| // SPDX-License-Identifier: GPL-2.0 |
| |
| #define _GNU_SOURCE |
| |
| #include <arpa/inet.h> |
| #include <errno.h> |
| #include <error.h> |
| #include <linux/in.h> |
| #include <netinet/ip.h> |
| #include <netinet/ip6.h> |
| #include <netinet/udp.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| static bool cfg_do_ipv4; |
| static bool cfg_do_ipv6; |
| static bool cfg_verbose; |
| static bool cfg_overlap; |
| static bool cfg_permissive; |
| static unsigned short cfg_port = 9000; |
| |
| const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) }; |
| const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT; |
| |
| #define IP4_HLEN (sizeof(struct iphdr)) |
| #define IP6_HLEN (sizeof(struct ip6_hdr)) |
| #define UDP_HLEN (sizeof(struct udphdr)) |
| |
| /* IPv6 fragment header lenth. */ |
| #define FRAG_HLEN 8 |
| |
| static int payload_len; |
| static int max_frag_len; |
| |
| #define MSG_LEN_MAX 10000 /* Max UDP payload length. */ |
| |
| #define IP4_MF (1u << 13) /* IPv4 MF flag. */ |
| #define IP6_MF (1) /* IPv6 MF flag. */ |
| |
| #define CSUM_MANGLED_0 (0xffff) |
| |
| static uint8_t udp_payload[MSG_LEN_MAX]; |
| static uint8_t ip_frame[IP_MAXPACKET]; |
| static uint32_t ip_id = 0xabcd; |
| static int msg_counter; |
| static int frag_counter; |
| static unsigned int seed; |
| |
| /* Receive a UDP packet. Validate it matches udp_payload. */ |
| static void recv_validate_udp(int fd_udp) |
| { |
| ssize_t ret; |
| static uint8_t recv_buff[MSG_LEN_MAX]; |
| |
| ret = recv(fd_udp, recv_buff, payload_len, 0); |
| msg_counter++; |
| |
| if (cfg_overlap) { |
| if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN)) |
| return; /* OK */ |
| if (!cfg_permissive) { |
| if (ret != -1) |
| error(1, 0, "recv: expected timeout; got %d", |
| (int)ret); |
| error(1, errno, "recv: expected timeout: %d", errno); |
| } |
| } |
| |
| if (ret == -1) |
| error(1, errno, "recv: payload_len = %d max_frag_len = %d", |
| payload_len, max_frag_len); |
| if (ret != payload_len) |
| error(1, 0, "recv: wrong size: %d vs %d", (int)ret, payload_len); |
| if (memcmp(udp_payload, recv_buff, payload_len)) |
| error(1, 0, "recv: wrong data"); |
| } |
| |
| static uint32_t raw_checksum(uint8_t *buf, int len, uint32_t sum) |
| { |
| int i; |
| |
| for (i = 0; i < (len & ~1U); i += 2) { |
| sum += (u_int16_t)ntohs(*((u_int16_t *)(buf + i))); |
| if (sum > 0xffff) |
| sum -= 0xffff; |
| } |
| |
| if (i < len) { |
| sum += buf[i] << 8; |
| if (sum > 0xffff) |
| sum -= 0xffff; |
| } |
| |
| return sum; |
| } |
| |
| static uint16_t udp_checksum(struct ip *iphdr, struct udphdr *udphdr) |
| { |
| uint32_t sum = 0; |
| uint16_t res; |
| |
| sum = raw_checksum((uint8_t *)&iphdr->ip_src, 2 * sizeof(iphdr->ip_src), |
| IPPROTO_UDP + (uint32_t)(UDP_HLEN + payload_len)); |
| sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum); |
| sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum); |
| res = 0xffff & ~sum; |
| if (res) |
| return htons(res); |
| else |
| return CSUM_MANGLED_0; |
| } |
| |
| static uint16_t udp6_checksum(struct ip6_hdr *iphdr, struct udphdr *udphdr) |
| { |
| uint32_t sum = 0; |
| uint16_t res; |
| |
| sum = raw_checksum((uint8_t *)&iphdr->ip6_src, 2 * sizeof(iphdr->ip6_src), |
| IPPROTO_UDP); |
| sum = raw_checksum((uint8_t *)&udphdr->len, sizeof(udphdr->len), sum); |
| sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum); |
| sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum); |
| res = 0xffff & ~sum; |
| if (res) |
| return htons(res); |
| else |
| return CSUM_MANGLED_0; |
| } |
| |
| static void send_fragment(int fd_raw, struct sockaddr *addr, socklen_t alen, |
| int offset, bool ipv6) |
| { |
| int frag_len; |
| int res; |
| int payload_offset = offset > 0 ? offset - UDP_HLEN : 0; |
| uint8_t *frag_start = ipv6 ? ip_frame + IP6_HLEN + FRAG_HLEN : |
| ip_frame + IP4_HLEN; |
| |
| if (offset == 0) { |
| struct udphdr udphdr; |
| udphdr.source = htons(cfg_port + 1); |
| udphdr.dest = htons(cfg_port); |
| udphdr.len = htons(UDP_HLEN + payload_len); |
| udphdr.check = 0; |
| if (ipv6) |
| udphdr.check = udp6_checksum((struct ip6_hdr *)ip_frame, &udphdr); |
| else |
| udphdr.check = udp_checksum((struct ip *)ip_frame, &udphdr); |
| memcpy(frag_start, &udphdr, UDP_HLEN); |
| } |
| |
| if (ipv6) { |
| struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame; |
| struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); |
| if (payload_len - payload_offset <= max_frag_len && offset > 0) { |
| /* This is the last fragment. */ |
| frag_len = FRAG_HLEN + payload_len - payload_offset; |
| fraghdr->ip6f_offlg = htons(offset); |
| } else { |
| frag_len = FRAG_HLEN + max_frag_len; |
| fraghdr->ip6f_offlg = htons(offset | IP6_MF); |
| } |
| ip6hdr->ip6_plen = htons(frag_len); |
| if (offset == 0) |
| memcpy(frag_start + UDP_HLEN, udp_payload, |
| frag_len - FRAG_HLEN - UDP_HLEN); |
| else |
| memcpy(frag_start, udp_payload + payload_offset, |
| frag_len - FRAG_HLEN); |
| frag_len += IP6_HLEN; |
| } else { |
| struct ip *iphdr = (struct ip *)ip_frame; |
| if (payload_len - payload_offset <= max_frag_len && offset > 0) { |
| /* This is the last fragment. */ |
| frag_len = IP4_HLEN + payload_len - payload_offset; |
| iphdr->ip_off = htons(offset / 8); |
| } else { |
| frag_len = IP4_HLEN + max_frag_len; |
| iphdr->ip_off = htons(offset / 8 | IP4_MF); |
| } |
| iphdr->ip_len = htons(frag_len); |
| if (offset == 0) |
| memcpy(frag_start + UDP_HLEN, udp_payload, |
| frag_len - IP4_HLEN - UDP_HLEN); |
| else |
| memcpy(frag_start, udp_payload + payload_offset, |
| frag_len - IP4_HLEN); |
| } |
| |
| res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen); |
| if (res < 0) |
| error(1, errno, "send_fragment"); |
| if (res != frag_len) |
| error(1, 0, "send_fragment: %d vs %d", res, frag_len); |
| |
| frag_counter++; |
| } |
| |
| static void send_udp_frags(int fd_raw, struct sockaddr *addr, |
| socklen_t alen, bool ipv6) |
| { |
| struct ip *iphdr = (struct ip *)ip_frame; |
| struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame; |
| int res; |
| int offset; |
| int frag_len; |
| |
| /* Send the UDP datagram using raw IP fragments: the 0th fragment |
| * has the UDP header; other fragments are pieces of udp_payload |
| * split in chunks of frag_len size. |
| * |
| * Odd fragments (1st, 3rd, 5th, etc.) are sent out first, then |
| * even fragments (0th, 2nd, etc.) are sent out. |
| */ |
| if (ipv6) { |
| struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); |
| ((struct sockaddr_in6 *)addr)->sin6_port = 0; |
| memset(ip6hdr, 0, sizeof(*ip6hdr)); |
| ip6hdr->ip6_flow = htonl(6<<28); /* Version. */ |
| ip6hdr->ip6_nxt = IPPROTO_FRAGMENT; |
| ip6hdr->ip6_hops = 255; |
| ip6hdr->ip6_src = addr6; |
| ip6hdr->ip6_dst = addr6; |
| fraghdr->ip6f_nxt = IPPROTO_UDP; |
| fraghdr->ip6f_reserved = 0; |
| fraghdr->ip6f_ident = htonl(ip_id++); |
| } else { |
| memset(iphdr, 0, sizeof(*iphdr)); |
| iphdr->ip_hl = 5; |
| iphdr->ip_v = 4; |
| iphdr->ip_tos = 0; |
| iphdr->ip_id = htons(ip_id++); |
| iphdr->ip_ttl = 0x40; |
| iphdr->ip_p = IPPROTO_UDP; |
| iphdr->ip_src.s_addr = htonl(INADDR_LOOPBACK); |
| iphdr->ip_dst = addr4; |
| iphdr->ip_sum = 0; |
| } |
| |
| /* Occasionally test in-order fragments. */ |
| if (!cfg_overlap && (rand() % 100 < 15)) { |
| offset = 0; |
| while (offset < (UDP_HLEN + payload_len)) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += max_frag_len; |
| } |
| return; |
| } |
| |
| /* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */ |
| if (!cfg_overlap && (rand() % 100 < 20) && |
| (payload_len > 9 * max_frag_len)) { |
| offset = 6 * max_frag_len; |
| while (offset < (UDP_HLEN + payload_len)) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += max_frag_len; |
| } |
| offset = 3 * max_frag_len; |
| while (offset < 6 * max_frag_len) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += max_frag_len; |
| } |
| offset = 0; |
| while (offset < 3 * max_frag_len) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += max_frag_len; |
| } |
| return; |
| } |
| |
| /* Odd fragments. */ |
| offset = max_frag_len; |
| while (offset < (UDP_HLEN + payload_len)) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| /* IPv4 ignores duplicates, so randomly send a duplicate. */ |
| if (rand() % 100 == 1) |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += 2 * max_frag_len; |
| } |
| |
| if (cfg_overlap) { |
| /* Send an extra random fragment. |
| * |
| * Duplicates and some fragments completely inside |
| * previously sent fragments are dropped/ignored. So |
| * random offset and frag_len can result in a dropped |
| * fragment instead of a dropped queue/packet. Thus we |
| * hard-code offset and frag_len. |
| */ |
| if (max_frag_len * 4 < payload_len || max_frag_len < 16) { |
| /* not enough payload for random offset and frag_len. */ |
| offset = 8; |
| frag_len = UDP_HLEN + max_frag_len; |
| } else { |
| offset = rand() % (payload_len / 2); |
| frag_len = 2 * max_frag_len + 1 + rand() % 256; |
| } |
| if (ipv6) { |
| struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); |
| /* sendto() returns EINVAL if offset + frag_len is too small. */ |
| /* In IPv6 if !!(frag_len % 8), the fragment is dropped. */ |
| frag_len &= ~0x7; |
| fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF); |
| ip6hdr->ip6_plen = htons(frag_len); |
| frag_len += IP6_HLEN; |
| } else { |
| frag_len += IP4_HLEN; |
| iphdr->ip_off = htons(offset / 8 | IP4_MF); |
| iphdr->ip_len = htons(frag_len); |
| } |
| res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen); |
| if (res < 0) |
| error(1, errno, "sendto overlap: %d", frag_len); |
| if (res != frag_len) |
| error(1, 0, "sendto overlap: %d vs %d", (int)res, frag_len); |
| frag_counter++; |
| } |
| |
| /* Event fragments. */ |
| offset = 0; |
| while (offset < (UDP_HLEN + payload_len)) { |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| /* IPv4 ignores duplicates, so randomly send a duplicate. */ |
| if (rand() % 100 == 1) |
| send_fragment(fd_raw, addr, alen, offset, ipv6); |
| offset += 2 * max_frag_len; |
| } |
| } |
| |
| static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6) |
| { |
| int fd_tx_raw, fd_rx_udp; |
| /* Frag queue timeout is set to one second in the calling script; |
| * socket timeout should be just a bit longer to avoid tests interfering |
| * with each other. |
| */ |
| struct timeval tv = { .tv_sec = 1, .tv_usec = 10 }; |
| int idx; |
| int min_frag_len = 8; |
| |
| /* Initialize the payload. */ |
| for (idx = 0; idx < MSG_LEN_MAX; ++idx) |
| udp_payload[idx] = idx % 256; |
| |
| /* Open sockets. */ |
| fd_tx_raw = socket(addr->sa_family, SOCK_RAW, IPPROTO_RAW); |
| if (fd_tx_raw == -1) |
| error(1, errno, "socket tx_raw"); |
| |
| fd_rx_udp = socket(addr->sa_family, SOCK_DGRAM, 0); |
| if (fd_rx_udp == -1) |
| error(1, errno, "socket rx_udp"); |
| if (bind(fd_rx_udp, addr, alen)) |
| error(1, errno, "bind"); |
| /* Fail fast. */ |
| if (setsockopt(fd_rx_udp, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv))) |
| error(1, errno, "setsockopt rcv timeout"); |
| |
| for (payload_len = min_frag_len; payload_len < MSG_LEN_MAX; |
| payload_len += (rand() % 4096)) { |
| if (cfg_verbose) |
| printf("payload_len: %d\n", payload_len); |
| |
| if (cfg_overlap) { |
| /* With overlaps, one send/receive pair below takes |
| * at least one second (== timeout) to run, so there |
| * is not enough test time to run a nested loop: |
| * the full overlap test takes 20-30 seconds. |
| */ |
| max_frag_len = min_frag_len + |
| rand() % (1500 - FRAG_HLEN - min_frag_len); |
| send_udp_frags(fd_tx_raw, addr, alen, ipv6); |
| recv_validate_udp(fd_rx_udp); |
| } else { |
| /* Without overlaps, each packet reassembly (== one |
| * send/receive pair below) takes very little time to |
| * run, so we can easily afford more thourough testing |
| * with a nested loop: the full non-overlap test takes |
| * less than one second). |
| */ |
| max_frag_len = min_frag_len; |
| do { |
| send_udp_frags(fd_tx_raw, addr, alen, ipv6); |
| recv_validate_udp(fd_rx_udp); |
| max_frag_len += 8 * (rand() % 8); |
| } while (max_frag_len < (1500 - FRAG_HLEN) && |
| max_frag_len <= payload_len); |
| } |
| } |
| |
| /* Cleanup. */ |
| if (close(fd_tx_raw)) |
| error(1, errno, "close tx_raw"); |
| if (close(fd_rx_udp)) |
| error(1, errno, "close rx_udp"); |
| |
| if (cfg_verbose) |
| printf("processed %d messages, %d fragments\n", |
| msg_counter, frag_counter); |
| |
| fprintf(stderr, "PASS\n"); |
| } |
| |
| |
| static void run_test_v4(void) |
| { |
| struct sockaddr_in addr = {0}; |
| |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(cfg_port); |
| addr.sin_addr = addr4; |
| |
| run_test((void *)&addr, sizeof(addr), false /* !ipv6 */); |
| } |
| |
| static void run_test_v6(void) |
| { |
| struct sockaddr_in6 addr = {0}; |
| |
| addr.sin6_family = AF_INET6; |
| addr.sin6_port = htons(cfg_port); |
| addr.sin6_addr = addr6; |
| |
| run_test((void *)&addr, sizeof(addr), true /* ipv6 */); |
| } |
| |
| static void parse_opts(int argc, char **argv) |
| { |
| int c; |
| |
| while ((c = getopt(argc, argv, "46opv")) != -1) { |
| switch (c) { |
| case '4': |
| cfg_do_ipv4 = true; |
| break; |
| case '6': |
| cfg_do_ipv6 = true; |
| break; |
| case 'o': |
| cfg_overlap = true; |
| break; |
| case 'p': |
| cfg_permissive = true; |
| break; |
| case 'v': |
| cfg_verbose = true; |
| break; |
| default: |
| error(1, 0, "%s: parse error", argv[0]); |
| } |
| } |
| } |
| |
| int main(int argc, char **argv) |
| { |
| parse_opts(argc, argv); |
| seed = time(NULL); |
| srand(seed); |
| /* Print the seed to track/reproduce potential failures. */ |
| printf("seed = %d\n", seed); |
| |
| if (cfg_do_ipv4) |
| run_test_v4(); |
| if (cfg_do_ipv6) |
| run_test_v6(); |
| |
| return 0; |
| } |