| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * kernel/sched/syscalls.c |
| * |
| * Core kernel scheduler syscalls related code |
| * |
| * Copyright (C) 1991-2002 Linus Torvalds |
| * Copyright (C) 1998-2024 Ingo Molnar, Red Hat |
| */ |
| #include <linux/sched.h> |
| #include <linux/cpuset.h> |
| #include <linux/sched/debug.h> |
| |
| #include <uapi/linux/sched/types.h> |
| |
| #include "sched.h" |
| #include "autogroup.h" |
| |
| static inline int __normal_prio(int policy, int rt_prio, int nice) |
| { |
| int prio; |
| |
| if (dl_policy(policy)) |
| prio = MAX_DL_PRIO - 1; |
| else if (rt_policy(policy)) |
| prio = MAX_RT_PRIO - 1 - rt_prio; |
| else |
| prio = NICE_TO_PRIO(nice); |
| |
| return prio; |
| } |
| |
| /* |
| * Calculate the expected normal priority: i.e. priority |
| * without taking RT-inheritance into account. Might be |
| * boosted by interactivity modifiers. Changes upon fork, |
| * setprio syscalls, and whenever the interactivity |
| * estimator recalculates. |
| */ |
| static inline int normal_prio(struct task_struct *p) |
| { |
| return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); |
| } |
| |
| /* |
| * Calculate the current priority, i.e. the priority |
| * taken into account by the scheduler. This value might |
| * be boosted by RT tasks, or might be boosted by |
| * interactivity modifiers. Will be RT if the task got |
| * RT-boosted. If not then it returns p->normal_prio. |
| */ |
| static int effective_prio(struct task_struct *p) |
| { |
| p->normal_prio = normal_prio(p); |
| /* |
| * If we are RT tasks or we were boosted to RT priority, |
| * keep the priority unchanged. Otherwise, update priority |
| * to the normal priority: |
| */ |
| if (!rt_prio(p->prio)) |
| return p->normal_prio; |
| return p->prio; |
| } |
| |
| void set_user_nice(struct task_struct *p, long nice) |
| { |
| bool queued, running; |
| struct rq *rq; |
| int old_prio; |
| |
| if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) |
| return; |
| /* |
| * We have to be careful, if called from sys_setpriority(), |
| * the task might be in the middle of scheduling on another CPU. |
| */ |
| CLASS(task_rq_lock, rq_guard)(p); |
| rq = rq_guard.rq; |
| |
| update_rq_clock(rq); |
| |
| /* |
| * The RT priorities are set via sched_setscheduler(), but we still |
| * allow the 'normal' nice value to be set - but as expected |
| * it won't have any effect on scheduling until the task is |
| * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: |
| */ |
| if (task_has_dl_policy(p) || task_has_rt_policy(p)) { |
| p->static_prio = NICE_TO_PRIO(nice); |
| return; |
| } |
| |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| if (queued) |
| dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); |
| if (running) |
| put_prev_task(rq, p); |
| |
| p->static_prio = NICE_TO_PRIO(nice); |
| set_load_weight(p, true); |
| old_prio = p->prio; |
| p->prio = effective_prio(p); |
| |
| if (queued) |
| enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); |
| if (running) |
| set_next_task(rq, p); |
| |
| /* |
| * If the task increased its priority or is running and |
| * lowered its priority, then reschedule its CPU: |
| */ |
| p->sched_class->prio_changed(rq, p, old_prio); |
| } |
| EXPORT_SYMBOL(set_user_nice); |
| |
| /* |
| * is_nice_reduction - check if nice value is an actual reduction |
| * |
| * Similar to can_nice() but does not perform a capability check. |
| * |
| * @p: task |
| * @nice: nice value |
| */ |
| static bool is_nice_reduction(const struct task_struct *p, const int nice) |
| { |
| /* Convert nice value [19,-20] to rlimit style value [1,40]: */ |
| int nice_rlim = nice_to_rlimit(nice); |
| |
| return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); |
| } |
| |
| /* |
| * can_nice - check if a task can reduce its nice value |
| * @p: task |
| * @nice: nice value |
| */ |
| int can_nice(const struct task_struct *p, const int nice) |
| { |
| return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); |
| } |
| |
| #ifdef __ARCH_WANT_SYS_NICE |
| |
| /* |
| * sys_nice - change the priority of the current process. |
| * @increment: priority increment |
| * |
| * sys_setpriority is a more generic, but much slower function that |
| * does similar things. |
| */ |
| SYSCALL_DEFINE1(nice, int, increment) |
| { |
| long nice, retval; |
| |
| /* |
| * Setpriority might change our priority at the same moment. |
| * We don't have to worry. Conceptually one call occurs first |
| * and we have a single winner. |
| */ |
| increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); |
| nice = task_nice(current) + increment; |
| |
| nice = clamp_val(nice, MIN_NICE, MAX_NICE); |
| if (increment < 0 && !can_nice(current, nice)) |
| return -EPERM; |
| |
| retval = security_task_setnice(current, nice); |
| if (retval) |
| return retval; |
| |
| set_user_nice(current, nice); |
| return 0; |
| } |
| |
| #endif |
| |
| /** |
| * task_prio - return the priority value of a given task. |
| * @p: the task in question. |
| * |
| * Return: The priority value as seen by users in /proc. |
| * |
| * sched policy return value kernel prio user prio/nice |
| * |
| * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] |
| * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] |
| * deadline -101 -1 0 |
| */ |
| int task_prio(const struct task_struct *p) |
| { |
| return p->prio - MAX_RT_PRIO; |
| } |
| |
| /** |
| * idle_cpu - is a given CPU idle currently? |
| * @cpu: the processor in question. |
| * |
| * Return: 1 if the CPU is currently idle. 0 otherwise. |
| */ |
| int idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (rq->curr != rq->idle) |
| return 0; |
| |
| if (rq->nr_running) |
| return 0; |
| |
| #ifdef CONFIG_SMP |
| if (rq->ttwu_pending) |
| return 0; |
| #endif |
| |
| return 1; |
| } |
| |
| /** |
| * available_idle_cpu - is a given CPU idle for enqueuing work. |
| * @cpu: the CPU in question. |
| * |
| * Return: 1 if the CPU is currently idle. 0 otherwise. |
| */ |
| int available_idle_cpu(int cpu) |
| { |
| if (!idle_cpu(cpu)) |
| return 0; |
| |
| if (vcpu_is_preempted(cpu)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /** |
| * idle_task - return the idle task for a given CPU. |
| * @cpu: the processor in question. |
| * |
| * Return: The idle task for the CPU @cpu. |
| */ |
| struct task_struct *idle_task(int cpu) |
| { |
| return cpu_rq(cpu)->idle; |
| } |
| |
| #ifdef CONFIG_SCHED_CORE |
| int sched_core_idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (sched_core_enabled(rq) && rq->curr == rq->idle) |
| return 1; |
| |
| return idle_cpu(cpu); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * This function computes an effective utilization for the given CPU, to be |
| * used for frequency selection given the linear relation: f = u * f_max. |
| * |
| * The scheduler tracks the following metrics: |
| * |
| * cpu_util_{cfs,rt,dl,irq}() |
| * cpu_bw_dl() |
| * |
| * Where the cfs,rt and dl util numbers are tracked with the same metric and |
| * synchronized windows and are thus directly comparable. |
| * |
| * The cfs,rt,dl utilization are the running times measured with rq->clock_task |
| * which excludes things like IRQ and steal-time. These latter are then accrued |
| * in the IRQ utilization. |
| * |
| * The DL bandwidth number OTOH is not a measured metric but a value computed |
| * based on the task model parameters and gives the minimal utilization |
| * required to meet deadlines. |
| */ |
| unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, |
| unsigned long *min, |
| unsigned long *max) |
| { |
| unsigned long util, irq, scale; |
| struct rq *rq = cpu_rq(cpu); |
| |
| scale = arch_scale_cpu_capacity(cpu); |
| |
| /* |
| * Early check to see if IRQ/steal time saturates the CPU, can be |
| * because of inaccuracies in how we track these -- see |
| * update_irq_load_avg(). |
| */ |
| irq = cpu_util_irq(rq); |
| if (unlikely(irq >= scale)) { |
| if (min) |
| *min = scale; |
| if (max) |
| *max = scale; |
| return scale; |
| } |
| |
| if (min) { |
| /* |
| * The minimum utilization returns the highest level between: |
| * - the computed DL bandwidth needed with the IRQ pressure which |
| * steals time to the deadline task. |
| * - The minimum performance requirement for CFS and/or RT. |
| */ |
| *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); |
| |
| /* |
| * When an RT task is runnable and uclamp is not used, we must |
| * ensure that the task will run at maximum compute capacity. |
| */ |
| if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) |
| *min = max(*min, scale); |
| } |
| |
| /* |
| * Because the time spend on RT/DL tasks is visible as 'lost' time to |
| * CFS tasks and we use the same metric to track the effective |
| * utilization (PELT windows are synchronized) we can directly add them |
| * to obtain the CPU's actual utilization. |
| */ |
| util = util_cfs + cpu_util_rt(rq); |
| util += cpu_util_dl(rq); |
| |
| /* |
| * The maximum hint is a soft bandwidth requirement, which can be lower |
| * than the actual utilization because of uclamp_max requirements. |
| */ |
| if (max) |
| *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); |
| |
| if (util >= scale) |
| return scale; |
| |
| /* |
| * There is still idle time; further improve the number by using the |
| * IRQ metric. Because IRQ/steal time is hidden from the task clock we |
| * need to scale the task numbers: |
| * |
| * max - irq |
| * U' = irq + --------- * U |
| * max |
| */ |
| util = scale_irq_capacity(util, irq, scale); |
| util += irq; |
| |
| return min(scale, util); |
| } |
| |
| unsigned long sched_cpu_util(int cpu) |
| { |
| return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| /** |
| * find_process_by_pid - find a process with a matching PID value. |
| * @pid: the pid in question. |
| * |
| * The task of @pid, if found. %NULL otherwise. |
| */ |
| static struct task_struct *find_process_by_pid(pid_t pid) |
| { |
| return pid ? find_task_by_vpid(pid) : current; |
| } |
| |
| static struct task_struct *find_get_task(pid_t pid) |
| { |
| struct task_struct *p; |
| guard(rcu)(); |
| |
| p = find_process_by_pid(pid); |
| if (likely(p)) |
| get_task_struct(p); |
| |
| return p; |
| } |
| |
| DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), |
| find_get_task(pid), pid_t pid) |
| |
| /* |
| * sched_setparam() passes in -1 for its policy, to let the functions |
| * it calls know not to change it. |
| */ |
| #define SETPARAM_POLICY -1 |
| |
| static void __setscheduler_params(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| int policy = attr->sched_policy; |
| |
| if (policy == SETPARAM_POLICY) |
| policy = p->policy; |
| |
| p->policy = policy; |
| |
| if (dl_policy(policy)) |
| __setparam_dl(p, attr); |
| else if (fair_policy(policy)) |
| p->static_prio = NICE_TO_PRIO(attr->sched_nice); |
| |
| /* |
| * __sched_setscheduler() ensures attr->sched_priority == 0 when |
| * !rt_policy. Always setting this ensures that things like |
| * getparam()/getattr() don't report silly values for !rt tasks. |
| */ |
| p->rt_priority = attr->sched_priority; |
| p->normal_prio = normal_prio(p); |
| set_load_weight(p, true); |
| } |
| |
| /* |
| * Check the target process has a UID that matches the current process's: |
| */ |
| static bool check_same_owner(struct task_struct *p) |
| { |
| const struct cred *cred = current_cred(), *pcred; |
| guard(rcu)(); |
| |
| pcred = __task_cred(p); |
| return (uid_eq(cred->euid, pcred->euid) || |
| uid_eq(cred->euid, pcred->uid)); |
| } |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| |
| static int uclamp_validate(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| int util_min = p->uclamp_req[UCLAMP_MIN].value; |
| int util_max = p->uclamp_req[UCLAMP_MAX].value; |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { |
| util_min = attr->sched_util_min; |
| |
| if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) |
| return -EINVAL; |
| } |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { |
| util_max = attr->sched_util_max; |
| |
| if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) |
| return -EINVAL; |
| } |
| |
| if (util_min != -1 && util_max != -1 && util_min > util_max) |
| return -EINVAL; |
| |
| /* |
| * We have valid uclamp attributes; make sure uclamp is enabled. |
| * |
| * We need to do that here, because enabling static branches is a |
| * blocking operation which obviously cannot be done while holding |
| * scheduler locks. |
| */ |
| static_branch_enable(&sched_uclamp_used); |
| |
| return 0; |
| } |
| |
| static bool uclamp_reset(const struct sched_attr *attr, |
| enum uclamp_id clamp_id, |
| struct uclamp_se *uc_se) |
| { |
| /* Reset on sched class change for a non user-defined clamp value. */ |
| if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && |
| !uc_se->user_defined) |
| return true; |
| |
| /* Reset on sched_util_{min,max} == -1. */ |
| if (clamp_id == UCLAMP_MIN && |
| attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && |
| attr->sched_util_min == -1) { |
| return true; |
| } |
| |
| if (clamp_id == UCLAMP_MAX && |
| attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && |
| attr->sched_util_max == -1) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void __setscheduler_uclamp(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| enum uclamp_id clamp_id; |
| |
| for_each_clamp_id(clamp_id) { |
| struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; |
| unsigned int value; |
| |
| if (!uclamp_reset(attr, clamp_id, uc_se)) |
| continue; |
| |
| /* |
| * RT by default have a 100% boost value that could be modified |
| * at runtime. |
| */ |
| if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) |
| value = sysctl_sched_uclamp_util_min_rt_default; |
| else |
| value = uclamp_none(clamp_id); |
| |
| uclamp_se_set(uc_se, value, false); |
| |
| } |
| |
| if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) |
| return; |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && |
| attr->sched_util_min != -1) { |
| uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], |
| attr->sched_util_min, true); |
| } |
| |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && |
| attr->sched_util_max != -1) { |
| uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], |
| attr->sched_util_max, true); |
| } |
| } |
| |
| #else /* !CONFIG_UCLAMP_TASK: */ |
| |
| static inline int uclamp_validate(struct task_struct *p, |
| const struct sched_attr *attr) |
| { |
| return -EOPNOTSUPP; |
| } |
| static void __setscheduler_uclamp(struct task_struct *p, |
| const struct sched_attr *attr) { } |
| #endif |
| |
| /* |
| * Allow unprivileged RT tasks to decrease priority. |
| * Only issue a capable test if needed and only once to avoid an audit |
| * event on permitted non-privileged operations: |
| */ |
| static int user_check_sched_setscheduler(struct task_struct *p, |
| const struct sched_attr *attr, |
| int policy, int reset_on_fork) |
| { |
| if (fair_policy(policy)) { |
| if (attr->sched_nice < task_nice(p) && |
| !is_nice_reduction(p, attr->sched_nice)) |
| goto req_priv; |
| } |
| |
| if (rt_policy(policy)) { |
| unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
| |
| /* Can't set/change the rt policy: */ |
| if (policy != p->policy && !rlim_rtprio) |
| goto req_priv; |
| |
| /* Can't increase priority: */ |
| if (attr->sched_priority > p->rt_priority && |
| attr->sched_priority > rlim_rtprio) |
| goto req_priv; |
| } |
| |
| /* |
| * Can't set/change SCHED_DEADLINE policy at all for now |
| * (safest behavior); in the future we would like to allow |
| * unprivileged DL tasks to increase their relative deadline |
| * or reduce their runtime (both ways reducing utilization) |
| */ |
| if (dl_policy(policy)) |
| goto req_priv; |
| |
| /* |
| * Treat SCHED_IDLE as nice 20. Only allow a switch to |
| * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. |
| */ |
| if (task_has_idle_policy(p) && !idle_policy(policy)) { |
| if (!is_nice_reduction(p, task_nice(p))) |
| goto req_priv; |
| } |
| |
| /* Can't change other user's priorities: */ |
| if (!check_same_owner(p)) |
| goto req_priv; |
| |
| /* Normal users shall not reset the sched_reset_on_fork flag: */ |
| if (p->sched_reset_on_fork && !reset_on_fork) |
| goto req_priv; |
| |
| return 0; |
| |
| req_priv: |
| if (!capable(CAP_SYS_NICE)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| int __sched_setscheduler(struct task_struct *p, |
| const struct sched_attr *attr, |
| bool user, bool pi) |
| { |
| int oldpolicy = -1, policy = attr->sched_policy; |
| int retval, oldprio, newprio, queued, running; |
| const struct sched_class *prev_class; |
| struct balance_callback *head; |
| struct rq_flags rf; |
| int reset_on_fork; |
| int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; |
| struct rq *rq; |
| bool cpuset_locked = false; |
| |
| /* The pi code expects interrupts enabled */ |
| BUG_ON(pi && in_interrupt()); |
| recheck: |
| /* Double check policy once rq lock held: */ |
| if (policy < 0) { |
| reset_on_fork = p->sched_reset_on_fork; |
| policy = oldpolicy = p->policy; |
| } else { |
| reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); |
| |
| if (!valid_policy(policy)) |
| return -EINVAL; |
| } |
| |
| if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) |
| return -EINVAL; |
| |
| /* |
| * Valid priorities for SCHED_FIFO and SCHED_RR are |
| * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, |
| * SCHED_BATCH and SCHED_IDLE is 0. |
| */ |
| if (attr->sched_priority > MAX_RT_PRIO-1) |
| return -EINVAL; |
| if ((dl_policy(policy) && !__checkparam_dl(attr)) || |
| (rt_policy(policy) != (attr->sched_priority != 0))) |
| return -EINVAL; |
| |
| if (user) { |
| retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); |
| if (retval) |
| return retval; |
| |
| if (attr->sched_flags & SCHED_FLAG_SUGOV) |
| return -EINVAL; |
| |
| retval = security_task_setscheduler(p); |
| if (retval) |
| return retval; |
| } |
| |
| /* Update task specific "requested" clamps */ |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { |
| retval = uclamp_validate(p, attr); |
| if (retval) |
| return retval; |
| } |
| |
| /* |
| * SCHED_DEADLINE bandwidth accounting relies on stable cpusets |
| * information. |
| */ |
| if (dl_policy(policy) || dl_policy(p->policy)) { |
| cpuset_locked = true; |
| cpuset_lock(); |
| } |
| |
| /* |
| * Make sure no PI-waiters arrive (or leave) while we are |
| * changing the priority of the task: |
| * |
| * To be able to change p->policy safely, the appropriate |
| * runqueue lock must be held. |
| */ |
| rq = task_rq_lock(p, &rf); |
| update_rq_clock(rq); |
| |
| /* |
| * Changing the policy of the stop threads its a very bad idea: |
| */ |
| if (p == rq->stop) { |
| retval = -EINVAL; |
| goto unlock; |
| } |
| |
| /* |
| * If not changing anything there's no need to proceed further, |
| * but store a possible modification of reset_on_fork. |
| */ |
| if (unlikely(policy == p->policy)) { |
| if (fair_policy(policy) && attr->sched_nice != task_nice(p)) |
| goto change; |
| if (rt_policy(policy) && attr->sched_priority != p->rt_priority) |
| goto change; |
| if (dl_policy(policy) && dl_param_changed(p, attr)) |
| goto change; |
| if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) |
| goto change; |
| |
| p->sched_reset_on_fork = reset_on_fork; |
| retval = 0; |
| goto unlock; |
| } |
| change: |
| |
| if (user) { |
| #ifdef CONFIG_RT_GROUP_SCHED |
| /* |
| * Do not allow real-time tasks into groups that have no runtime |
| * assigned. |
| */ |
| if (rt_bandwidth_enabled() && rt_policy(policy) && |
| task_group(p)->rt_bandwidth.rt_runtime == 0 && |
| !task_group_is_autogroup(task_group(p))) { |
| retval = -EPERM; |
| goto unlock; |
| } |
| #endif |
| #ifdef CONFIG_SMP |
| if (dl_bandwidth_enabled() && dl_policy(policy) && |
| !(attr->sched_flags & SCHED_FLAG_SUGOV)) { |
| cpumask_t *span = rq->rd->span; |
| |
| /* |
| * Don't allow tasks with an affinity mask smaller than |
| * the entire root_domain to become SCHED_DEADLINE. We |
| * will also fail if there's no bandwidth available. |
| */ |
| if (!cpumask_subset(span, p->cpus_ptr) || |
| rq->rd->dl_bw.bw == 0) { |
| retval = -EPERM; |
| goto unlock; |
| } |
| } |
| #endif |
| } |
| |
| /* Re-check policy now with rq lock held: */ |
| if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
| policy = oldpolicy = -1; |
| task_rq_unlock(rq, p, &rf); |
| if (cpuset_locked) |
| cpuset_unlock(); |
| goto recheck; |
| } |
| |
| /* |
| * If setscheduling to SCHED_DEADLINE (or changing the parameters |
| * of a SCHED_DEADLINE task) we need to check if enough bandwidth |
| * is available. |
| */ |
| if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { |
| retval = -EBUSY; |
| goto unlock; |
| } |
| |
| p->sched_reset_on_fork = reset_on_fork; |
| oldprio = p->prio; |
| |
| newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); |
| if (pi) { |
| /* |
| * Take priority boosted tasks into account. If the new |
| * effective priority is unchanged, we just store the new |
| * normal parameters and do not touch the scheduler class and |
| * the runqueue. This will be done when the task deboost |
| * itself. |
| */ |
| newprio = rt_effective_prio(p, newprio); |
| if (newprio == oldprio) |
| queue_flags &= ~DEQUEUE_MOVE; |
| } |
| |
| queued = task_on_rq_queued(p); |
| running = task_current(rq, p); |
| if (queued) |
| dequeue_task(rq, p, queue_flags); |
| if (running) |
| put_prev_task(rq, p); |
| |
| prev_class = p->sched_class; |
| |
| if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { |
| __setscheduler_params(p, attr); |
| __setscheduler_prio(p, newprio); |
| } |
| __setscheduler_uclamp(p, attr); |
| |
| if (queued) { |
| /* |
| * We enqueue to tail when the priority of a task is |
| * increased (user space view). |
| */ |
| if (oldprio < p->prio) |
| queue_flags |= ENQUEUE_HEAD; |
| |
| enqueue_task(rq, p, queue_flags); |
| } |
| if (running) |
| set_next_task(rq, p); |
| |
| check_class_changed(rq, p, prev_class, oldprio); |
| |
| /* Avoid rq from going away on us: */ |
| preempt_disable(); |
| head = splice_balance_callbacks(rq); |
| task_rq_unlock(rq, p, &rf); |
| |
| if (pi) { |
| if (cpuset_locked) |
| cpuset_unlock(); |
| rt_mutex_adjust_pi(p); |
| } |
| |
| /* Run balance callbacks after we've adjusted the PI chain: */ |
| balance_callbacks(rq, head); |
| preempt_enable(); |
| |
| return 0; |
| |
| unlock: |
| task_rq_unlock(rq, p, &rf); |
| if (cpuset_locked) |
| cpuset_unlock(); |
| return retval; |
| } |
| |
| static int _sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param, bool check) |
| { |
| struct sched_attr attr = { |
| .sched_policy = policy, |
| .sched_priority = param->sched_priority, |
| .sched_nice = PRIO_TO_NICE(p->static_prio), |
| }; |
| |
| /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ |
| if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { |
| attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; |
| policy &= ~SCHED_RESET_ON_FORK; |
| attr.sched_policy = policy; |
| } |
| |
| return __sched_setscheduler(p, &attr, check, true); |
| } |
| /** |
| * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Use sched_set_fifo(), read its comment. |
| * |
| * Return: 0 on success. An error code otherwise. |
| * |
| * NOTE that the task may be already dead. |
| */ |
| int sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return _sched_setscheduler(p, policy, param, true); |
| } |
| |
| int sched_setattr(struct task_struct *p, const struct sched_attr *attr) |
| { |
| return __sched_setscheduler(p, attr, true, true); |
| } |
| |
| int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) |
| { |
| return __sched_setscheduler(p, attr, false, true); |
| } |
| EXPORT_SYMBOL_GPL(sched_setattr_nocheck); |
| |
| /** |
| * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Just like sched_setscheduler, only don't bother checking if the |
| * current context has permission. For example, this is needed in |
| * stop_machine(): we create temporary high priority worker threads, |
| * but our caller might not have that capability. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return _sched_setscheduler(p, policy, param, false); |
| } |
| |
| /* |
| * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally |
| * incapable of resource management, which is the one thing an OS really should |
| * be doing. |
| * |
| * This is of course the reason it is limited to privileged users only. |
| * |
| * Worse still; it is fundamentally impossible to compose static priority |
| * workloads. You cannot take two correctly working static prio workloads |
| * and smash them together and still expect them to work. |
| * |
| * For this reason 'all' FIFO tasks the kernel creates are basically at: |
| * |
| * MAX_RT_PRIO / 2 |
| * |
| * The administrator _MUST_ configure the system, the kernel simply doesn't |
| * know enough information to make a sensible choice. |
| */ |
| void sched_set_fifo(struct task_struct *p) |
| { |
| struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; |
| WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_fifo); |
| |
| /* |
| * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. |
| */ |
| void sched_set_fifo_low(struct task_struct *p) |
| { |
| struct sched_param sp = { .sched_priority = 1 }; |
| WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_fifo_low); |
| |
| void sched_set_normal(struct task_struct *p, int nice) |
| { |
| struct sched_attr attr = { |
| .sched_policy = SCHED_NORMAL, |
| .sched_nice = nice, |
| }; |
| WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); |
| } |
| EXPORT_SYMBOL_GPL(sched_set_normal); |
| |
| static int |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
| { |
| struct sched_param lparam; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
| return -EFAULT; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| return sched_setscheduler(p, policy, &lparam); |
| } |
| |
| /* |
| * Mimics kernel/events/core.c perf_copy_attr(). |
| */ |
| static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) |
| { |
| u32 size; |
| int ret; |
| |
| /* Zero the full structure, so that a short copy will be nice: */ |
| memset(attr, 0, sizeof(*attr)); |
| |
| ret = get_user(size, &uattr->size); |
| if (ret) |
| return ret; |
| |
| /* ABI compatibility quirk: */ |
| if (!size) |
| size = SCHED_ATTR_SIZE_VER0; |
| if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) |
| goto err_size; |
| |
| ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); |
| if (ret) { |
| if (ret == -E2BIG) |
| goto err_size; |
| return ret; |
| } |
| |
| if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && |
| size < SCHED_ATTR_SIZE_VER1) |
| return -EINVAL; |
| |
| /* |
| * XXX: Do we want to be lenient like existing syscalls; or do we want |
| * to be strict and return an error on out-of-bounds values? |
| */ |
| attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); |
| |
| return 0; |
| |
| err_size: |
| put_user(sizeof(*attr), &uattr->size); |
| return -E2BIG; |
| } |
| |
| static void get_params(struct task_struct *p, struct sched_attr *attr) |
| { |
| if (task_has_dl_policy(p)) |
| __getparam_dl(p, attr); |
| else if (task_has_rt_policy(p)) |
| attr->sched_priority = p->rt_priority; |
| else |
| attr->sched_nice = task_nice(p); |
| } |
| |
| /** |
| * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
| * @pid: the pid in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) |
| { |
| if (policy < 0) |
| return -EINVAL; |
| |
| return do_sched_setscheduler(pid, policy, param); |
| } |
| |
| /** |
| * sys_sched_setparam - set/change the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the new RT priority. |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| return do_sched_setscheduler(pid, SETPARAM_POLICY, param); |
| } |
| |
| /** |
| * sys_sched_setattr - same as above, but with extended sched_attr |
| * @pid: the pid in question. |
| * @uattr: structure containing the extended parameters. |
| * @flags: for future extension. |
| */ |
| SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, |
| unsigned int, flags) |
| { |
| struct sched_attr attr; |
| int retval; |
| |
| if (!uattr || pid < 0 || flags) |
| return -EINVAL; |
| |
| retval = sched_copy_attr(uattr, &attr); |
| if (retval) |
| return retval; |
| |
| if ((int)attr.sched_policy < 0) |
| return -EINVAL; |
| if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) |
| attr.sched_policy = SETPARAM_POLICY; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) |
| get_params(p, &attr); |
| |
| return sched_setattr(p, &attr); |
| } |
| |
| /** |
| * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
| * @pid: the pid in question. |
| * |
| * Return: On success, the policy of the thread. Otherwise, a negative error |
| * code. |
| */ |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
| { |
| struct task_struct *p; |
| int retval; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| guard(rcu)(); |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (!retval) { |
| retval = p->policy; |
| if (p->sched_reset_on_fork) |
| retval |= SCHED_RESET_ON_FORK; |
| } |
| return retval; |
| } |
| |
| /** |
| * sys_sched_getparam - get the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the RT priority. |
| * |
| * Return: On success, 0 and the RT priority is in @param. Otherwise, an error |
| * code. |
| */ |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| struct sched_param lp = { .sched_priority = 0 }; |
| struct task_struct *p; |
| int retval; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| if (task_has_rt_policy(p)) |
| lp.sched_priority = p->rt_priority; |
| } |
| |
| /* |
| * This one might sleep, we cannot do it with a spinlock held ... |
| */ |
| return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Copy the kernel size attribute structure (which might be larger |
| * than what user-space knows about) to user-space. |
| * |
| * Note that all cases are valid: user-space buffer can be larger or |
| * smaller than the kernel-space buffer. The usual case is that both |
| * have the same size. |
| */ |
| static int |
| sched_attr_copy_to_user(struct sched_attr __user *uattr, |
| struct sched_attr *kattr, |
| unsigned int usize) |
| { |
| unsigned int ksize = sizeof(*kattr); |
| |
| if (!access_ok(uattr, usize)) |
| return -EFAULT; |
| |
| /* |
| * sched_getattr() ABI forwards and backwards compatibility: |
| * |
| * If usize == ksize then we just copy everything to user-space and all is good. |
| * |
| * If usize < ksize then we only copy as much as user-space has space for, |
| * this keeps ABI compatibility as well. We skip the rest. |
| * |
| * If usize > ksize then user-space is using a newer version of the ABI, |
| * which part the kernel doesn't know about. Just ignore it - tooling can |
| * detect the kernel's knowledge of attributes from the attr->size value |
| * which is set to ksize in this case. |
| */ |
| kattr->size = min(usize, ksize); |
| |
| if (copy_to_user(uattr, kattr, kattr->size)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * sys_sched_getattr - similar to sched_getparam, but with sched_attr |
| * @pid: the pid in question. |
| * @uattr: structure containing the extended parameters. |
| * @usize: sizeof(attr) for fwd/bwd comp. |
| * @flags: for future extension. |
| */ |
| SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, |
| unsigned int, usize, unsigned int, flags) |
| { |
| struct sched_attr kattr = { }; |
| struct task_struct *p; |
| int retval; |
| |
| if (!uattr || pid < 0 || usize > PAGE_SIZE || |
| usize < SCHED_ATTR_SIZE_VER0 || flags) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| kattr.sched_policy = p->policy; |
| if (p->sched_reset_on_fork) |
| kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; |
| get_params(p, &kattr); |
| kattr.sched_flags &= SCHED_FLAG_ALL; |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| /* |
| * This could race with another potential updater, but this is fine |
| * because it'll correctly read the old or the new value. We don't need |
| * to guarantee who wins the race as long as it doesn't return garbage. |
| */ |
| kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; |
| kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; |
| #endif |
| } |
| |
| return sched_attr_copy_to_user(uattr, &kattr, usize); |
| } |
| |
| #ifdef CONFIG_SMP |
| int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) |
| { |
| /* |
| * If the task isn't a deadline task or admission control is |
| * disabled then we don't care about affinity changes. |
| */ |
| if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) |
| return 0; |
| |
| /* |
| * Since bandwidth control happens on root_domain basis, |
| * if admission test is enabled, we only admit -deadline |
| * tasks allowed to run on all the CPUs in the task's |
| * root_domain. |
| */ |
| guard(rcu)(); |
| if (!cpumask_subset(task_rq(p)->rd->span, mask)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| #endif /* CONFIG_SMP */ |
| |
| int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) |
| { |
| int retval; |
| cpumask_var_t cpus_allowed, new_mask; |
| |
| if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
| retval = -ENOMEM; |
| goto out_free_cpus_allowed; |
| } |
| |
| cpuset_cpus_allowed(p, cpus_allowed); |
| cpumask_and(new_mask, ctx->new_mask, cpus_allowed); |
| |
| ctx->new_mask = new_mask; |
| ctx->flags |= SCA_CHECK; |
| |
| retval = dl_task_check_affinity(p, new_mask); |
| if (retval) |
| goto out_free_new_mask; |
| |
| retval = __set_cpus_allowed_ptr(p, ctx); |
| if (retval) |
| goto out_free_new_mask; |
| |
| cpuset_cpus_allowed(p, cpus_allowed); |
| if (!cpumask_subset(new_mask, cpus_allowed)) { |
| /* |
| * We must have raced with a concurrent cpuset update. |
| * Just reset the cpumask to the cpuset's cpus_allowed. |
| */ |
| cpumask_copy(new_mask, cpus_allowed); |
| |
| /* |
| * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() |
| * will restore the previous user_cpus_ptr value. |
| * |
| * In the unlikely event a previous user_cpus_ptr exists, |
| * we need to further restrict the mask to what is allowed |
| * by that old user_cpus_ptr. |
| */ |
| if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { |
| bool empty = !cpumask_and(new_mask, new_mask, |
| ctx->user_mask); |
| |
| if (WARN_ON_ONCE(empty)) |
| cpumask_copy(new_mask, cpus_allowed); |
| } |
| __set_cpus_allowed_ptr(p, ctx); |
| retval = -EINVAL; |
| } |
| |
| out_free_new_mask: |
| free_cpumask_var(new_mask); |
| out_free_cpus_allowed: |
| free_cpumask_var(cpus_allowed); |
| return retval; |
| } |
| |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
| { |
| struct affinity_context ac; |
| struct cpumask *user_mask; |
| int retval; |
| |
| CLASS(find_get_task, p)(pid); |
| if (!p) |
| return -ESRCH; |
| |
| if (p->flags & PF_NO_SETAFFINITY) |
| return -EINVAL; |
| |
| if (!check_same_owner(p)) { |
| guard(rcu)(); |
| if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) |
| return -EPERM; |
| } |
| |
| retval = security_task_setscheduler(p); |
| if (retval) |
| return retval; |
| |
| /* |
| * With non-SMP configs, user_cpus_ptr/user_mask isn't used and |
| * alloc_user_cpus_ptr() returns NULL. |
| */ |
| user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); |
| if (user_mask) { |
| cpumask_copy(user_mask, in_mask); |
| } else if (IS_ENABLED(CONFIG_SMP)) { |
| return -ENOMEM; |
| } |
| |
| ac = (struct affinity_context){ |
| .new_mask = in_mask, |
| .user_mask = user_mask, |
| .flags = SCA_USER, |
| }; |
| |
| retval = __sched_setaffinity(p, &ac); |
| kfree(ac.user_mask); |
| |
| return retval; |
| } |
| |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
| struct cpumask *new_mask) |
| { |
| if (len < cpumask_size()) |
| cpumask_clear(new_mask); |
| else if (len > cpumask_size()) |
| len = cpumask_size(); |
| |
| return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
| } |
| |
| /** |
| * sys_sched_setaffinity - set the CPU affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to the new CPU mask |
| * |
| * Return: 0 on success. An error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| cpumask_var_t new_mask; |
| int retval; |
| |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
| if (retval == 0) |
| retval = sched_setaffinity(pid, new_mask); |
| free_cpumask_var(new_mask); |
| return retval; |
| } |
| |
| long sched_getaffinity(pid_t pid, struct cpumask *mask) |
| { |
| struct task_struct *p; |
| int retval; |
| |
| guard(rcu)(); |
| p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| guard(raw_spinlock_irqsave)(&p->pi_lock); |
| cpumask_and(mask, &p->cpus_mask, cpu_active_mask); |
| |
| return 0; |
| } |
| |
| /** |
| * sys_sched_getaffinity - get the CPU affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to hold the current CPU mask |
| * |
| * Return: size of CPU mask copied to user_mask_ptr on success. An |
| * error code otherwise. |
| */ |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| int ret; |
| cpumask_var_t mask; |
| |
| if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
| return -EINVAL; |
| if (len & (sizeof(unsigned long)-1)) |
| return -EINVAL; |
| |
| if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| ret = sched_getaffinity(pid, mask); |
| if (ret == 0) { |
| unsigned int retlen = min(len, cpumask_size()); |
| |
| if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) |
| ret = -EFAULT; |
| else |
| ret = retlen; |
| } |
| free_cpumask_var(mask); |
| |
| return ret; |
| } |
| |
| static void do_sched_yield(void) |
| { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = this_rq_lock_irq(&rf); |
| |
| schedstat_inc(rq->yld_count); |
| current->sched_class->yield_task(rq); |
| |
| preempt_disable(); |
| rq_unlock_irq(rq, &rf); |
| sched_preempt_enable_no_resched(); |
| |
| schedule(); |
| } |
| |
| /** |
| * sys_sched_yield - yield the current processor to other threads. |
| * |
| * This function yields the current CPU to other tasks. If there are no |
| * other threads running on this CPU then this function will return. |
| * |
| * Return: 0. |
| */ |
| SYSCALL_DEFINE0(sched_yield) |
| { |
| do_sched_yield(); |
| return 0; |
| } |
| |
| /** |
| * yield - yield the current processor to other threads. |
| * |
| * Do not ever use this function, there's a 99% chance you're doing it wrong. |
| * |
| * The scheduler is at all times free to pick the calling task as the most |
| * eligible task to run, if removing the yield() call from your code breaks |
| * it, it's already broken. |
| * |
| * Typical broken usage is: |
| * |
| * while (!event) |
| * yield(); |
| * |
| * where one assumes that yield() will let 'the other' process run that will |
| * make event true. If the current task is a SCHED_FIFO task that will never |
| * happen. Never use yield() as a progress guarantee!! |
| * |
| * If you want to use yield() to wait for something, use wait_event(). |
| * If you want to use yield() to be 'nice' for others, use cond_resched(). |
| * If you still want to use yield(), do not! |
| */ |
| void __sched yield(void) |
| { |
| set_current_state(TASK_RUNNING); |
| do_sched_yield(); |
| } |
| EXPORT_SYMBOL(yield); |
| |
| /** |
| * yield_to - yield the current processor to another thread in |
| * your thread group, or accelerate that thread toward the |
| * processor it's on. |
| * @p: target task |
| * @preempt: whether task preemption is allowed or not |
| * |
| * It's the caller's job to ensure that the target task struct |
| * can't go away on us before we can do any checks. |
| * |
| * Return: |
| * true (>0) if we indeed boosted the target task. |
| * false (0) if we failed to boost the target. |
| * -ESRCH if there's no task to yield to. |
| */ |
| int __sched yield_to(struct task_struct *p, bool preempt) |
| { |
| struct task_struct *curr = current; |
| struct rq *rq, *p_rq; |
| int yielded = 0; |
| |
| scoped_guard (irqsave) { |
| rq = this_rq(); |
| |
| again: |
| p_rq = task_rq(p); |
| /* |
| * If we're the only runnable task on the rq and target rq also |
| * has only one task, there's absolutely no point in yielding. |
| */ |
| if (rq->nr_running == 1 && p_rq->nr_running == 1) |
| return -ESRCH; |
| |
| guard(double_rq_lock)(rq, p_rq); |
| if (task_rq(p) != p_rq) |
| goto again; |
| |
| if (!curr->sched_class->yield_to_task) |
| return 0; |
| |
| if (curr->sched_class != p->sched_class) |
| return 0; |
| |
| if (task_on_cpu(p_rq, p) || !task_is_running(p)) |
| return 0; |
| |
| yielded = curr->sched_class->yield_to_task(rq, p); |
| if (yielded) { |
| schedstat_inc(rq->yld_count); |
| /* |
| * Make p's CPU reschedule; pick_next_entity |
| * takes care of fairness. |
| */ |
| if (preempt && rq != p_rq) |
| resched_curr(p_rq); |
| } |
| } |
| |
| if (yielded) |
| schedule(); |
| |
| return yielded; |
| } |
| EXPORT_SYMBOL_GPL(yield_to); |
| |
| /** |
| * sys_sched_get_priority_max - return maximum RT priority. |
| * @policy: scheduling class. |
| * |
| * Return: On success, this syscall returns the maximum |
| * rt_priority that can be used by a given scheduling class. |
| * On failure, a negative error code is returned. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = MAX_RT_PRIO-1; |
| break; |
| case SCHED_DEADLINE: |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| /** |
| * sys_sched_get_priority_min - return minimum RT priority. |
| * @policy: scheduling class. |
| * |
| * Return: On success, this syscall returns the minimum |
| * rt_priority that can be used by a given scheduling class. |
| * On failure, a negative error code is returned. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = 1; |
| break; |
| case SCHED_DEADLINE: |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) |
| { |
| unsigned int time_slice = 0; |
| int retval; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| scoped_guard (rcu) { |
| struct task_struct *p = find_process_by_pid(pid); |
| if (!p) |
| return -ESRCH; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| return retval; |
| |
| scoped_guard (task_rq_lock, p) { |
| struct rq *rq = scope.rq; |
| if (p->sched_class->get_rr_interval) |
| time_slice = p->sched_class->get_rr_interval(rq, p); |
| } |
| } |
| |
| jiffies_to_timespec64(time_slice, t); |
| return 0; |
| } |
| |
| /** |
| * sys_sched_rr_get_interval - return the default time-slice of a process. |
| * @pid: pid of the process. |
| * @interval: userspace pointer to the time-slice value. |
| * |
| * this syscall writes the default time-slice value of a given process |
| * into the user-space timespec buffer. A value of '0' means infinity. |
| * |
| * Return: On success, 0 and the time-slice is in @interval. Otherwise, |
| * an error code. |
| */ |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
| struct __kernel_timespec __user *, interval) |
| { |
| struct timespec64 t; |
| int retval = sched_rr_get_interval(pid, &t); |
| |
| if (retval == 0) |
| retval = put_timespec64(&t, interval); |
| |
| return retval; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, |
| struct old_timespec32 __user *, interval) |
| { |
| struct timespec64 t; |
| int retval = sched_rr_get_interval(pid, &t); |
| |
| if (retval == 0) |
| retval = put_old_timespec32(&t, interval); |
| return retval; |
| } |
| #endif |