blob: 206a5e0fedf1b756e5310113ae8cf92f15c42770 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <asm/set_memory.h>
#include <asm/smp.h>
#include <linux/types.h>
#include <linux/stop_machine.h>
#include <drm/drm_managed.h>
#include <drm/intel/i915_drm.h>
#include <drm/intel/intel-gtt.h>
#include "display/intel_display.h"
#include "gem/i915_gem_lmem.h"
#include "intel_context.h"
#include "intel_ggtt_gmch.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gt_regs.h"
#include "intel_pci_config.h"
#include "intel_ring.h"
#include "i915_drv.h"
#include "i915_pci.h"
#include "i915_reg.h"
#include "i915_request.h"
#include "i915_scatterlist.h"
#include "i915_utils.h"
#include "i915_vgpu.h"
#include "intel_gtt.h"
#include "gen8_ppgtt.h"
#include "intel_engine_pm.h"
static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (i915_node_color_differs(node, color))
*start += I915_GTT_PAGE_SIZE;
/*
* Also leave a space between the unallocated reserved node after the
* GTT and any objects within the GTT, i.e. we use the color adjustment
* to insert a guard page to prevent prefetches crossing over the
* GTT boundary.
*/
node = list_next_entry(node, node_list);
if (node->color != color)
*end -= I915_GTT_PAGE_SIZE;
}
static int ggtt_init_hw(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
ggtt->vm.is_ggtt = true;
/* Only VLV supports read-only GGTT mappings */
ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
if (ggtt->mappable_end) {
if (!io_mapping_init_wc(&ggtt->iomap,
ggtt->gmadr.start,
ggtt->mappable_end)) {
ggtt->vm.cleanup(&ggtt->vm);
return -EIO;
}
ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
ggtt->mappable_end);
}
intel_ggtt_init_fences(ggtt);
return 0;
}
/**
* i915_ggtt_init_hw - Initialize GGTT hardware
* @i915: i915 device
*/
int i915_ggtt_init_hw(struct drm_i915_private *i915)
{
int ret;
/*
* Note that we use page colouring to enforce a guard page at the
* end of the address space. This is required as the CS may prefetch
* beyond the end of the batch buffer, across the page boundary,
* and beyond the end of the GTT if we do not provide a guard.
*/
ret = ggtt_init_hw(to_gt(i915)->ggtt);
if (ret)
return ret;
return 0;
}
/**
* i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
* @vm: The VM to suspend the mappings for
*
* Suspend the memory mappings for all objects mapped to HW via the GGTT or a
* DPT page table.
*/
void i915_ggtt_suspend_vm(struct i915_address_space *vm)
{
struct i915_vma *vma, *vn;
int save_skip_rewrite;
drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
retry:
i915_gem_drain_freed_objects(vm->i915);
mutex_lock(&vm->mutex);
/*
* Skip rewriting PTE on VMA unbind.
* FIXME: Use an argument to i915_vma_unbind() instead?
*/
save_skip_rewrite = vm->skip_pte_rewrite;
vm->skip_pte_rewrite = true;
list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
continue;
/* unlikely to race when GPU is idle, so no worry about slowpath.. */
if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
/*
* No dead objects should appear here, GPU should be
* completely idle, and userspace suspended
*/
i915_gem_object_get(obj);
mutex_unlock(&vm->mutex);
i915_gem_object_lock(obj, NULL);
GEM_WARN_ON(i915_vma_unbind(vma));
i915_gem_object_unlock(obj);
i915_gem_object_put(obj);
vm->skip_pte_rewrite = save_skip_rewrite;
goto retry;
}
if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
i915_vma_wait_for_bind(vma);
__i915_vma_evict(vma, false);
drm_mm_remove_node(&vma->node);
}
i915_gem_object_unlock(obj);
}
vm->clear_range(vm, 0, vm->total);
vm->skip_pte_rewrite = save_skip_rewrite;
mutex_unlock(&vm->mutex);
}
void i915_ggtt_suspend(struct i915_ggtt *ggtt)
{
struct intel_gt *gt;
i915_ggtt_suspend_vm(&ggtt->vm);
ggtt->invalidate(ggtt);
list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
intel_gt_check_and_clear_faults(gt);
}
void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
spin_lock_irq(&uncore->lock);
intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
spin_unlock_irq(&uncore->lock);
}
static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
{
/*
* On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
* will be dropped. For WC mappings in general we have 64 byte burst
* writes when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
return true;
return false;
}
static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
/*
* Note that as an uncached mmio write, this will flush the
* WCB of the writes into the GGTT before it triggers the invalidate.
*
* Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
*/
if (needs_wc_ggtt_mapping(ggtt->vm.i915))
intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
GFX_FLSH_CNTL_EN);
}
static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
intel_wakeref_t wakeref;
with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
}
static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct intel_gt *gt;
gen8_ggtt_invalidate(ggtt);
list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
guc_ggtt_ct_invalidate(gt);
else if (GRAPHICS_VER(i915) >= 12)
intel_uncore_write_fw(gt->uncore,
GEN12_GUC_TLB_INV_CR,
GEN12_GUC_TLB_INV_CR_INVALIDATE);
else
intel_uncore_write_fw(gt->uncore,
GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}
}
static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
if (flags & PTE_LM)
pte |= GEN12_GGTT_PTE_LM;
if (pat_index & BIT(0))
pte |= MTL_GGTT_PTE_PAT0;
if (pat_index & BIT(1))
pte |= MTL_GGTT_PTE_PAT1;
return pte;
}
u64 gen8_ggtt_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
if (flags & PTE_LM)
pte |= GEN12_GGTT_PTE_LM;
return pte;
}
static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
{
struct intel_gt *gt = ggtt->vm.gt;
return intel_gt_is_bind_context_ready(gt);
}
static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
{
struct intel_context *ce;
struct intel_gt *gt = ggtt->vm.gt;
if (intel_gt_is_wedged(gt))
return NULL;
ce = gt->engine[BCS0]->bind_context;
GEM_BUG_ON(!ce);
/*
* If the GT is not awake already at this stage then fallback
* to pci based GGTT update otherwise __intel_wakeref_get_first()
* would conflict with fs_reclaim trying to allocate memory while
* doing rpm_resume().
*/
*wakeref = intel_gt_pm_get_if_awake(gt);
if (!*wakeref)
return NULL;
intel_engine_pm_get(ce->engine);
return ce;
}
static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
{
intel_engine_pm_put(ce->engine);
intel_gt_pm_put(ce->engine->gt, wakeref);
}
static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
struct sg_table *pages, u32 num_entries,
const gen8_pte_t pte)
{
struct i915_sched_attr attr = {};
struct intel_gt *gt = ggtt->vm.gt;
const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
struct sgt_iter iter;
struct i915_request *rq;
struct intel_context *ce;
intel_wakeref_t wakeref;
u32 *cs;
if (!num_entries)
return true;
ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
if (!ce)
return false;
if (pages)
iter = __sgt_iter(pages->sgl, true);
while (num_entries) {
int count = 0;
dma_addr_t addr;
/*
* MI_UPDATE_GTT can update 512 entries in a single command but
* that end up with engine reset, 511 works.
*/
u32 n_ptes = min_t(u32, 511, num_entries);
if (mutex_lock_interruptible(&ce->timeline->mutex))
goto put_ce;
intel_context_enter(ce);
rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
intel_context_exit(ce);
if (IS_ERR(rq)) {
GT_TRACE(gt, "Failed to get bind request\n");
mutex_unlock(&ce->timeline->mutex);
goto put_ce;
}
cs = intel_ring_begin(rq, 2 * n_ptes + 2);
if (IS_ERR(cs)) {
GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
i915_request_set_error_once(rq, PTR_ERR(cs));
/* once a request is created, it must be queued */
goto queue_err_rq;
}
*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
*cs++ = offset << 12;
if (pages) {
for_each_sgt_daddr_next(addr, iter) {
if (count == n_ptes)
break;
*cs++ = lower_32_bits(pte | addr);
*cs++ = upper_32_bits(pte | addr);
count++;
}
/* fill remaining with scratch pte, if any */
if (count < n_ptes) {
memset64((u64 *)cs, scratch_pte,
n_ptes - count);
cs += (n_ptes - count) * 2;
}
} else {
memset64((u64 *)cs, pte, n_ptes);
cs += n_ptes * 2;
}
intel_ring_advance(rq, cs);
queue_err_rq:
i915_request_get(rq);
__i915_request_commit(rq);
__i915_request_queue(rq, &attr);
mutex_unlock(&ce->timeline->mutex);
/* This will break if the request is complete or after engine reset */
i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
if (rq->fence.error)
goto err_rq;
i915_request_put(rq);
num_entries -= n_ptes;
offset += n_ptes;
}
gen8_ggtt_bind_put_ce(ce, wakeref);
return true;
err_rq:
i915_request_put(rq);
put_ce:
gen8_ggtt_bind_put_ce(ce, wakeref);
return false;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
writeq(pte, addr);
}
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
unsigned int pat_index,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t __iomem *pte =
(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
ggtt->invalidate(ggtt);
}
static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
dma_addr_t addr, u64 offset,
unsigned int pat_index, u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t pte;
pte = ggtt->vm.pte_encode(addr, pat_index, flags);
if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
return ggtt->invalidate(ggtt);
gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
unsigned int pat_index,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
gen8_pte_t __iomem *gte;
gen8_pte_t __iomem *end;
struct sgt_iter iter;
dma_addr_t addr;
/*
* Note that we ignore PTE_READ_ONLY here. The caller must be careful
* not to allow the user to override access to a read only page.
*/
gte = (gen8_pte_t __iomem *)ggtt->gsm;
gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
while (gte < end)
gen8_set_pte(gte++, vm->scratch[0]->encode);
end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
gen8_set_pte(gte++, pte_encode | addr);
GEM_BUG_ON(gte > end);
/* Fill the allocated but "unused" space beyond the end of the buffer */
while (gte < end)
gen8_set_pte(gte++, vm->scratch[0]->encode);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(ggtt);
}
static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
unsigned int pat_index, u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t scratch_pte = vm->scratch[0]->encode;
gen8_pte_t pte_encode;
u64 start, end;
pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
goto err;
start = end;
end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
goto err;
start += vma_res->node_size / I915_GTT_PAGE_SIZE;
if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
goto err;
return true;
err:
return false;
}
static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
unsigned int pat_index, u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
__gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
return ggtt->invalidate(ggtt);
gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
gen8_pte_t __iomem *gtt_base =
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
}
static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
NULL, num_entries, scratch_pte))
return ggtt->invalidate(ggtt);
gen8_ggtt_clear_range(vm, start, length);
}
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
unsigned int pat_index,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *pte =
(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
ggtt->invalidate(ggtt);
}
/*
* Binds an object into the global gtt with the specified cache level.
* The object will be accessible to the GPU via commands whose operands
* reference offsets within the global GTT as well as accessible by the GPU
* through the GMADR mapped BAR (i915->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
unsigned int pat_index,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *gte;
gen6_pte_t __iomem *end;
struct sgt_iter iter;
dma_addr_t addr;
gte = (gen6_pte_t __iomem *)ggtt->gsm;
gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
while (gte < end)
iowrite32(vm->scratch[0]->encode, gte++);
end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
GEM_BUG_ON(gte > end);
/* Fill the allocated but "unused" space beyond the end of the buffer */
while (gte < end)
iowrite32(vm->scratch[0]->encode, gte++);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(ggtt);
}
static void nop_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
}
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
/*
* Make sure the internal GAM fifo has been cleared of all GTT
* writes before exiting stop_machine(). This guarantees that
* any aperture accesses waiting to start in another process
* cannot back up behind the GTT writes causing a hang.
* The register can be any arbitrary GAM register.
*/
intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
}
struct insert_page {
struct i915_address_space *vm;
dma_addr_t addr;
u64 offset;
unsigned int pat_index;
};
static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
struct insert_page *arg = _arg;
gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
arg->pat_index, 0);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
unsigned int pat_index,
u32 unused)
{
struct insert_page arg = { vm, addr, offset, pat_index };
stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}
struct insert_entries {
struct i915_address_space *vm;
struct i915_vma_resource *vma_res;
unsigned int pat_index;
u32 flags;
};
static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
struct insert_entries *arg = _arg;
gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
arg->pat_index, arg->flags);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
unsigned int pat_index,
u32 flags)
{
struct insert_entries arg = { vm, vma_res, pat_index, flags };
stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->scratch[0]->encode;
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
}
void intel_ggtt_bind_vma(struct i915_address_space *vm,
struct i915_vm_pt_stash *stash,
struct i915_vma_resource *vma_res,
unsigned int pat_index,
u32 flags)
{
u32 pte_flags;
if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
return;
vma_res->bound_flags |= flags;
/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
pte_flags = 0;
if (vma_res->bi.readonly)
pte_flags |= PTE_READ_ONLY;
if (vma_res->bi.lmem)
pte_flags |= PTE_LM;
vm->insert_entries(vm, vma_res, pat_index, pte_flags);
vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
}
void intel_ggtt_unbind_vma(struct i915_address_space *vm,
struct i915_vma_resource *vma_res)
{
vm->clear_range(vm, vma_res->start, vma_res->vma_size);
}
/*
* Reserve the top of the GuC address space for firmware images. Addresses
* beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
* which makes for a suitable range to hold GuC/HuC firmware images if the
* size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
* is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
* of the same size anyway, which is far more than needed, to keep the logic
* in uc_fw_ggtt_offset() simple.
*/
#define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
u64 offset;
int ret;
if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
return 0;
GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
GUC_TOP_RESERVE_SIZE, offset,
I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
if (ret)
drm_dbg(&ggtt->vm.i915->drm,
"Failed to reserve top of GGTT for GuC\n");
return ret;
}
static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
if (drm_mm_node_allocated(&ggtt->uc_fw))
drm_mm_remove_node(&ggtt->uc_fw);
}
static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
{
ggtt_release_guc_top(ggtt);
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
mutex_destroy(&ggtt->error_mutex);
}
static int init_ggtt(struct i915_ggtt *ggtt)
{
/*
* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
unsigned long hole_start, hole_end;
struct drm_mm_node *entry;
int ret;
/*
* GuC requires all resources that we're sharing with it to be placed in
* non-WOPCM memory. If GuC is not present or not in use we still need a
* small bias as ring wraparound at offset 0 sometimes hangs. No idea
* why.
*/
ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
ret = intel_vgt_balloon(ggtt);
if (ret)
return ret;
mutex_init(&ggtt->error_mutex);
if (ggtt->mappable_end) {
/*
* Reserve a mappable slot for our lockless error capture.
*
* We strongly prefer taking address 0x0 in order to protect
* other critical buffers against accidental overwrites,
* as writing to address 0 is a very common mistake.
*
* Since 0 may already be in use by the system (e.g. the BIOS
* framebuffer), we let the reservation fail quietly and hope
* 0 remains reserved always.
*
* If we fail to reserve 0, and then fail to find any space
* for an error-capture, remain silent. We can afford not
* to reserve an error_capture node as we have fallback
* paths, and we trust that 0 will remain reserved. However,
* the only likely reason for failure to insert is a driver
* bug, which we expect to cause other failures...
*
* Since CPU can perform speculative reads on error capture
* (write-combining allows it) add scratch page after error
* capture to avoid DMAR errors.
*/
ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
drm_mm_insert_node_in_range(&ggtt->vm.mm,
&ggtt->error_capture,
ggtt->error_capture.size, 0,
ggtt->error_capture.color,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
}
if (drm_mm_node_allocated(&ggtt->error_capture)) {
u64 start = ggtt->error_capture.start;
u64 size = ggtt->error_capture.size;
ggtt->vm.scratch_range(&ggtt->vm, start, size);
drm_dbg(&ggtt->vm.i915->drm,
"Reserved GGTT:[%llx, %llx] for use by error capture\n",
start, start + size);
}
/*
* The upper portion of the GuC address space has a sizeable hole
* (several MB) that is inaccessible by GuC. Reserve this range within
* GGTT as it can comfortably hold GuC/HuC firmware images.
*/
ret = ggtt_reserve_guc_top(ggtt);
if (ret)
goto err;
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
drm_dbg(&ggtt->vm.i915->drm,
"clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt->vm.clear_range(&ggtt->vm, hole_start,
hole_end - hole_start);
}
/* And finally clear the reserved guard page */
ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
return 0;
err:
cleanup_init_ggtt(ggtt);
return ret;
}
static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
struct i915_vm_pt_stash *stash,
struct i915_vma_resource *vma_res,
unsigned int pat_index,
u32 flags)
{
u32 pte_flags;
/* Currently applicable only to VLV */
pte_flags = 0;
if (vma_res->bi.readonly)
pte_flags |= PTE_READ_ONLY;
if (flags & I915_VMA_LOCAL_BIND)
ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
stash, vma_res, pat_index, flags);
if (flags & I915_VMA_GLOBAL_BIND)
vm->insert_entries(vm, vma_res, pat_index, pte_flags);
vma_res->bound_flags |= flags;
}
static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
struct i915_vma_resource *vma_res)
{
if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
vm->clear_range(vm, vma_res->start, vma_res->vma_size);
if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
}
static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
{
struct i915_vm_pt_stash stash = {};
struct i915_ppgtt *ppgtt;
int err;
ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
err = -ENODEV;
goto err_ppgtt;
}
err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
if (err)
goto err_ppgtt;
i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
i915_gem_object_unlock(ppgtt->vm.scratch[0]);
if (err)
goto err_stash;
/*
* Note we only pre-allocate as far as the end of the global
* GTT. On 48b / 4-level page-tables, the difference is very,
* very significant! We have to preallocate as GVT/vgpu does
* not like the page directory disappearing.
*/
ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
ggtt->alias = ppgtt;
ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
i915_vm_free_pt_stash(&ppgtt->vm, &stash);
return 0;
err_stash:
i915_vm_free_pt_stash(&ppgtt->vm, &stash);
err_ppgtt:
i915_vm_put(&ppgtt->vm);
return err;
}
static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
{
struct i915_ppgtt *ppgtt;
ppgtt = fetch_and_zero(&ggtt->alias);
if (!ppgtt)
return;
i915_vm_put(&ppgtt->vm);
ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
}
int i915_init_ggtt(struct drm_i915_private *i915)
{
int ret;
ret = init_ggtt(to_gt(i915)->ggtt);
if (ret)
return ret;
if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
if (ret)
cleanup_init_ggtt(to_gt(i915)->ggtt);
}
return 0;
}
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
{
struct i915_vma *vma, *vn;
flush_workqueue(ggtt->vm.i915->wq);
i915_gem_drain_freed_objects(ggtt->vm.i915);
mutex_lock(&ggtt->vm.mutex);
ggtt->vm.skip_pte_rewrite = true;
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
bool trylock;
trylock = i915_gem_object_trylock(obj, NULL);
WARN_ON(!trylock);
WARN_ON(__i915_vma_unbind(vma));
if (trylock)
i915_gem_object_unlock(obj);
}
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
mutex_destroy(&ggtt->error_mutex);
ggtt_release_guc_top(ggtt);
intel_vgt_deballoon(ggtt);
ggtt->vm.cleanup(&ggtt->vm);
mutex_unlock(&ggtt->vm.mutex);
i915_address_space_fini(&ggtt->vm);
arch_phys_wc_del(ggtt->mtrr);
if (ggtt->iomap.size)
io_mapping_fini(&ggtt->iomap);
}
/**
* i915_ggtt_driver_release - Clean up GGTT hardware initialization
* @i915: i915 device
*/
void i915_ggtt_driver_release(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
fini_aliasing_ppgtt(ggtt);
intel_ggtt_fini_fences(ggtt);
ggtt_cleanup_hw(ggtt);
}
/**
* i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
* all free objects have been drained.
* @i915: i915 device
*/
void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
dma_resv_fini(&ggtt->vm._resv);
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
{
/*
* GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
* GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
*/
GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
}
static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
{
return gen6_gttmmadr_size(i915) / 2;
}
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
phys_addr_t phys_addr;
u32 pte_flags;
int ret;
GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
if (i915_direct_stolen_access(i915)) {
drm_dbg(&i915->drm, "Using direct GSM access\n");
phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
} else {
phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
}
if (needs_wc_ggtt_mapping(i915))
ggtt->gsm = ioremap_wc(phys_addr, size);
else
ggtt->gsm = ioremap(phys_addr, size);
if (!ggtt->gsm) {
drm_err(&i915->drm, "Failed to map the ggtt page table\n");
return -ENOMEM;
}
kref_init(&ggtt->vm.resv_ref);
ret = setup_scratch_page(&ggtt->vm);
if (ret) {
drm_err(&i915->drm, "Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(ggtt->gsm);
return ret;
}
pte_flags = 0;
if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
pte_flags |= PTE_LM;
ggtt->vm.scratch[0]->encode =
ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
i915_gem_get_pat_index(i915,
I915_CACHE_NONE),
pte_flags);
return 0;
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
iounmap(ggtt->gsm);
free_scratch(vm);
}
static struct resource pci_resource(struct pci_dev *pdev, int bar)
{
return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
pci_resource_len(pdev, bar));
}
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
unsigned int size;
u16 snb_gmch_ctl;
if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
return -ENXIO;
ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
ggtt->mappable_end = resource_size(&ggtt->gmadr);
}
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (IS_CHERRYVIEW(i915))
size = chv_get_total_gtt_size(snb_gmch_ctl);
else
size = gen8_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.alloc_pt_dma = alloc_pt_dma;
ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->vm.insert_page = gen8_ggtt_insert_page;
ggtt->vm.clear_range = nop_clear_range;
ggtt->vm.scratch_range = gen8_ggtt_clear_range;
ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
/*
* Serialize GTT updates with aperture access on BXT if VT-d is on,
* and always on CHV.
*/
if (intel_vm_no_concurrent_access_wa(i915)) {
ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
/*
* Calling stop_machine() version of GGTT update function
* at error capture/reset path will raise lockdep warning.
* Allow calling gen8_ggtt_insert_* directly at reset path
* which is safe from parallel GGTT updates.
*/
ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
ggtt->vm.bind_async_flags =
I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
}
if (i915_ggtt_require_binder(i915)) {
ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
/*
* On GPU is hung, we might bind VMAs for error capture.
* Fallback to CPU GGTT updates in that case.
*/
ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
}
if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
ggtt->invalidate = guc_ggtt_invalidate;
else
ggtt->invalidate = gen8_ggtt_invalidate;
ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
else
ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
return ggtt_probe_common(ggtt, size);
}
/*
* For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
* so the switch-case statements in these PTE encode functions are still valid.
* See translation table LEGACY_CACHELEVEL.
*/
static u64 snb_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (pat_index) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(pat_index);
}
return pte;
}
static u64 ivb_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (pat_index) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(pat_index);
}
return pte;
}
static u64 byt_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (pat_index != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static u64 hsw_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
if (pat_index != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static u64 iris_pte_encode(dma_addr_t addr,
unsigned int pat_index,
u32 flags)
{
gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
switch (pat_index) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *i915 = ggtt->vm.i915;
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
unsigned int size;
u16 snb_gmch_ctl;
if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
return -ENXIO;
ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
ggtt->mappable_end = resource_size(&ggtt->gmadr);
/*
* 64/512MB is the current min/max we actually know of, but this is
* just a coarse sanity check.
*/
if (ggtt->mappable_end < (64 << 20) ||
ggtt->mappable_end > (512 << 20)) {
drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
&ggtt->mappable_end);
return -ENXIO;
}
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.alloc_pt_dma = alloc_pt_dma;
ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
ggtt->vm.clear_range = nop_clear_range;
if (!HAS_FULL_PPGTT(i915))
ggtt->vm.clear_range = gen6_ggtt_clear_range;
ggtt->vm.scratch_range = gen6_ggtt_clear_range;
ggtt->vm.insert_page = gen6_ggtt_insert_page;
ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->invalidate = gen6_ggtt_invalidate;
if (HAS_EDRAM(i915))
ggtt->vm.pte_encode = iris_pte_encode;
else if (IS_HASWELL(i915))
ggtt->vm.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(i915))
ggtt->vm.pte_encode = byt_pte_encode;
else if (GRAPHICS_VER(i915) >= 7)
ggtt->vm.pte_encode = ivb_pte_encode;
else
ggtt->vm.pte_encode = snb_pte_encode;
ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
return ggtt_probe_common(ggtt, size);
}
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
int ret;
ggtt->vm.gt = gt;
ggtt->vm.i915 = i915;
ggtt->vm.dma = i915->drm.dev;
dma_resv_init(&ggtt->vm._resv);
if (GRAPHICS_VER(i915) >= 8)
ret = gen8_gmch_probe(ggtt);
else if (GRAPHICS_VER(i915) >= 6)
ret = gen6_gmch_probe(ggtt);
else
ret = intel_ggtt_gmch_probe(ggtt);
if (ret) {
dma_resv_fini(&ggtt->vm._resv);
return ret;
}
if ((ggtt->vm.total - 1) >> 32) {
drm_err(&i915->drm,
"We never expected a Global GTT with more than 32bits"
" of address space! Found %lldM!\n",
ggtt->vm.total >> 20);
ggtt->vm.total = 1ULL << 32;
ggtt->mappable_end =
min_t(u64, ggtt->mappable_end, ggtt->vm.total);
}
if (ggtt->mappable_end > ggtt->vm.total) {
drm_err(&i915->drm,
"mappable aperture extends past end of GGTT,"
" aperture=%pa, total=%llx\n",
&ggtt->mappable_end, ggtt->vm.total);
ggtt->mappable_end = ggtt->vm.total;
}
/* GMADR is the PCI mmio aperture into the global GTT. */
drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
drm_dbg(&i915->drm, "GMADR size = %lluM\n",
(u64)ggtt->mappable_end >> 20);
drm_dbg(&i915->drm, "DSM size = %lluM\n",
(u64)resource_size(&intel_graphics_stolen_res) >> 20);
return 0;
}
/**
* i915_ggtt_probe_hw - Probe GGTT hardware location
* @i915: i915 device
*/
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
{
struct intel_gt *gt;
int ret, i;
for_each_gt(gt, i915, i) {
ret = intel_gt_assign_ggtt(gt);
if (ret)
return ret;
}
ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
if (ret)
return ret;
if (i915_vtd_active(i915))
drm_info(&i915->drm, "VT-d active for gfx access\n");
return 0;
}
struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt;
ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
if (!ggtt)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ggtt->gt_list);
return ggtt;
}
int i915_ggtt_enable_hw(struct drm_i915_private *i915)
{
if (GRAPHICS_VER(i915) < 6)
return intel_ggtt_gmch_enable_hw(i915);
return 0;
}
/**
* i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
* @vm: The VM to restore the mappings for
*
* Restore the memory mappings for all objects mapped to HW via the GGTT or a
* DPT page table.
*
* Returns %true if restoring the mapping for any object that was in a write
* domain before suspend.
*/
bool i915_ggtt_resume_vm(struct i915_address_space *vm)
{
struct i915_vma *vma;
bool write_domain_objs = false;
drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
/* First fill our portion of the GTT with scratch pages */
vm->clear_range(vm, 0, vm->total);
/* clflush objects bound into the GGTT and rebind them. */
list_for_each_entry(vma, &vm->bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
unsigned int was_bound =
atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
GEM_BUG_ON(!was_bound);
/*
* Clear the bound flags of the vma resource to allow
* ptes to be repopulated.
*/
vma->resource->bound_flags = 0;
vma->ops->bind_vma(vm, NULL, vma->resource,
obj ? obj->pat_index :
i915_gem_get_pat_index(vm->i915,
I915_CACHE_NONE),
was_bound);
if (obj) { /* only used during resume => exclusive access */
write_domain_objs |= fetch_and_zero(&obj->write_domain);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
}
}
return write_domain_objs;
}
void i915_ggtt_resume(struct i915_ggtt *ggtt)
{
struct intel_gt *gt;
bool flush;
list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
intel_gt_check_and_clear_faults(gt);
flush = i915_ggtt_resume_vm(&ggtt->vm);
if (drm_mm_node_allocated(&ggtt->error_capture))
ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
ggtt->error_capture.size);
list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
intel_uc_resume_mappings(&gt->uc);
ggtt->invalidate(ggtt);
if (flush)
wbinvd_on_all_cpus();
intel_ggtt_restore_fences(ggtt);
}