goto out_vdd_off;
}
}
mutex_lock(&dev_priv->drm.mode_config.mutex);
drm_edid = drm_edid_read_ddc(connector, connector->ddc);
if (!drm_edid) {
/* Fallback to EDID from ACPI OpRegion, if any */
drm_edid = intel_opregion_get_edid(intel_connector);
if (drm_edid)
drm_dbg_kms(&dev_priv->drm,
"[CONNECTOR:%d:%s] Using OpRegion EDID\n",
connector->base.id, connector->name);
}
if (drm_edid) {
if (drm_edid_connector_update(connector, drm_edid) ||
!drm_edid_connector_add_modes(connector)) {
drm_edid_connector_update(connector, NULL);
drm_edid_free(drm_edid);
drm_edid = ERR_PTR(-EINVAL);
}
} else {
drm_edid = ERR_PTR(-ENOENT);
}
intel_bios_init_panel_late(dev_priv, &intel_connector->panel, encoder->devdata,
IS_ERR(drm_edid) ? NULL : drm_edid);
intel_panel_add_edid_fixed_modes(intel_connector, true);
/* MSO requires information from the EDID */
intel_edp_mso_init(intel_dp);
/* multiply the mode clock and horizontal timings for MSO */
list_for_each_entry(fixed_mode, &intel_connector->panel.fixed_modes, head)
intel_edp_mso_mode_fixup(intel_connector, fixed_mode);
/* fallback to VBT if available for eDP */
if (!intel_panel_preferred_fixed_mode(intel_connector))
intel_panel_add_vbt_lfp_fixed_mode(intel_connector);
mutex_unlock(&dev_priv->drm.mode_config.mutex);
if (!intel_panel_preferred_fixed_mode(intel_connector)) {
drm_info(&dev_priv->drm,
"[ENCODER:%d:%s] failed to find fixed mode for the panel, disabling eDP\n",
encoder->base.base.id, encoder->base.name);
goto out_vdd_off;
}
intel_panel_init(intel_connector, drm_edid);
intel_edp_backlight_setup(intel_dp, intel_connector);
intel_edp_add_properties(intel_dp);
intel_pps_init_late(intel_dp);
return true;
out_vdd_off:
intel_pps_vdd_off_sync(intel_dp);
return false;
}
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
struct intel_connector *intel_connector;
struct drm_connector *connector;
intel_connector = container_of(work, typeof(*intel_connector),
modeset_retry_work);
connector = &intel_connector->base;
drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s]\n", connector->base.id,
connector->name);
/* Grab the locks before changing connector property*/
mutex_lock(&connector->dev->mode_config.mutex);
/* Set connector link status to BAD and send a Uevent to notify
* userspace to do a modeset.
*/
drm_connector_set_link_status_property(connector,
DRM_MODE_LINK_STATUS_BAD);
mutex_unlock(&connector->dev->mode_config.mutex);
/* Send Hotplug uevent so userspace can reprobe */
drm_kms_helper_connector_hotplug_event(connector);
drm_connector_put(connector);
}
void intel_dp_init_modeset_retry_work(struct intel_connector *connector)
{
INIT_WORK(&connector->modeset_retry_work,
intel_dp_modeset_retry_work_fn);
}
bool
intel_dp_init_connector(struct intel_digital_port *dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &dig_port->dp;
struct intel_encoder *intel_encoder = &dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_encoder->port;
int type;
/* Initialize the work for modeset in case of link train failure */
intel_dp_init_modeset_retry_work(intel_connector);
if (drm_WARN(dev, dig_port->max_lanes < 1,
"Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
dig_port->max_lanes, intel_encoder->base.base.id,
intel_encoder->base.name))
return false;
intel_dp->reset_link_params = true;
intel_dp->pps.pps_pipe = INVALID_PIPE;
intel_dp->pps.active_pipe = INVALID_PIPE;
/* Preserve the current hw state. */
intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (_intel_dp_is_port_edp(dev_priv, intel_encoder->devdata, port)) {
/*
* Currently we don't support eDP on TypeC ports, although in
* theory it could work on TypeC legacy ports.
*/
drm_WARN_ON(dev, intel_encoder_is_tc(intel_encoder));
type = DRM_MODE_CONNECTOR_eDP;
intel_encoder->type = INTEL_OUTPUT_EDP;
/* eDP only on port B and/or C on vlv/chv */
if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) &&
port != PORT_B && port != PORT_C))
return false;
} else {
type = DRM_MODE_CONNECTOR_DisplayPort;
}
intel_dp_set_default_sink_rates(intel_dp);
intel_dp_set_default_max_sink_lane_count(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_dp->pps.active_pipe = vlv_active_pipe(intel_dp);
intel_dp_aux_init(intel_dp);
intel_connector->dp.dsc_decompression_aux = &intel_dp->aux;
drm_dbg_kms(&dev_priv->drm,
"Adding %s connector on [ENCODER:%d:%s]\n",
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
intel_encoder->base.base.id, intel_encoder->base.name);
drm_connector_init_with_ddc(dev, connector, &intel_dp_connector_funcs,
type, &intel_dp->aux.ddc);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
if (!HAS_GMCH(dev_priv) && DISPLAY_VER(dev_priv) < 12)
connector->interlace_allowed = true;
intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
intel_connector->base.polled = intel_connector->polled;
intel_connector_attach_encoder(intel_connector, intel_encoder);
if (HAS_DDI(dev_priv))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_connector->sync_state = intel_dp_connector_sync_state;
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
intel_dp_aux_fini(intel_dp);
goto fail;
}
intel_dp_set_source_rates(intel_dp);
intel_dp_set_common_rates(intel_dp);
intel_dp_reset_link_params(intel_dp);
/* init MST on ports that can support it */
intel_dp_mst_encoder_init(dig_port,
intel_connector->base.base.id);
intel_dp_add_properties(intel_dp, connector);
if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
int ret = intel_dp_hdcp_init(dig_port, intel_connector);
if (ret)
drm_dbg_kms(&dev_priv->drm,
"HDCP init failed, skipping.\n");
}
intel_dp->colorimetry_support =
intel_dp_get_colorimetry_status(intel_dp);
intel_dp->frl.is_trained = false;
intel_dp->frl.trained_rate_gbps = 0;
intel_psr_init(intel_dp);
return true;
fail:
intel_display_power_flush_work(dev_priv);
drm_connector_cleanup(connector);
return false;
}
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
if (!HAS_DISPLAY(dev_priv))
return;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
if (encoder->type != INTEL_OUTPUT_DDI)
continue;
intel_dp = enc_to_intel_dp(encoder);
if (!intel_dp_mst_source_support(intel_dp))
continue;
if (intel_dp->is_mst)
drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
}
}
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
if (!HAS_DISPLAY(dev_priv))
return;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
int ret;
if (encoder->type != INTEL_OUTPUT_DDI)
continue;
intel_dp = enc_to_intel_dp(encoder);
if (!intel_dp_mst_source_support(intel_dp))
continue;
ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
true);
if (ret) {
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
false);
}
}
}