blob: e81efac25fa42dbce5ca91c398ac8e10ed71a560 [file] [log] [blame]
/*
* PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
*
* Copyright (c) 2008-2009 USI Co., Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
*/
#include <linux/slab.h>
#include "pm8001_sas.h"
#include "pm8001_hwi.h"
#include "pm8001_chips.h"
#include "pm8001_ctl.h"
/**
* read_main_config_table - read the configure table and save it.
* @pm8001_ha: our hba card information
*/
static void __devinit read_main_config_table(struct pm8001_hba_info *pm8001_ha)
{
void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
pm8001_ha->main_cfg_tbl.signature = pm8001_mr32(address, 0x00);
pm8001_ha->main_cfg_tbl.interface_rev = pm8001_mr32(address, 0x04);
pm8001_ha->main_cfg_tbl.firmware_rev = pm8001_mr32(address, 0x08);
pm8001_ha->main_cfg_tbl.max_out_io = pm8001_mr32(address, 0x0C);
pm8001_ha->main_cfg_tbl.max_sgl = pm8001_mr32(address, 0x10);
pm8001_ha->main_cfg_tbl.ctrl_cap_flag = pm8001_mr32(address, 0x14);
pm8001_ha->main_cfg_tbl.gst_offset = pm8001_mr32(address, 0x18);
pm8001_ha->main_cfg_tbl.inbound_queue_offset =
pm8001_mr32(address, MAIN_IBQ_OFFSET);
pm8001_ha->main_cfg_tbl.outbound_queue_offset =
pm8001_mr32(address, MAIN_OBQ_OFFSET);
pm8001_ha->main_cfg_tbl.hda_mode_flag =
pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET);
/* read analog Setting offset from the configuration table */
pm8001_ha->main_cfg_tbl.anolog_setup_table_offset =
pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
/* read Error Dump Offset and Length */
pm8001_ha->main_cfg_tbl.fatal_err_dump_offset0 =
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
pm8001_ha->main_cfg_tbl.fatal_err_dump_length0 =
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
pm8001_ha->main_cfg_tbl.fatal_err_dump_offset1 =
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
pm8001_ha->main_cfg_tbl.fatal_err_dump_length1 =
pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
}
/**
* read_general_status_table - read the general status table and save it.
* @pm8001_ha: our hba card information
*/
static void __devinit
read_general_status_table(struct pm8001_hba_info *pm8001_ha)
{
void __iomem *address = pm8001_ha->general_stat_tbl_addr;
pm8001_ha->gs_tbl.gst_len_mpistate = pm8001_mr32(address, 0x00);
pm8001_ha->gs_tbl.iq_freeze_state0 = pm8001_mr32(address, 0x04);
pm8001_ha->gs_tbl.iq_freeze_state1 = pm8001_mr32(address, 0x08);
pm8001_ha->gs_tbl.msgu_tcnt = pm8001_mr32(address, 0x0C);
pm8001_ha->gs_tbl.iop_tcnt = pm8001_mr32(address, 0x10);
pm8001_ha->gs_tbl.reserved = pm8001_mr32(address, 0x14);
pm8001_ha->gs_tbl.phy_state[0] = pm8001_mr32(address, 0x18);
pm8001_ha->gs_tbl.phy_state[1] = pm8001_mr32(address, 0x1C);
pm8001_ha->gs_tbl.phy_state[2] = pm8001_mr32(address, 0x20);
pm8001_ha->gs_tbl.phy_state[3] = pm8001_mr32(address, 0x24);
pm8001_ha->gs_tbl.phy_state[4] = pm8001_mr32(address, 0x28);
pm8001_ha->gs_tbl.phy_state[5] = pm8001_mr32(address, 0x2C);
pm8001_ha->gs_tbl.phy_state[6] = pm8001_mr32(address, 0x30);
pm8001_ha->gs_tbl.phy_state[7] = pm8001_mr32(address, 0x34);
pm8001_ha->gs_tbl.reserved1 = pm8001_mr32(address, 0x38);
pm8001_ha->gs_tbl.reserved2 = pm8001_mr32(address, 0x3C);
pm8001_ha->gs_tbl.reserved3 = pm8001_mr32(address, 0x40);
pm8001_ha->gs_tbl.recover_err_info[0] = pm8001_mr32(address, 0x44);
pm8001_ha->gs_tbl.recover_err_info[1] = pm8001_mr32(address, 0x48);
pm8001_ha->gs_tbl.recover_err_info[2] = pm8001_mr32(address, 0x4C);
pm8001_ha->gs_tbl.recover_err_info[3] = pm8001_mr32(address, 0x50);
pm8001_ha->gs_tbl.recover_err_info[4] = pm8001_mr32(address, 0x54);
pm8001_ha->gs_tbl.recover_err_info[5] = pm8001_mr32(address, 0x58);
pm8001_ha->gs_tbl.recover_err_info[6] = pm8001_mr32(address, 0x5C);
pm8001_ha->gs_tbl.recover_err_info[7] = pm8001_mr32(address, 0x60);
}
/**
* read_inbnd_queue_table - read the inbound queue table and save it.
* @pm8001_ha: our hba card information
*/
static void __devinit
read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
{
int inbQ_num = 1;
int i;
void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
for (i = 0; i < inbQ_num; i++) {
u32 offset = i * 0x20;
pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
pm8001_ha->inbnd_q_tbl[i].pi_offset =
pm8001_mr32(address, (offset + 0x18));
}
}
/**
* read_outbnd_queue_table - read the outbound queue table and save it.
* @pm8001_ha: our hba card information
*/
static void __devinit
read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
{
int outbQ_num = 1;
int i;
void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
for (i = 0; i < outbQ_num; i++) {
u32 offset = i * 0x24;
pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
pm8001_ha->outbnd_q_tbl[i].ci_offset =
pm8001_mr32(address, (offset + 0x18));
}
}
/**
* init_default_table_values - init the default table.
* @pm8001_ha: our hba card information
*/
static void __devinit
init_default_table_values(struct pm8001_hba_info *pm8001_ha)
{
int qn = 1;
int i;
u32 offsetib, offsetob;
void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd = 0;
pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3 = 0;
pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7 = 0;
pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3 = 0;
pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3 = 0;
pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7 = 0;
pm8001_ha->main_cfg_tbl.upper_event_log_addr =
pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
pm8001_ha->main_cfg_tbl.lower_event_log_addr =
pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
pm8001_ha->main_cfg_tbl.event_log_size = PM8001_EVENT_LOG_SIZE;
pm8001_ha->main_cfg_tbl.event_log_option = 0x01;
pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr =
pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr =
pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
pm8001_ha->main_cfg_tbl.iop_event_log_size = PM8001_EVENT_LOG_SIZE;
pm8001_ha->main_cfg_tbl.iop_event_log_option = 0x01;
pm8001_ha->main_cfg_tbl.fatal_err_interrupt = 0x01;
for (i = 0; i < qn; i++) {
pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt =
0x00000100 | (0x00000040 << 16) | (0x00<<30);
pm8001_ha->inbnd_q_tbl[i].upper_base_addr =
pm8001_ha->memoryMap.region[IB].phys_addr_hi;
pm8001_ha->inbnd_q_tbl[i].lower_base_addr =
pm8001_ha->memoryMap.region[IB].phys_addr_lo;
pm8001_ha->inbnd_q_tbl[i].base_virt =
(u8 *)pm8001_ha->memoryMap.region[IB].virt_ptr;
pm8001_ha->inbnd_q_tbl[i].total_length =
pm8001_ha->memoryMap.region[IB].total_len;
pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr =
pm8001_ha->memoryMap.region[CI].phys_addr_hi;
pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr =
pm8001_ha->memoryMap.region[CI].phys_addr_lo;
pm8001_ha->inbnd_q_tbl[i].ci_virt =
pm8001_ha->memoryMap.region[CI].virt_ptr;
offsetib = i * 0x20;
pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
get_pci_bar_index(pm8001_mr32(addressib,
(offsetib + 0x14)));
pm8001_ha->inbnd_q_tbl[i].pi_offset =
pm8001_mr32(addressib, (offsetib + 0x18));
pm8001_ha->inbnd_q_tbl[i].producer_idx = 0;
pm8001_ha->inbnd_q_tbl[i].consumer_index = 0;
}
for (i = 0; i < qn; i++) {
pm8001_ha->outbnd_q_tbl[i].element_size_cnt =
256 | (64 << 16) | (1<<30);
pm8001_ha->outbnd_q_tbl[i].upper_base_addr =
pm8001_ha->memoryMap.region[OB].phys_addr_hi;
pm8001_ha->outbnd_q_tbl[i].lower_base_addr =
pm8001_ha->memoryMap.region[OB].phys_addr_lo;
pm8001_ha->outbnd_q_tbl[i].base_virt =
(u8 *)pm8001_ha->memoryMap.region[OB].virt_ptr;
pm8001_ha->outbnd_q_tbl[i].total_length =
pm8001_ha->memoryMap.region[OB].total_len;
pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr =
pm8001_ha->memoryMap.region[PI].phys_addr_hi;
pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr =
pm8001_ha->memoryMap.region[PI].phys_addr_lo;
pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay =
0 | (10 << 16) | (0 << 24);
pm8001_ha->outbnd_q_tbl[i].pi_virt =
pm8001_ha->memoryMap.region[PI].virt_ptr;
offsetob = i * 0x24;
pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
get_pci_bar_index(pm8001_mr32(addressob,
offsetob + 0x14));
pm8001_ha->outbnd_q_tbl[i].ci_offset =
pm8001_mr32(addressob, (offsetob + 0x18));
pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0;
pm8001_ha->outbnd_q_tbl[i].producer_index = 0;
}
}
/**
* update_main_config_table - update the main default table to the HBA.
* @pm8001_ha: our hba card information
*/
static void __devinit
update_main_config_table(struct pm8001_hba_info *pm8001_ha)
{
void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
pm8001_mw32(address, 0x24,
pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd);
pm8001_mw32(address, 0x28,
pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3);
pm8001_mw32(address, 0x2C,
pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7);
pm8001_mw32(address, 0x30,
pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3);
pm8001_mw32(address, 0x34,
pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7);
pm8001_mw32(address, 0x38,
pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3);
pm8001_mw32(address, 0x3C,
pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7);
pm8001_mw32(address, 0x40,
pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3);
pm8001_mw32(address, 0x44,
pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7);
pm8001_mw32(address, 0x48,
pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3);
pm8001_mw32(address, 0x4C,
pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7);
pm8001_mw32(address, 0x50,
pm8001_ha->main_cfg_tbl.upper_event_log_addr);
pm8001_mw32(address, 0x54,
pm8001_ha->main_cfg_tbl.lower_event_log_addr);
pm8001_mw32(address, 0x58, pm8001_ha->main_cfg_tbl.event_log_size);
pm8001_mw32(address, 0x5C, pm8001_ha->main_cfg_tbl.event_log_option);
pm8001_mw32(address, 0x60,
pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr);
pm8001_mw32(address, 0x64,
pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr);
pm8001_mw32(address, 0x68, pm8001_ha->main_cfg_tbl.iop_event_log_size);
pm8001_mw32(address, 0x6C,
pm8001_ha->main_cfg_tbl.iop_event_log_option);
pm8001_mw32(address, 0x70,
pm8001_ha->main_cfg_tbl.fatal_err_interrupt);
}
/**
* update_inbnd_queue_table - update the inbound queue table to the HBA.
* @pm8001_ha: our hba card information
*/
static void __devinit
update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
{
void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
u16 offset = number * 0x20;
pm8001_mw32(address, offset + 0x00,
pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
pm8001_mw32(address, offset + 0x04,
pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
pm8001_mw32(address, offset + 0x08,
pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
pm8001_mw32(address, offset + 0x0C,
pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
pm8001_mw32(address, offset + 0x10,
pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
}
/**
* update_outbnd_queue_table - update the outbound queue table to the HBA.
* @pm8001_ha: our hba card information
*/
static void __devinit
update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
{
void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
u16 offset = number * 0x24;
pm8001_mw32(address, offset + 0x00,
pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
pm8001_mw32(address, offset + 0x04,
pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
pm8001_mw32(address, offset + 0x08,
pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
pm8001_mw32(address, offset + 0x0C,
pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
pm8001_mw32(address, offset + 0x10,
pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
pm8001_mw32(address, offset + 0x1C,
pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
}
/**
* bar4_shift - function is called to shift BAR base address
* @pm8001_ha : our hba card infomation
* @shiftValue : shifting value in memory bar.
*/
static int bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue)
{
u32 regVal;
u32 max_wait_count;
/* program the inbound AXI translation Lower Address */
pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue);
/* confirm the setting is written */
max_wait_count = 1 * 1000 * 1000; /* 1 sec */
do {
udelay(1);
regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW);
} while ((regVal != shiftValue) && (--max_wait_count));
if (!max_wait_count) {
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW"
" = 0x%x\n", regVal));
return -1;
}
return 0;
}
/**
* mpi_set_phys_g3_with_ssc
* @pm8001_ha: our hba card information
* @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc.
*/
static void __devinit
mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, u32 SSCbit)
{
u32 value, offset, i;
#define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000
#define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000
#define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074
#define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074
#define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12
#define PHY_G3_WITH_SSC_BIT_SHIFT 13
#define SNW3_PHY_CAPABILITIES_PARITY 31
/*
* Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3)
* Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7)
*/
if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR))
return;
for (i = 0; i < 4; i++) {
offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i;
pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
}
/* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */
if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR))
return;
for (i = 4; i < 8; i++) {
offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
}
/*************************************************************
Change the SSC upspreading value to 0x0 so that upspreading is disabled.
Device MABC SMOD0 Controls
Address: (via MEMBASE-III):
Using shifted destination address 0x0_0000: with Offset 0xD8
31:28 R/W Reserved Do not change
27:24 R/W SAS_SMOD_SPRDUP 0000
23:20 R/W SAS_SMOD_SPRDDN 0000
19:0 R/W Reserved Do not change
Upon power-up this register will read as 0x8990c016,
and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000
so that the written value will be 0x8090c016.
This will ensure only down-spreading SSC is enabled on the SPC.
*************************************************************/
value = pm8001_cr32(pm8001_ha, 2, 0xd8);
pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016);
/*set the shifted destination address to 0x0 to avoid error operation */
bar4_shift(pm8001_ha, 0x0);
return;
}
/**
* mpi_set_open_retry_interval_reg
* @pm8001_ha: our hba card information
* @interval - interval time for each OPEN_REJECT (RETRY). The units are in 1us.
*/
static void __devinit
mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha,
u32 interval)
{
u32 offset;
u32 value;
u32 i;
#define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000
#define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000
#define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4
#define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4
#define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF
value = interval & OPEN_RETRY_INTERVAL_REG_MASK;
/* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/
if (-1 == bar4_shift(pm8001_ha,
OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR))
return;
for (i = 0; i < 4; i++) {
offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i;
pm8001_cw32(pm8001_ha, 2, offset, value);
}
if (-1 == bar4_shift(pm8001_ha,
OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR))
return;
for (i = 4; i < 8; i++) {
offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
pm8001_cw32(pm8001_ha, 2, offset, value);
}
/*set the shifted destination address to 0x0 to avoid error operation */
bar4_shift(pm8001_ha, 0x0);
return;
}
/**
* mpi_init_check - check firmware initialization status.
* @pm8001_ha: our hba card information
*/
static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
{
u32 max_wait_count;
u32 value;
u32 gst_len_mpistate;
/* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
table is updated */
pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE);
/* wait until Inbound DoorBell Clear Register toggled */
max_wait_count = 1 * 1000 * 1000;/* 1 sec */
do {
udelay(1);
value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
value &= SPC_MSGU_CFG_TABLE_UPDATE;
} while ((value != 0) && (--max_wait_count));
if (!max_wait_count)
return -1;
/* check the MPI-State for initialization */
gst_len_mpistate =
pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
GST_GSTLEN_MPIS_OFFSET);
if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK))
return -1;
/* check MPI Initialization error */
gst_len_mpistate = gst_len_mpistate >> 16;
if (0x0000 != gst_len_mpistate)
return -1;
return 0;
}
/**
* check_fw_ready - The LLDD check if the FW is ready, if not, return error.
* @pm8001_ha: our hba card information
*/
static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
{
u32 value, value1;
u32 max_wait_count;
/* check error state */
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
/* check AAP error */
if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) {
/* error state */
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
return -1;
}
/* check IOP error */
if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) {
/* error state */
value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
return -1;
}
/* bit 4-31 of scratch pad1 should be zeros if it is not
in error state*/
if (value & SCRATCH_PAD1_STATE_MASK) {
/* error case */
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
return -1;
}
/* bit 2, 4-31 of scratch pad2 should be zeros if it is not
in error state */
if (value1 & SCRATCH_PAD2_STATE_MASK) {
/* error case */
return -1;
}
max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */
/* wait until scratch pad 1 and 2 registers in ready state */
do {
udelay(1);
value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
& SCRATCH_PAD1_RDY;
value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
& SCRATCH_PAD2_RDY;
if ((--max_wait_count) == 0)
return -1;
} while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY));
return 0;
}
static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
{
void __iomem *base_addr;
u32 value;
u32 offset;
u32 pcibar;
u32 pcilogic;
value = pm8001_cr32(pm8001_ha, 0, 0x44);
offset = value & 0x03FFFFFF;
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Scratchpad 0 Offset: %x \n", offset));
pcilogic = (value & 0xFC000000) >> 26;
pcibar = get_pci_bar_index(pcilogic);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Scratchpad 0 PCI BAR: %d \n", pcibar));
pm8001_ha->main_cfg_tbl_addr = base_addr =
pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
pm8001_ha->general_stat_tbl_addr =
base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18);
pm8001_ha->inbnd_q_tbl_addr =
base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C);
pm8001_ha->outbnd_q_tbl_addr =
base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20);
}
/**
* pm8001_chip_init - the main init function that initialize whole PM8001 chip.
* @pm8001_ha: our hba card information
*/
static int __devinit pm8001_chip_init(struct pm8001_hba_info *pm8001_ha)
{
/* check the firmware status */
if (-1 == check_fw_ready(pm8001_ha)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Firmware is not ready!\n"));
return -EBUSY;
}
/* Initialize pci space address eg: mpi offset */
init_pci_device_addresses(pm8001_ha);
init_default_table_values(pm8001_ha);
read_main_config_table(pm8001_ha);
read_general_status_table(pm8001_ha);
read_inbnd_queue_table(pm8001_ha);
read_outbnd_queue_table(pm8001_ha);
/* update main config table ,inbound table and outbound table */
update_main_config_table(pm8001_ha);
update_inbnd_queue_table(pm8001_ha, 0);
update_outbnd_queue_table(pm8001_ha, 0);
mpi_set_phys_g3_with_ssc(pm8001_ha, 0);
mpi_set_open_retry_interval_reg(pm8001_ha, 7);
/* notify firmware update finished and check initialization status */
if (0 == mpi_init_check(pm8001_ha)) {
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("MPI initialize successful!\n"));
} else
return -EBUSY;
/*This register is a 16-bit timer with a resolution of 1us. This is the
timer used for interrupt delay/coalescing in the PCIe Application Layer.
Zero is not a valid value. A value of 1 in the register will cause the
interrupts to be normal. A value greater than 1 will cause coalescing
delays.*/
pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1);
pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0);
return 0;
}
static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
{
u32 max_wait_count;
u32 value;
u32 gst_len_mpistate;
init_pci_device_addresses(pm8001_ha);
/* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
table is stop */
pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET);
/* wait until Inbound DoorBell Clear Register toggled */
max_wait_count = 1 * 1000 * 1000;/* 1 sec */
do {
udelay(1);
value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
value &= SPC_MSGU_CFG_TABLE_RESET;
} while ((value != 0) && (--max_wait_count));
if (!max_wait_count) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("TIMEOUT:IBDB value/=0x%x\n", value));
return -1;
}
/* check the MPI-State for termination in progress */
/* wait until Inbound DoorBell Clear Register toggled */
max_wait_count = 1 * 1000 * 1000; /* 1 sec */
do {
udelay(1);
gst_len_mpistate =
pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
GST_GSTLEN_MPIS_OFFSET);
if (GST_MPI_STATE_UNINIT ==
(gst_len_mpistate & GST_MPI_STATE_MASK))
break;
} while (--max_wait_count);
if (!max_wait_count) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk(" TIME OUT MPI State = 0x%x\n",
gst_len_mpistate & GST_MPI_STATE_MASK));
return -1;
}
return 0;
}
/**
* soft_reset_ready_check - Function to check FW is ready for soft reset.
* @pm8001_ha: our hba card information
*/
static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha)
{
u32 regVal, regVal1, regVal2;
if (mpi_uninit_check(pm8001_ha) != 0) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("MPI state is not ready\n"));
return -1;
}
/* read the scratch pad 2 register bit 2 */
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
& SCRATCH_PAD2_FWRDY_RST;
if (regVal == SCRATCH_PAD2_FWRDY_RST) {
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Firmware is ready for reset .\n"));
} else {
/* Trigger NMI twice via RB6 */
if (-1 == bar4_shift(pm8001_ha, RB6_ACCESS_REG)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
RB6_ACCESS_REG));
return -1;
}
pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET,
RB6_MAGIC_NUMBER_RST);
pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST);
/* wait for 100 ms */
mdelay(100);
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) &
SCRATCH_PAD2_FWRDY_RST;
if (regVal != SCRATCH_PAD2_FWRDY_RST) {
regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("TIMEOUT:MSGU_SCRATCH_PAD1"
"=0x%x, MSGU_SCRATCH_PAD2=0x%x\n",
regVal1, regVal2));
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)));
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)));
return -1;
}
}
return 0;
}
/**
* pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
* the FW register status to the originated status.
* @pm8001_ha: our hba card information
* @signature: signature in host scratch pad0 register.
*/
static int
pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha, u32 signature)
{
u32 regVal, toggleVal;
u32 max_wait_count;
u32 regVal1, regVal2, regVal3;
/* step1: Check FW is ready for soft reset */
if (soft_reset_ready_check(pm8001_ha) != 0) {
PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("FW is not ready\n"));
return -1;
}
/* step 2: clear NMI status register on AAP1 and IOP, write the same
value to clear */
/* map 0x60000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
MBIC_AAP1_ADDR_BASE));
return -1;
}
regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0);
/* map 0x70000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
MBIC_IOP_ADDR_BASE));
return -1;
}
regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0);
regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("PCIE -Event Interrupt Enable = 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0);
regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("PCIE - Event Interrupt = 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal);
regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("PCIE -Error Interrupt Enable = 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0);
regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("PCIE - Error Interrupt = 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal);
/* read the scratch pad 1 register bit 2 */
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
& SCRATCH_PAD1_RST;
toggleVal = regVal ^ SCRATCH_PAD1_RST;
/* set signature in host scratch pad0 register to tell SPC that the
host performs the soft reset */
pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature);
/* read required registers for confirmming */
/* map 0x0700000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
GSM_ADDR_BASE));
return -1;
}
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x0(0x00007b88)-GSM Configuration and"
" Reset = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
/* step 3: host read GSM Configuration and Reset register */
regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
/* Put those bits to low */
/* GSM XCBI offset = 0x70 0000
0x00 Bit 13 COM_SLV_SW_RSTB 1
0x00 Bit 12 QSSP_SW_RSTB 1
0x00 Bit 11 RAAE_SW_RSTB 1
0x00 Bit 9 RB_1_SW_RSTB 1
0x00 Bit 8 SM_SW_RSTB 1
*/
regVal &= ~(0x00003b00);
/* host write GSM Configuration and Reset register */
pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM "
"Configuration and Reset is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
/* step 4: */
/* disable GSM - Read Address Parity Check */
regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700038 - Read Address Parity Check "
"Enable = 0x%x\n", regVal1));
pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
"is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
/* disable GSM - Write Address Parity Check */
regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700040 - Write Address Parity Check"
" Enable = 0x%x\n", regVal2));
pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700040 - Write Address Parity Check "
"Enable is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
/* disable GSM - Write Data Parity Check */
regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x300048 - Write Data Parity Check"
" Enable = 0x%x\n", regVal3));
pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x300048 - Write Data Parity Check Enable"
"is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
/* step 5: delay 10 usec */
udelay(10);
/* step 5-b: set GPIO-0 output control to tristate anyway */
if (-1 == bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) {
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
GPIO_ADDR_BASE));
return -1;
}
regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GPIO Output Control Register:"
" = 0x%x\n", regVal));
/* set GPIO-0 output control to tri-state */
regVal &= 0xFFFFFFFC;
pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal);
/* Step 6: Reset the IOP and AAP1 */
/* map 0x00000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
SPC_TOP_LEVEL_ADDR_BASE));
return -1;
}
regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Top Register before resetting IOP/AAP1"
":= 0x%x\n", regVal));
regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
/* step 7: Reset the BDMA/OSSP */
regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Top Register before resetting BDMA/OSSP"
": = 0x%x\n", regVal));
regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
/* step 8: delay 10 usec */
udelay(10);
/* step 9: bring the BDMA and OSSP out of reset */
regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("Top Register before bringing up BDMA/OSSP"
":= 0x%x\n", regVal));
regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
/* step 10: delay 10 usec */
udelay(10);
/* step 11: reads and sets the GSM Configuration and Reset Register */
/* map 0x0700000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
GSM_ADDR_BASE));
return -1;
}
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x0 (0x00007b88)-GSM Configuration and "
"Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
/* Put those bits to high */
/* GSM XCBI offset = 0x70 0000
0x00 Bit 13 COM_SLV_SW_RSTB 1
0x00 Bit 12 QSSP_SW_RSTB 1
0x00 Bit 11 RAAE_SW_RSTB 1
0x00 Bit 9 RB_1_SW_RSTB 1
0x00 Bit 8 SM_SW_RSTB 1
*/
regVal |= (GSM_CONFIG_RESET_VALUE);
pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM (0x00004088 ==> 0x00007b88) - GSM"
" Configuration and Reset is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
/* step 12: Restore GSM - Read Address Parity Check */
regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
/* just for debugging */
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
" = 0x%x\n", regVal));
pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700038 - Read Address Parity"
" Check Enable is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
/* Restore GSM - Write Address Parity Check */
regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700040 - Write Address Parity Check"
" Enable is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
/* Restore GSM - Write Data Parity Check */
regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("GSM 0x700048 - Write Data Parity Check Enable"
"is set to = 0x%x\n",
pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
/* step 13: bring the IOP and AAP1 out of reset */
/* map 0x00000 to BAR4(0x20), BAR2(win) */
if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Shift Bar4 to 0x%x failed\n",
SPC_TOP_LEVEL_ADDR_BASE));
return -1;
}
regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
/* step 14: delay 10 usec - Normal Mode */
udelay(10);
/* check Soft Reset Normal mode or Soft Reset HDA mode */
if (signature == SPC_SOFT_RESET_SIGNATURE) {
/* step 15 (Normal Mode): wait until scratch pad1 register
bit 2 toggled */
max_wait_count = 2 * 1000 * 1000;/* 2 sec */
do {
udelay(1);
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
SCRATCH_PAD1_RST;
} while ((regVal != toggleVal) && (--max_wait_count));
if (!max_wait_count) {
regVal = pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_1);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("TIMEOUT : ToggleVal 0x%x,"
"MSGU_SCRATCH_PAD1 = 0x%x\n",
toggleVal, regVal));
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_0)));
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD2 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_2)));
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_3)));
return -1;
}
/* step 16 (Normal) - Clear ODMR and ODCR */
pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
/* step 17 (Normal Mode): wait for the FW and IOP to get
ready - 1 sec timeout */
/* Wait for the SPC Configuration Table to be ready */
if (check_fw_ready(pm8001_ha) == -1) {
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
/* return error if MPI Configuration Table not ready */
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("FW not ready SCRATCH_PAD1"
" = 0x%x\n", regVal));
regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
/* return error if MPI Configuration Table not ready */
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("FW not ready SCRATCH_PAD2"
" = 0x%x\n", regVal));
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_0)));
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
pm8001_cr32(pm8001_ha, 0,
MSGU_SCRATCH_PAD_3)));
return -1;
}
}
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("SPC soft reset Complete\n"));
return 0;
}
static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
{
u32 i;
u32 regVal;
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("chip reset start\n"));
/* do SPC chip reset. */
regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
regVal &= ~(SPC_REG_RESET_DEVICE);
pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
/* delay 10 usec */
udelay(10);
/* bring chip reset out of reset */
regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
regVal |= SPC_REG_RESET_DEVICE;
pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
/* delay 10 usec */
udelay(10);
/* wait for 20 msec until the firmware gets reloaded */
i = 20;
do {
mdelay(1);
} while ((--i) != 0);
PM8001_INIT_DBG(pm8001_ha,
pm8001_printk("chip reset finished\n"));
}
/**
* pm8001_chip_iounmap - which maped when initialized.
* @pm8001_ha: our hba card information
*/
static void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha)
{
s8 bar, logical = 0;
for (bar = 0; bar < 6; bar++) {
/*
** logical BARs for SPC:
** bar 0 and 1 - logical BAR0
** bar 2 and 3 - logical BAR1
** bar4 - logical BAR2
** bar5 - logical BAR3
** Skip the appropriate assignments:
*/
if ((bar == 1) || (bar == 3))
continue;
if (pm8001_ha->io_mem[logical].memvirtaddr) {
iounmap(pm8001_ha->io_mem[logical].memvirtaddr);
logical++;
}
}
}
/**
* pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
{
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
}
/**
* pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
{
pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL);
}
/**
* pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha,
u32 int_vec_idx)
{
u32 msi_index;
u32 value;
msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
msi_index += MSIX_TABLE_BASE;
pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE);
value = (1 << int_vec_idx);
pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value);
}
/**
* pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha,
u32 int_vec_idx)
{
u32 msi_index;
msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
msi_index += MSIX_TABLE_BASE;
pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE);
}
/**
* pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
{
#ifdef PM8001_USE_MSIX
pm8001_chip_msix_interrupt_enable(pm8001_ha, 0);
return;
#endif
pm8001_chip_intx_interrupt_enable(pm8001_ha);
}
/**
* pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
* @pm8001_ha: our hba card information
*/
static void
pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
{
#ifdef PM8001_USE_MSIX
pm8001_chip_msix_interrupt_disable(pm8001_ha, 0);
return;
#endif
pm8001_chip_intx_interrupt_disable(pm8001_ha);
}
/**
* mpi_msg_free_get- get the free message buffer for transfer inbound queue.
* @circularQ: the inbound queue we want to transfer to HBA.
* @messageSize: the message size of this transfer, normally it is 64 bytes
* @messagePtr: the pointer to message.
*/
static int mpi_msg_free_get(struct inbound_queue_table *circularQ,
u16 messageSize, void **messagePtr)
{
u32 offset, consumer_index;
struct mpi_msg_hdr *msgHeader;
u8 bcCount = 1; /* only support single buffer */
/* Checks is the requested message size can be allocated in this queue*/
if (messageSize > 64) {
*messagePtr = NULL;
return -1;
}
/* Stores the new consumer index */
consumer_index = pm8001_read_32(circularQ->ci_virt);
circularQ->consumer_index = cpu_to_le32(consumer_index);
if (((circularQ->producer_idx + bcCount) % 256) ==
circularQ->consumer_index) {
*messagePtr = NULL;
return -1;
}
/* get memory IOMB buffer address */
offset = circularQ->producer_idx * 64;
/* increment to next bcCount element */
circularQ->producer_idx = (circularQ->producer_idx + bcCount) % 256;
/* Adds that distance to the base of the region virtual address plus
the message header size*/
msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset);
*messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr);
return 0;
}
/**
* mpi_build_cmd- build the message queue for transfer, update the PI to FW
* to tell the fw to get this message from IOMB.
* @pm8001_ha: our hba card information
* @circularQ: the inbound queue we want to transfer to HBA.
* @opCode: the operation code represents commands which LLDD and fw recognized.
* @payload: the command payload of each operation command.
*/
static int mpi_build_cmd(struct pm8001_hba_info *pm8001_ha,
struct inbound_queue_table *circularQ,
u32 opCode, void *payload)
{
u32 Header = 0, hpriority = 0, bc = 1, category = 0x02;
u32 responseQueue = 0;
void *pMessage;
if (mpi_msg_free_get(circularQ, 64, &pMessage) < 0) {
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("No free mpi buffer \n"));
return -1;
}
BUG_ON(!payload);
/*Copy to the payload*/
memcpy(pMessage, payload, (64 - sizeof(struct mpi_msg_hdr)));
/*Build the header*/
Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24)
| ((responseQueue & 0x3F) << 16)
| ((category & 0xF) << 12) | (opCode & 0xFFF));
pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header));
/*Update the PI to the firmware*/
pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar,
circularQ->pi_offset, circularQ->producer_idx);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("after PI= %d CI= %d \n", circularQ->producer_idx,
circularQ->consumer_index));
return 0;
}
static u32 mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg,
struct outbound_queue_table *circularQ, u8 bc)
{
u32 producer_index;
struct mpi_msg_hdr *msgHeader;
struct mpi_msg_hdr *pOutBoundMsgHeader;
msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr));
pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt +
circularQ->consumer_idx * 64);
if (pOutBoundMsgHeader != msgHeader) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("consumer_idx = %d msgHeader = %p\n",
circularQ->consumer_idx, msgHeader));
/* Update the producer index from SPC */
producer_index = pm8001_read_32(circularQ->pi_virt);
circularQ->producer_index = cpu_to_le32(producer_index);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("consumer_idx = %d producer_index = %d"
"msgHeader = %p\n", circularQ->consumer_idx,
circularQ->producer_index, msgHeader));
return 0;
}
/* free the circular queue buffer elements associated with the message*/
circularQ->consumer_idx = (circularQ->consumer_idx + bc) % 256;
/* update the CI of outbound queue */
pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset,
circularQ->consumer_idx);
/* Update the producer index from SPC*/
producer_index = pm8001_read_32(circularQ->pi_virt);
circularQ->producer_index = cpu_to_le32(producer_index);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk(" CI=%d PI=%d\n", circularQ->consumer_idx,
circularQ->producer_index));
return 0;
}
/**
* mpi_msg_consume- get the MPI message from outbound queue message table.
* @pm8001_ha: our hba card information
* @circularQ: the outbound queue table.
* @messagePtr1: the message contents of this outbound message.
* @pBC: the message size.
*/
static u32 mpi_msg_consume(struct pm8001_hba_info *pm8001_ha,
struct outbound_queue_table *circularQ,
void **messagePtr1, u8 *pBC)
{
struct mpi_msg_hdr *msgHeader;
__le32 msgHeader_tmp;
u32 header_tmp;
do {
/* If there are not-yet-delivered messages ... */
if (circularQ->producer_index != circularQ->consumer_idx) {
/*Get the pointer to the circular queue buffer element*/
msgHeader = (struct mpi_msg_hdr *)
(circularQ->base_virt +
circularQ->consumer_idx * 64);
/* read header */
header_tmp = pm8001_read_32(msgHeader);
msgHeader_tmp = cpu_to_le32(header_tmp);
if (0 != (msgHeader_tmp & 0x80000000)) {
if (OPC_OUB_SKIP_ENTRY !=
(msgHeader_tmp & 0xfff)) {
*messagePtr1 =
((u8 *)msgHeader) +
sizeof(struct mpi_msg_hdr);
*pBC = (u8)((msgHeader_tmp >> 24) &
0x1f);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk(": CI=%d PI=%d "
"msgHeader=%x\n",
circularQ->consumer_idx,
circularQ->producer_index,
msgHeader_tmp));
return MPI_IO_STATUS_SUCCESS;
} else {
circularQ->consumer_idx =
(circularQ->consumer_idx +
((msgHeader_tmp >> 24) & 0x1f))
% 256;
msgHeader_tmp = 0;
pm8001_write_32(msgHeader, 0, 0);
/* update the CI of outbound queue */
pm8001_cw32(pm8001_ha,
circularQ->ci_pci_bar,
circularQ->ci_offset,
circularQ->consumer_idx);
}
} else {
circularQ->consumer_idx =
(circularQ->consumer_idx +
((msgHeader_tmp >> 24) & 0x1f)) % 256;
msgHeader_tmp = 0;
pm8001_write_32(msgHeader, 0, 0);
/* update the CI of outbound queue */
pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar,
circularQ->ci_offset,
circularQ->consumer_idx);
return MPI_IO_STATUS_FAIL;
}
} else {
u32 producer_index;
void *pi_virt = circularQ->pi_virt;
/* Update the producer index from SPC */
producer_index = pm8001_read_32(pi_virt);
circularQ->producer_index = cpu_to_le32(producer_index);
}
} while (circularQ->producer_index != circularQ->consumer_idx);
/* while we don't have any more not-yet-delivered message */
/* report empty */
return MPI_IO_STATUS_BUSY;
}
static void pm8001_work_queue(struct work_struct *work)
{
struct delayed_work *dw = container_of(work, struct delayed_work, work);
struct pm8001_wq *wq = container_of(dw, struct pm8001_wq, work_q);
struct pm8001_device *pm8001_dev;
struct domain_device *dev;
switch (wq->handler) {
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
pm8001_dev = wq->data;
dev = pm8001_dev->sas_device;
pm8001_I_T_nexus_reset(dev);
break;
case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
pm8001_dev = wq->data;
dev = pm8001_dev->sas_device;
pm8001_I_T_nexus_reset(dev);
break;
case IO_DS_IN_ERROR:
pm8001_dev = wq->data;
dev = pm8001_dev->sas_device;
pm8001_I_T_nexus_reset(dev);
break;
case IO_DS_NON_OPERATIONAL:
pm8001_dev = wq->data;
dev = pm8001_dev->sas_device;
pm8001_I_T_nexus_reset(dev);
break;
}
list_del(&wq->entry);
kfree(wq);
}
static int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data,
int handler)
{
struct pm8001_wq *wq;
int ret = 0;
wq = kmalloc(sizeof(struct pm8001_wq), GFP_ATOMIC);
if (wq) {
wq->pm8001_ha = pm8001_ha;
wq->data = data;
wq->handler = handler;
INIT_DELAYED_WORK(&wq->work_q, pm8001_work_queue);
list_add_tail(&wq->entry, &pm8001_ha->wq_list);
schedule_delayed_work(&wq->work_q, 0);
} else
ret = -ENOMEM;
return ret;
}
/**
* mpi_ssp_completion- process the event that FW response to the SSP request.
* @pm8001_ha: our hba card information
* @piomb: the message contents of this outbound message.
*
* When FW has completed a ssp request for example a IO request, after it has
* filled the SG data with the data, it will trigger this event represent
* that he has finished the job,please check the coresponding buffer.
* So we will tell the caller who maybe waiting the result to tell upper layer
* that the task has been finished.
*/
static void
mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb)
{
struct sas_task *t;
struct pm8001_ccb_info *ccb;
unsigned long flags;
u32 status;
u32 param;
u32 tag;
struct ssp_completion_resp *psspPayload;
struct task_status_struct *ts;
struct ssp_response_iu *iu;
struct pm8001_device *pm8001_dev;
psspPayload = (struct ssp_completion_resp *)(piomb + 4);
status = le32_to_cpu(psspPayload->status);
tag = le32_to_cpu(psspPayload->tag);
ccb = &pm8001_ha->ccb_info[tag];
pm8001_dev = ccb->device;
param = le32_to_cpu(psspPayload->param);
t = ccb->task;
if (status && status != IO_UNDERFLOW)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("sas IO status 0x%x\n", status));
if (unlikely(!t || !t->lldd_task || !t->dev))
return;
ts = &t->task_status;
switch (status) {
case IO_SUCCESS:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS"
",param = %d \n", param));
if (param == 0) {
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_GOOD;
} else {
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_PROTO_RESPONSE;
ts->residual = param;
iu = &psspPayload->ssp_resp_iu;
sas_ssp_task_response(pm8001_ha->dev, t, iu);
}
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_ABORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_ABORTED IOMB Tag \n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_ABORTED_TASK;
break;
case IO_UNDERFLOW:
/* SSP Completion with error */
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW"
",param = %d \n", param));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_UNDERRUN;
ts->residual = param;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_NO_DEVICE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_NO_DEVICE\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
break;
case IO_XFER_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_XFER_ERROR_PHY_NOT_READY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
if (!t->uldd_task)
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
break;
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
"NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
case IO_XFER_ERROR_NAK_RECEIVED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_ERROR_DMA:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_DMA\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_XFER_OPEN_RETRY_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_XFER_ERROR_OFFSET_MISMATCH:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_PORT_IN_RESET:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_PORT_IN_RESET\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_DS_NON_OPERATIONAL:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
if (!t->uldd_task)
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_DS_NON_OPERATIONAL);
break;
case IO_DS_IN_RECOVERY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_IN_RECOVERY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_TM_TAG_NOT_FOUND:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_TM_TAG_NOT_FOUND\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
default:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("Unknown status 0x%x\n", status));
/* not allowed case. Therefore, return failed status */
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
break;
}
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("scsi_status = %x \n ",
psspPayload->ssp_resp_iu.status));
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
" io_status 0x%x resp 0x%x "
"stat 0x%x but aborted by upper layer!\n",
t, status, ts->resp, ts->stat));
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
} else {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* in order to force CPU ordering */
t->task_done(t);
}
}
/*See the comments for mpi_ssp_completion */
static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
{
struct sas_task *t;
unsigned long flags;
struct task_status_struct *ts;
struct pm8001_ccb_info *ccb;
struct pm8001_device *pm8001_dev;
struct ssp_event_resp *psspPayload =
(struct ssp_event_resp *)(piomb + 4);
u32 event = le32_to_cpu(psspPayload->event);
u32 tag = le32_to_cpu(psspPayload->tag);
u32 port_id = le32_to_cpu(psspPayload->port_id);
u32 dev_id = le32_to_cpu(psspPayload->device_id);
ccb = &pm8001_ha->ccb_info[tag];
t = ccb->task;
pm8001_dev = ccb->device;
if (event)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("sas IO status 0x%x\n", event));
if (unlikely(!t || !t->lldd_task || !t->dev))
return;
ts = &t->task_status;
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("port_id = %x,device_id = %x\n",
port_id, dev_id));
switch (event) {
case IO_OVERFLOW:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");)
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_XFER_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_INTERRUPTED;
break;
case IO_XFER_ERROR_PHY_NOT_READY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
"_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
if (!t->uldd_task)
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
break;
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
"NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
case IO_XFER_ERROR_NAK_RECEIVED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_OPEN_RETRY_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_XFER_ERROR_UNEXPECTED_PHASE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_ERROR_XFER_RDY_OVERRUN:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_ERROR_OFFSET_MISMATCH:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
case IO_XFER_CMD_FRAME_ISSUED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk(" IO_XFER_CMD_FRAME_ISSUED\n"));
return;
default:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("Unknown status 0x%x\n", event));
/* not allowed case. Therefore, return failed status */
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
break;
}
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
" event 0x%x resp 0x%x "
"stat 0x%x but aborted by upper layer!\n",
t, event, ts->resp, ts->stat));
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
} else {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* in order to force CPU ordering */
t->task_done(t);
}
}
/*See the comments for mpi_ssp_completion */
static void
mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct sas_task *t;
struct pm8001_ccb_info *ccb;
unsigned long flags = 0;
u32 param;
u32 status;
u32 tag;
struct sata_completion_resp *psataPayload;
struct task_status_struct *ts;
struct ata_task_resp *resp ;
u32 *sata_resp;
struct pm8001_device *pm8001_dev;
psataPayload = (struct sata_completion_resp *)(piomb + 4);
status = le32_to_cpu(psataPayload->status);
tag = le32_to_cpu(psataPayload->tag);
ccb = &pm8001_ha->ccb_info[tag];
param = le32_to_cpu(psataPayload->param);
t = ccb->task;
ts = &t->task_status;
pm8001_dev = ccb->device;
if (status)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("sata IO status 0x%x\n", status));
if (unlikely(!t || !t->lldd_task || !t->dev))
return;
switch (status) {
case IO_SUCCESS:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
if (param == 0) {
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_GOOD;
} else {
u8 len;
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_PROTO_RESPONSE;
ts->residual = param;
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("SAS_PROTO_RESPONSE len = %d\n",
param));
sata_resp = &psataPayload->sata_resp[0];
resp = (struct ata_task_resp *)ts->buf;
if (t->ata_task.dma_xfer == 0 &&
t->data_dir == PCI_DMA_FROMDEVICE) {
len = sizeof(struct pio_setup_fis);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("PIO read len = %d\n", len));
} else if (t->ata_task.use_ncq) {
len = sizeof(struct set_dev_bits_fis);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("FPDMA len = %d\n", len));
} else {
len = sizeof(struct dev_to_host_fis);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("other len = %d\n", len));
}
if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
resp->frame_len = len;
memcpy(&resp->ending_fis[0], sata_resp, len);
ts->buf_valid_size = sizeof(*resp);
} else
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("response to large \n"));
}
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_ABORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_ABORTED IOMB Tag \n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_ABORTED_TASK;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
/* following cases are to do cases */
case IO_UNDERFLOW:
/* SATA Completion with error */
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_UNDERFLOW param = %d\n", param));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_UNDERRUN;
ts->residual = param;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_NO_DEVICE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_NO_DEVICE\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_PHY_DOWN;
break;
case IO_XFER_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_INTERRUPTED;
break;
case IO_XFER_ERROR_PHY_NOT_READY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
"_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
break;
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*in order to force CPU ordering*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
"NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_STP_RESOURCES"
"_BUSY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
case IO_XFER_ERROR_NAK_RECEIVED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_ERROR_DMA:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_DMA\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_ABORTED_TASK;
break;
case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
case IO_XFER_ERROR_REJECTED_NCQ_MODE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_UNDERRUN;
break;
case IO_XFER_OPEN_RETRY_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_PORT_IN_RESET:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_PORT_IN_RESET\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
case IO_DS_NON_OPERATIONAL:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha, pm8001_dev,
IO_DS_NON_OPERATIONAL);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_DS_IN_RECOVERY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk(" IO_DS_IN_RECOVERY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
case IO_DS_IN_ERROR:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_IN_ERROR\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha, pm8001_dev,
IO_DS_IN_ERROR);
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
default:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("Unknown status 0x%x\n", status));
/* not allowed case. Therefore, return failed status */
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
}
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("task 0x%p done with io_status 0x%x"
" resp 0x%x stat 0x%x but aborted by upper layer!\n",
t, status, ts->resp, ts->stat));
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
} else if (t->uldd_task) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* ditto */
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
} else if (!t->uldd_task) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
}
}
/*See the comments for mpi_ssp_completion */
static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
{
struct sas_task *t;
unsigned long flags = 0;
struct task_status_struct *ts;
struct pm8001_ccb_info *ccb;
struct pm8001_device *pm8001_dev;
struct sata_event_resp *psataPayload =
(struct sata_event_resp *)(piomb + 4);
u32 event = le32_to_cpu(psataPayload->event);
u32 tag = le32_to_cpu(psataPayload->tag);
u32 port_id = le32_to_cpu(psataPayload->port_id);
u32 dev_id = le32_to_cpu(psataPayload->device_id);
ccb = &pm8001_ha->ccb_info[tag];
t = ccb->task;
pm8001_dev = ccb->device;
if (event)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("sata IO status 0x%x\n", event));
if (unlikely(!t || !t->lldd_task || !t->dev))
return;
ts = &t->task_status;
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("port_id = %x,device_id = %x\n",
port_id, dev_id));
switch (event) {
case IO_OVERFLOW:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_XFER_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_INTERRUPTED;
break;
case IO_XFER_ERROR_PHY_NOT_READY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
"_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
break;
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_DEV_NO_RESPONSE;
if (!t->uldd_task) {
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_QUEUE_FULL;
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
return;
}
break;
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
"NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
case IO_XFER_ERROR_NAK_RECEIVED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_ERROR_PEER_ABORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_NAK_R_ERR;
break;
case IO_XFER_ERROR_REJECTED_NCQ_MODE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_UNDERRUN;
break;
case IO_XFER_OPEN_RETRY_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_ERROR_UNEXPECTED_PHASE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_ERROR_XFER_RDY_OVERRUN:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_ERROR_OFFSET_MISMATCH:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
case IO_XFER_CMD_FRAME_ISSUED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n"));
break;
case IO_XFER_PIO_SETUP_ERROR:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
default:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("Unknown status 0x%x\n", event));
/* not allowed case. Therefore, return failed status */
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_TO;
break;
}
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("task 0x%p done with io_status 0x%x"
" resp 0x%x stat 0x%x but aborted by upper layer!\n",
t, event, ts->resp, ts->stat));
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
} else if (t->uldd_task) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* ditto */
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
} else if (!t->uldd_task) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/*ditto*/
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
t->task_done(t);
spin_lock_irqsave(&pm8001_ha->lock, flags);
}
}
/*See the comments for mpi_ssp_completion */
static void
mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
u32 param;
struct sas_task *t;
struct pm8001_ccb_info *ccb;
unsigned long flags;
u32 status;
u32 tag;
struct smp_completion_resp *psmpPayload;
struct task_status_struct *ts;
struct pm8001_device *pm8001_dev;
psmpPayload = (struct smp_completion_resp *)(piomb + 4);
status = le32_to_cpu(psmpPayload->status);
tag = le32_to_cpu(psmpPayload->tag);
ccb = &pm8001_ha->ccb_info[tag];
param = le32_to_cpu(psmpPayload->param);
t = ccb->task;
ts = &t->task_status;
pm8001_dev = ccb->device;
if (status)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("smp IO status 0x%x\n", status));
if (unlikely(!t || !t->lldd_task || !t->dev))
return;
switch (status) {
case IO_SUCCESS:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_GOOD;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_ABORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_ABORTED IOMB\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_ABORTED_TASK;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_OVERFLOW:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
if (pm8001_dev)
pm8001_dev->running_req--;
break;
case IO_NO_DEVICE:
PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_PHY_DOWN;
break;
case IO_ERROR_HW_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_ERROR_HW_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_BUSY;
break;
case IO_XFER_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_BUSY;
break;
case IO_XFER_ERROR_PHY_NOT_READY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_BUSY;
break;
case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
case IO_OPEN_CNX_ERROR_BREAK:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
break;
case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
pm8001_handle_event(pm8001_ha,
pm8001_dev,
IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
break;
case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
"NOT_SUPPORTED\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
case IO_XFER_ERROR_RX_FRAME:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_ERROR_RX_FRAME\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
case IO_XFER_OPEN_RETRY_TIMEOUT:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_ERROR_INTERNAL_SMP_RESOURCE:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_QUEUE_FULL;
break;
case IO_PORT_IN_RESET:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_PORT_IN_RESET\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_DS_NON_OPERATIONAL:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
case IO_DS_IN_RECOVERY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_DS_IN_RECOVERY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
break;
default:
PM8001_IO_DBG(pm8001_ha,
pm8001_printk("Unknown status 0x%x\n", status));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAS_DEV_NO_RESPONSE;
/* not allowed case. Therefore, return failed status */
break;
}
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
spin_unlock_irqrestore(&t->task_state_lock, flags);
PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
" io_status 0x%x resp 0x%x "
"stat 0x%x but aborted by upper layer!\n",
t, status, ts->resp, ts->stat));
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
} else {
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
mb();/* in order to force CPU ordering */
t->task_done(t);
}
}
static void
mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct set_dev_state_resp *pPayload =
(struct set_dev_state_resp *)(piomb + 4);
u32 tag = le32_to_cpu(pPayload->tag);
struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
struct pm8001_device *pm8001_dev = ccb->device;
u32 status = le32_to_cpu(pPayload->status);
u32 device_id = le32_to_cpu(pPayload->device_id);
u8 pds = le32_to_cpu(pPayload->pds_nds) | PDS_BITS;
u8 nds = le32_to_cpu(pPayload->pds_nds) | NDS_BITS;
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set device id = 0x%x state "
"from 0x%x to 0x%x status = 0x%x!\n",
device_id, pds, nds, status));
complete(pm8001_dev->setds_completion);
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
pm8001_ccb_free(pm8001_ha, tag);
}
static void
mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct get_nvm_data_resp *pPayload =
(struct get_nvm_data_resp *)(piomb + 4);
u32 tag = le32_to_cpu(pPayload->tag);
struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
complete(pm8001_ha->nvmd_completion);
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set nvm data complete!\n"));
if ((dlen_status & NVMD_STAT) != 0) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Set nvm data error!\n"));
return;
}
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
pm8001_ccb_free(pm8001_ha, tag);
}
static void
mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct fw_control_ex *fw_control_context;
struct get_nvm_data_resp *pPayload =
(struct get_nvm_data_resp *)(piomb + 4);
u32 tag = le32_to_cpu(pPayload->tag);
struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
u32 ir_tds_bn_dps_das_nvm =
le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm);
void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr;
fw_control_context = ccb->fw_control_context;
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Get nvm data complete!\n"));
if ((dlen_status & NVMD_STAT) != 0) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Get nvm data error!\n"));
complete(pm8001_ha->nvmd_completion);
return;
}
if (ir_tds_bn_dps_das_nvm & IPMode) {
/* indirect mode - IR bit set */
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("Get NVMD success, IR=1\n"));
if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) {
if (ir_tds_bn_dps_das_nvm == 0x80a80200) {
memcpy(pm8001_ha->sas_addr,
((u8 *)virt_addr + 4),
SAS_ADDR_SIZE);
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("Get SAS address"
" from VPD successfully!\n"));
}
} else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM)
|| ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) ||
((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) {
;
} else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP)
|| ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) {
;
} else {
/* Should not be happened*/
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("(IR=1)Wrong Device type 0x%x\n",
ir_tds_bn_dps_das_nvm));
}
} else /* direct mode */{
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("Get NVMD success, IR=0, dataLen=%d\n",
(dlen_status & NVMD_LEN) >> 24));
}
memcpy(fw_control_context->usrAddr,
pm8001_ha->memoryMap.region[NVMD].virt_ptr,
fw_control_context->len);
complete(pm8001_ha->nvmd_completion);
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
pm8001_ccb_free(pm8001_ha, tag);
}
static int mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct local_phy_ctl_resp *pPayload =
(struct local_phy_ctl_resp *)(piomb + 4);
u32 status = le32_to_cpu(pPayload->status);
u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS;
u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS;
if (status != 0) {
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("%x phy execute %x phy op failed! \n",
phy_id, phy_op));
} else
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("%x phy execute %x phy op success! \n",
phy_id, phy_op));
return 0;
}
/**
* pm8001_bytes_dmaed - one of the interface function communication with libsas
* @pm8001_ha: our hba card information
* @i: which phy that received the event.
*
* when HBA driver received the identify done event or initiate FIS received
* event(for SATA), it will invoke this function to notify the sas layer that
* the sas toplogy has formed, please discover the the whole sas domain,
* while receive a broadcast(change) primitive just tell the sas
* layer to discover the changed domain rather than the whole domain.
*/
static void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i)
{
struct pm8001_phy *phy = &pm8001_ha->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha;
if (!phy->phy_attached)
return;
sas_ha = pm8001_ha->sas;
if (sas_phy->phy) {
struct sas_phy *sphy = sas_phy->phy;
sphy->negotiated_linkrate = sas_phy->linkrate;
sphy->minimum_linkrate = phy->minimum_linkrate;
sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sphy->maximum_linkrate = phy->maximum_linkrate;
sphy->maximum_linkrate_hw = phy->maximum_linkrate;
}
if (phy->phy_type & PORT_TYPE_SAS) {
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
id->dev_type = phy->identify.device_type;
id->initiator_bits = SAS_PROTOCOL_ALL;
id->target_bits = phy->identify.target_port_protocols;
} else if (phy->phy_type & PORT_TYPE_SATA) {
/*Nothing*/
}
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("phy %d byte dmaded.\n", i));
sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
pm8001_ha->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED);
}
/* Get the link rate speed */
static void get_lrate_mode(struct pm8001_phy *phy, u8 link_rate)
{
struct sas_phy *sas_phy = phy->sas_phy.phy;
switch (link_rate) {
case PHY_SPEED_60:
phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
break;
case PHY_SPEED_30:
phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
break;
case PHY_SPEED_15:
phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
break;
}
sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS;
sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
}
/**
* asd_get_attached_sas_addr -- extract/generate attached SAS address
* @phy: pointer to asd_phy
* @sas_addr: pointer to buffer where the SAS address is to be written
*
* This function extracts the SAS address from an IDENTIFY frame
* received. If OOB is SATA, then a SAS address is generated from the
* HA tables.
*
* LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
* buffer.
*/
static void pm8001_get_attached_sas_addr(struct pm8001_phy *phy,
u8 *sas_addr)
{
if (phy->sas_phy.frame_rcvd[0] == 0x34
&& phy->sas_phy.oob_mode == SATA_OOB_MODE) {
struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha;
/* FIS device-to-host */
u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr);
addr += phy->sas_phy.id;
*(__be64 *)sas_addr = cpu_to_be64(addr);
} else {
struct sas_identify_frame *idframe =
(void *) phy->sas_phy.frame_rcvd;
memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
}
}
/**
* pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
* @pm8001_ha: our hba card information
* @Qnum: the outbound queue message number.
* @SEA: source of event to ack
* @port_id: port id.
* @phyId: phy id.
* @param0: parameter 0.
* @param1: parameter 1.
*/
static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
{
struct hw_event_ack_req payload;
u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
struct inbound_queue_table *circularQ;
memset((u8 *)&payload, 0, sizeof(payload));
circularQ = &pm8001_ha->inbnd_q_tbl[Qnum];
payload.tag = 1;
payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
((phyId & 0x0F) << 4) | (port_id & 0x0F));
payload.param0 = cpu_to_le32(param0);
payload.param1 = cpu_to_le32(param1);
mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
}
static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
u32 phyId, u32 phy_op);
/**
* hw_event_sas_phy_up -FW tells me a SAS phy up event.
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*/
static void
hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct hw_event_resp *pPayload =
(struct hw_event_resp *)(piomb + 4);
u32 lr_evt_status_phyid_portid =
le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
u8 link_rate =
(u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
u8 phy_id =
(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
u8 portstate = (u8)(npip_portstate & 0x0000000F);
struct pm8001_port *port = &pm8001_ha->port[port_id];
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
unsigned long flags;
u8 deviceType = pPayload->sas_identify.dev_type;
port->port_state = portstate;
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n",
port_id, phy_id));
switch (deviceType) {
case SAS_PHY_UNUSED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("device type no device.\n"));
break;
case SAS_END_DEVICE:
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n"));
pm8001_chip_phy_ctl_req(pm8001_ha, phy_id,
PHY_NOTIFY_ENABLE_SPINUP);
port->port_attached = 1;
get_lrate_mode(phy, link_rate);
break;
case SAS_EDGE_EXPANDER_DEVICE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("expander device.\n"));
port->port_attached = 1;
get_lrate_mode(phy, link_rate);
break;
case SAS_FANOUT_EXPANDER_DEVICE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("fanout expander device.\n"));
port->port_attached = 1;
get_lrate_mode(phy, link_rate);
break;
default:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("unknown device type(%x)\n", deviceType));
break;
}
phy->phy_type |= PORT_TYPE_SAS;
phy->identify.device_type = deviceType;
phy->phy_attached = 1;
if (phy->identify.device_type == SAS_END_DEV)
phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != NO_DEVICE)
phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
phy->sas_phy.oob_mode = SAS_OOB_MODE;
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
memcpy(phy->frame_rcvd, &pPayload->sas_identify,
sizeof(struct sas_identify_frame)-4);
phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
if (pm8001_ha->flags == PM8001F_RUN_TIME)
mdelay(200);/*delay a moment to wait disk to spinup*/
pm8001_bytes_dmaed(pm8001_ha, phy_id);
}
/**
* hw_event_sata_phy_up -FW tells me a SATA phy up event.
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*/
static void
hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct hw_event_resp *pPayload =
(struct hw_event_resp *)(piomb + 4);
u32 lr_evt_status_phyid_portid =
le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
u8 link_rate =
(u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
u8 phy_id =
(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
u8 portstate = (u8)(npip_portstate & 0x0000000F);
struct pm8001_port *port = &pm8001_ha->port[port_id];
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
unsigned long flags;
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_SATA_PHY_UP port id = %d,"
" phy id = %d\n", port_id, phy_id));
port->port_state = portstate;
port->port_attached = 1;
get_lrate_mode(phy, link_rate);
phy->phy_type |= PORT_TYPE_SATA;
phy->phy_attached = 1;
phy->sas_phy.oob_mode = SATA_OOB_MODE;
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
sizeof(struct dev_to_host_fis));
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
phy->identify.device_type = SATA_DEV;
pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
pm8001_bytes_dmaed(pm8001_ha, phy_id);
}
/**
* hw_event_phy_down -we should notify the libsas the phy is down.
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*/
static void
hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct hw_event_resp *pPayload =
(struct hw_event_resp *)(piomb + 4);
u32 lr_evt_status_phyid_portid =
le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
u8 phy_id =
(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
u8 portstate = (u8)(npip_portstate & 0x0000000F);
struct pm8001_port *port = &pm8001_ha->port[port_id];
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
port->port_state = portstate;
phy->phy_type = 0;
phy->identify.device_type = 0;
phy->phy_attached = 0;
memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE);
switch (portstate) {
case PORT_VALID:
break;
case PORT_INVALID:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" PortInvalid portID %d \n", port_id));
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" Last phy Down and port invalid\n"));
port->port_attached = 0;
pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
port_id, phy_id, 0, 0);
break;
case PORT_IN_RESET:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" Port In Reset portID %d \n", port_id));
break;
case PORT_NOT_ESTABLISHED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n"));
port->port_attached = 0;
break;
case PORT_LOSTCOMM:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" phy Down and PORT_LOSTCOMM\n"));
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" Last phy Down and port invalid\n"));
port->port_attached = 0;
pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
port_id, phy_id, 0, 0);
break;
default:
port->port_attached = 0;
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" phy Down and(default) = %x\n",
portstate));
break;
}
}
/**
* mpi_reg_resp -process register device ID response.
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*
* when sas layer find a device it will notify LLDD, then the driver register
* the domain device to FW, this event is the return device ID which the FW
* has assigned, from now,inter-communication with FW is no longer using the
* SAS address, use device ID which FW assigned.
*/
static int mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
u32 status;
u32 device_id;
u32 htag;
struct pm8001_ccb_info *ccb;
struct pm8001_device *pm8001_dev;
struct dev_reg_resp *registerRespPayload =
(struct dev_reg_resp *)(piomb + 4);
htag = le32_to_cpu(registerRespPayload->tag);
ccb = &pm8001_ha->ccb_info[registerRespPayload->tag];
pm8001_dev = ccb->device;
status = le32_to_cpu(registerRespPayload->status);
device_id = le32_to_cpu(registerRespPayload->device_id);
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" register device is status = %d\n", status));
switch (status) {
case DEVREG_SUCCESS:
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("DEVREG_SUCCESS\n"));
pm8001_dev->device_id = device_id;
break;
case DEVREG_FAILURE_OUT_OF_RESOURCE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_OUT_OF_RESOURCE\n"));
break;
case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"));
break;
case DEVREG_FAILURE_INVALID_PHY_ID:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_INVALID_PHY_ID\n"));
break;
case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"));
break;
case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"));
break;
case DEVREG_FAILURE_PORT_NOT_VALID_STATE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"));
break;
case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"));
break;
default:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_UNSORPORTED\n"));
break;
}
complete(pm8001_dev->dcompletion);
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
pm8001_ccb_free(pm8001_ha, htag);
return 0;
}
static int mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
u32 status;
u32 device_id;
struct dev_reg_resp *registerRespPayload =
(struct dev_reg_resp *)(piomb + 4);
status = le32_to_cpu(registerRespPayload->status);
device_id = le32_to_cpu(registerRespPayload->device_id);
if (status != 0)
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" deregister device failed ,status = %x"
", device_id = %x\n", status, device_id));
return 0;
}
static int
mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
u32 status;
struct fw_control_ex fw_control_context;
struct fw_flash_Update_resp *ppayload =
(struct fw_flash_Update_resp *)(piomb + 4);
u32 tag = le32_to_cpu(ppayload->tag);
struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
status = le32_to_cpu(ppayload->status);
memcpy(&fw_control_context,
ccb->fw_control_context,
sizeof(fw_control_context));
switch (status) {
case FLASH_UPDATE_COMPLETE_PENDING_REBOOT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"));
break;
case FLASH_UPDATE_IN_PROGRESS:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_IN_PROGRESS\n"));
break;
case FLASH_UPDATE_HDR_ERR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_HDR_ERR\n"));
break;
case FLASH_UPDATE_OFFSET_ERR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_OFFSET_ERR\n"));
break;
case FLASH_UPDATE_CRC_ERR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_CRC_ERR\n"));
break;
case FLASH_UPDATE_LENGTH_ERR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_LENGTH_ERR\n"));
break;
case FLASH_UPDATE_HW_ERR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_HW_ERR\n"));
break;
case FLASH_UPDATE_DNLD_NOT_SUPPORTED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"));
break;
case FLASH_UPDATE_DISABLED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(": FLASH_UPDATE_DISABLED\n"));
break;
default:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("No matched status = %d\n", status));
break;
}
ccb->fw_control_context->fw_control->retcode = status;
pci_free_consistent(pm8001_ha->pdev,
fw_control_context.len,
fw_control_context.virtAddr,
fw_control_context.phys_addr);
complete(pm8001_ha->nvmd_completion);
ccb->task = NULL;
ccb->ccb_tag = 0xFFFFFFFF;
pm8001_ccb_free(pm8001_ha, tag);
return 0;
}
static int
mpi_general_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
{
u32 status;
int i;
struct general_event_resp *pPayload =
(struct general_event_resp *)(piomb + 4);
status = le32_to_cpu(pPayload->status);
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk(" status = 0x%x\n", status));
for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++)
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("inb_IOMB_payload[0x%x] 0x%x, \n", i,
pPayload->inb_IOMB_payload[i]));
return 0;
}
static int
mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
struct sas_task *t;
struct pm8001_ccb_info *ccb;
unsigned long flags;
u32 status ;
u32 tag, scp;
struct task_status_struct *ts;
struct task_abort_resp *pPayload =
(struct task_abort_resp *)(piomb + 4);
ccb = &pm8001_ha->ccb_info[pPayload->tag];
t = ccb->task;
status = le32_to_cpu(pPayload->status);
tag = le32_to_cpu(pPayload->tag);
scp = le32_to_cpu(pPayload->scp);
PM8001_IO_DBG(pm8001_ha,
pm8001_printk(" status = 0x%x\n", status));
if (t == NULL)
return -1;
ts = &t->task_status;
if (status != 0)
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("task abort failed status 0x%x ,"
"tag = 0x%x, scp= 0x%x\n", status, tag, scp));
switch (status) {
case IO_SUCCESS:
PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
ts->resp = SAS_TASK_COMPLETE;
ts->stat = SAM_GOOD;
break;
case IO_NOT_VALID:
PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_NOT_VALID\n"));
ts->resp = TMF_RESP_FUNC_FAILED;
break;
}
spin_lock_irqsave(&t->task_state_lock, flags);
t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
t->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&t->task_state_lock, flags);
pm8001_ccb_task_free(pm8001_ha, t, ccb, pPayload->tag);
mb();
t->task_done(t);
return 0;
}
/**
* mpi_hw_event -The hw event has come.
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*/
static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void* piomb)
{
unsigned long flags;
struct hw_event_resp *pPayload =
(struct hw_event_resp *)(piomb + 4);
u32 lr_evt_status_phyid_portid =
le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
u8 phy_id =
(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
u16 eventType =
(u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8);
u8 status =
(u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24);
struct sas_ha_struct *sas_ha = pm8001_ha->sas;
struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("outbound queue HW event & event type : "));
switch (eventType) {
case HW_EVENT_PHY_START_STATUS:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PHY_START_STATUS"
" status = %x\n", status));
if (status == 0) {
phy->phy_state = 1;
if (pm8001_ha->flags == PM8001F_RUN_TIME)
complete(phy->enable_completion);
}
break;
case HW_EVENT_SAS_PHY_UP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PHY_START_STATUS \n"));
hw_event_sas_phy_up(pm8001_ha, piomb);
break;
case HW_EVENT_SATA_PHY_UP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_SATA_PHY_UP \n"));
hw_event_sata_phy_up(pm8001_ha, piomb);
break;
case HW_EVENT_PHY_STOP_STATUS:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PHY_STOP_STATUS "
"status = %x\n", status));
if (status == 0)
phy->phy_state = 0;
break;
case HW_EVENT_SATA_SPINUP_HOLD:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD \n"));
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
break;
case HW_EVENT_PHY_DOWN:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PHY_DOWN \n"));
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
phy->phy_attached = 0;
phy->phy_state = 0;
hw_event_phy_down(pm8001_ha, piomb);
break;
case HW_EVENT_PORT_INVALID:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PORT_INVALID\n"));
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
/* the broadcast change primitive received, tell the LIBSAS this event
to revalidate the sas domain*/
case HW_EVENT_BROADCAST_CHANGE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
port_id, phy_id, 1, 0);
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
break;
case HW_EVENT_PHY_ERROR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PHY_ERROR\n"));
sas_phy_disconnected(&phy->sas_phy);
phy->phy_attached = 0;
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
break;
case HW_EVENT_BROADCAST_EXP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_BROADCAST_EXP\n"));
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
break;
case HW_EVENT_LINK_ERR_INVALID_DWORD:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_LINK_ERR_DISPARITY_ERROR,
port_id, phy_id, 0, 0);
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_LINK_ERR_CODE_VIOLATION:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_LINK_ERR_CODE_VIOLATION,
port_id, phy_id, 0, 0);
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
port_id, phy_id, 0, 0);
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_MALFUNCTION:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_MALFUNCTION\n"));
break;
case HW_EVENT_BROADCAST_SES:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_BROADCAST_SES\n"));
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
break;
case HW_EVENT_INBOUND_CRC_ERROR:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_INBOUND_CRC_ERROR,
port_id, phy_id, 0, 0);
break;
case HW_EVENT_HARD_RESET_RECEIVED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n"));
sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
break;
case HW_EVENT_ID_FRAME_TIMEOUT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n"));
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED \n"));
pm8001_hw_event_ack_req(pm8001_ha, 0,
HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
port_id, phy_id, 0, 0);
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_PORT_RESET_TIMER_TMO:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO \n"));
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO \n"));
sas_phy_disconnected(sas_phy);
phy->phy_attached = 0;
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
break;
case HW_EVENT_PORT_RECOVER:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PORT_RECOVER \n"));
break;
case HW_EVENT_PORT_RESET_COMPLETE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE \n"));
break;
case EVENT_BROADCAST_ASYNCH_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n"));
break;
default:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("Unknown event type = %x\n", eventType));
break;
}
return 0;
}
/**
* process_one_iomb - process one outbound Queue memory block
* @pm8001_ha: our hba card information
* @piomb: IO message buffer
*/
static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
{
u32 pHeader = (u32)*(u32 *)piomb;
u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF);
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("process_one_iomb:"));
switch (opc) {
case OPC_OUB_ECHO:
PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO \n"));
break;
case OPC_OUB_HW_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_HW_EVENT \n"));
mpi_hw_event(pm8001_ha, piomb);
break;
case OPC_OUB_SSP_COMP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SSP_COMP \n"));
mpi_ssp_completion(pm8001_ha, piomb);
break;
case OPC_OUB_SMP_COMP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SMP_COMP \n"));
mpi_smp_completion(pm8001_ha, piomb);
break;
case OPC_OUB_LOCAL_PHY_CNTRL:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n"));
mpi_local_phy_ctl(pm8001_ha, piomb);
break;
case OPC_OUB_DEV_REGIST:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_DEV_REGIST \n"));
mpi_reg_resp(pm8001_ha, piomb);
break;
case OPC_OUB_DEREG_DEV:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("unresgister the deviece \n"));
mpi_dereg_resp(pm8001_ha, piomb);
break;
case OPC_OUB_GET_DEV_HANDLE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GET_DEV_HANDLE \n"));
break;
case OPC_OUB_SATA_COMP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SATA_COMP \n"));
mpi_sata_completion(pm8001_ha, piomb);
break;
case OPC_OUB_SATA_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SATA_EVENT \n"));
mpi_sata_event(pm8001_ha, piomb);
break;
case OPC_OUB_SSP_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SSP_EVENT\n"));
mpi_ssp_event(pm8001_ha, piomb);
break;
case OPC_OUB_DEV_HANDLE_ARRIV:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n"));
/*This is for target*/
break;
case OPC_OUB_SSP_RECV_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n"));
/*This is for target*/
break;
case OPC_OUB_DEV_INFO:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_DEV_INFO\n"));
break;
case OPC_OUB_FW_FLASH_UPDATE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n"));
mpi_fw_flash_update_resp(pm8001_ha, piomb);
break;
case OPC_OUB_GPIO_RESPONSE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GPIO_RESPONSE\n"));
break;
case OPC_OUB_GPIO_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GPIO_EVENT\n"));
break;
case OPC_OUB_GENERAL_EVENT:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GENERAL_EVENT\n"));
mpi_general_event(pm8001_ha, piomb);
break;
case OPC_OUB_SSP_ABORT_RSP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n"));
mpi_task_abort_resp(pm8001_ha, piomb);
break;
case OPC_OUB_SATA_ABORT_RSP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n"));
mpi_task_abort_resp(pm8001_ha, piomb);
break;
case OPC_OUB_SAS_DIAG_MODE_START_END:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n"));
break;
case OPC_OUB_SAS_DIAG_EXECUTE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n"));
break;
case OPC_OUB_GET_TIME_STAMP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GET_TIME_STAMP\n"));
break;
case OPC_OUB_SAS_HW_EVENT_ACK:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n"));
break;
case OPC_OUB_PORT_CONTROL:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_PORT_CONTROL\n"));
break;
case OPC_OUB_SMP_ABORT_RSP:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n"));
mpi_task_abort_resp(pm8001_ha, piomb);
break;
case OPC_OUB_GET_NVMD_DATA:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GET_NVMD_DATA\n"));
mpi_get_nvmd_resp(pm8001_ha, piomb);
break;
case OPC_OUB_SET_NVMD_DATA:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SET_NVMD_DATA\n"));
mpi_set_nvmd_resp(pm8001_ha, piomb);
break;
case OPC_OUB_DEVICE_HANDLE_REMOVAL:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n"));
break;
case OPC_OUB_SET_DEVICE_STATE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n"));
mpi_set_dev_state_resp(pm8001_ha, piomb);
break;
case OPC_OUB_GET_DEVICE_STATE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n"));
break;
case OPC_OUB_SET_DEV_INFO:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SET_DEV_INFO\n"));
break;
case OPC_OUB_SAS_RE_INITIALIZE:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("OPC_OUB_SAS_RE_INITIALIZE\n"));
break;
default:
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("Unknown outbound Queue IOMB OPC = %x\n",
opc));
break;
}
}
static int process_oq(struct pm8001_hba_info *pm8001_ha)
{
struct outbound_queue_table *circularQ;
void *pMsg1 = NULL;
u8 bc = 0;
u32 ret = MPI_IO_STATUS_FAIL;
circularQ = &pm8001_ha->outbnd_q_tbl[0];
do {
ret = mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
if (MPI_IO_STATUS_SUCCESS == ret) {
/* process the outbound message */
process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4));
/* free the message from the outbound circular buffer */
mpi_msg_free_set(pm8001_ha, pMsg1, circularQ, bc);
}
if (MPI_IO_STATUS_BUSY == ret) {
u32 producer_idx;
/* Update the producer index from SPC */
producer_idx = pm8001_read_32(circularQ->pi_virt);
circularQ->producer_index = cpu_to_le32(producer_idx);
if (circularQ->producer_index ==
circularQ->consumer_idx)
/* OQ is empty */
break;
}
} while (1);
return ret;
}
/* PCI_DMA_... to our direction translation. */
static const u8 data_dir_flags[] = {
[PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT,/* UNSPECIFIED */
[PCI_DMA_TODEVICE] = DATA_DIR_OUT,/* OUTBOUND */
[PCI_DMA_FROMDEVICE] = DATA_DIR_IN,/* INBOUND */
[PCI_DMA_NONE] = DATA_DIR_NONE,/* NO TRANSFER */
};
static void
pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd)
{
int i;
struct scatterlist *sg;
struct pm8001_prd *buf_prd = prd;
for_each_sg(scatter, sg, nr, i) {
buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg));
buf_prd->im_len.e = 0;
buf_prd++;
}
}
static void build_smp_cmd(u32 deviceID, u32 hTag, struct smp_req *psmp_cmd)
{
psmp_cmd->tag = cpu_to_le32(hTag);
psmp_cmd->device_id = cpu_to_le32(deviceID);
psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
}
/**
* pm8001_chip_smp_req - send a SMP task to FW
* @pm8001_ha: our hba card information.
* @ccb: the ccb information this request used.
*/
static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
int elem, rc;
struct sas_task *task = ccb->task;
struct domain_device *dev = task->dev;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
struct scatterlist *sg_req, *sg_resp;
u32 req_len, resp_len;
struct smp_req smp_cmd;
u32 opc;
struct inbound_queue_table *circularQ;
memset(&smp_cmd, 0, sizeof(smp_cmd));
/*
* DMA-map SMP request, response buffers
*/
sg_req = &task->smp_task.smp_req;
elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, PCI_DMA_TODEVICE);
if (!elem)
return -ENOMEM;
req_len = sg_dma_len(sg_req);
sg_resp = &task->smp_task.smp_resp;
elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
if (!elem) {
rc = -ENOMEM;
goto err_out;
}
resp_len = sg_dma_len(sg_resp);
/* must be in dwords */
if ((req_len & 0x3) || (resp_len & 0x3)) {
rc = -EINVAL;
goto err_out_2;
}
opc = OPC_INB_SMP_REQUEST;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
smp_cmd.long_smp_req.long_req_addr =
cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
smp_cmd.long_smp_req.long_req_size =
cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
smp_cmd.long_smp_req.long_resp_addr =
cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
smp_cmd.long_smp_req.long_resp_size =
cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd);
mpi_build_cmd(pm8001_ha, circularQ, opc, (u32 *)&smp_cmd);
return 0;
err_out_2:
dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
err_out:
dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
return rc;
}
/**
* pm8001_chip_ssp_io_req - send a SSP task to FW
* @pm8001_ha: our hba card information.
* @ccb: the ccb information this request used.
*/
static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
struct sas_task *task = ccb->task;
struct domain_device *dev = task->dev;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
struct ssp_ini_io_start_req ssp_cmd;
u32 tag = ccb->ccb_tag;
int ret;
__le64 phys_addr;
struct inbound_queue_table *circularQ;
u32 opc = OPC_INB_SSPINIIOSTART;
memset(&ssp_cmd, 0, sizeof(ssp_cmd));
memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
ssp_cmd.dir_m_tlr =
cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for
SAS 1.1 compatible TLR*/
ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
ssp_cmd.tag = cpu_to_le32(tag);
if (task->ssp_task.enable_first_burst)
ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cdb, 16);
circularQ = &pm8001_ha->inbnd_q_tbl[0];
/* fill in PRD (scatter/gather) table, if any */
if (task->num_scatter > 1) {
pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
offsetof(struct pm8001_ccb_info, buf_prd[0]));
ssp_cmd.addr_low = lower_32_bits(phys_addr);
ssp_cmd.addr_high = upper_32_bits(phys_addr);
ssp_cmd.esgl = cpu_to_le32(1<<31);
} else if (task->num_scatter == 1) {
__le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
ssp_cmd.addr_low = lower_32_bits(dma_addr);
ssp_cmd.addr_high = upper_32_bits(dma_addr);
ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
ssp_cmd.esgl = 0;
} else if (task->num_scatter == 0) {
ssp_cmd.addr_low = 0;
ssp_cmd.addr_high = 0;
ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
ssp_cmd.esgl = 0;
}
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd);
return ret;
}
static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb)
{
struct sas_task *task = ccb->task;
struct domain_device *dev = task->dev;
struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
u32 tag = ccb->ccb_tag;
int ret;
struct sata_start_req sata_cmd;
u32 hdr_tag, ncg_tag = 0;
__le64 phys_addr;
u32 ATAP = 0x0;
u32 dir;
struct inbound_queue_table *circularQ;
u32 opc = OPC_INB_SATA_HOST_OPSTART;
memset(&sata_cmd, 0, sizeof(sata_cmd));
circularQ = &pm8001_ha->inbnd_q_tbl[0];
if (task->data_dir == PCI_DMA_NONE) {
ATAP = 0x04; /* no data*/
PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data \n"));
} else if (likely(!task->ata_task.device_control_reg_update)) {
if (task->ata_task.dma_xfer) {
ATAP = 0x06; /* DMA */
PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA \n"));
} else {
ATAP = 0x05; /* PIO*/
PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO \n"));
}
if (task->ata_task.use_ncq &&
dev->sata_dev.command_set != ATAPI_COMMAND_SET) {
ATAP = 0x07; /* FPDMA */
PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA \n"));
}
}
if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag))
ncg_tag = hdr_tag;
dir = data_dir_flags[task->data_dir] << 8;
sata_cmd.tag = cpu_to_le32(tag);
sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
sata_cmd.ncqtag_atap_dir_m =
cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir);
sata_cmd.sata_fis = task->ata_task.fis;
if (likely(!task->ata_task.device_control_reg_update))
sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
/* fill in PRD (scatter/gather) table, if any */
if (task->num_scatter > 1) {
pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
offsetof(struct pm8001_ccb_info, buf_prd[0]));
sata_cmd.addr_low = lower_32_bits(phys_addr);
sata_cmd.addr_high = upper_32_bits(phys_addr);
sata_cmd.esgl = cpu_to_le32(1 << 31);
} else if (task->num_scatter == 1) {
__le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
sata_cmd.addr_low = lower_32_bits(dma_addr);
sata_cmd.addr_high = upper_32_bits(dma_addr);
sata_cmd.len = cpu_to_le32(task->total_xfer_len);
sata_cmd.esgl = 0;
} else if (task->num_scatter == 0) {
sata_cmd.addr_low = 0;
sata_cmd.addr_high = 0;
sata_cmd.len = cpu_to_le32(task->total_xfer_len);
sata_cmd.esgl = 0;
}
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd);
return ret;
}
/**
* pm8001_chip_phy_start_req - start phy via PHY_START COMMAND
* @pm8001_ha: our hba card information.
* @num: the inbound queue number
* @phy_id: the phy id which we wanted to start up.
*/
static int
pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
{
struct phy_start_req payload;
struct inbound_queue_table *circularQ;
int ret;
u32 tag = 0x01;
u32 opcode = OPC_INB_PHYSTART;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&payload, 0, sizeof(payload));
payload.tag = cpu_to_le32(tag);
/*
** [0:7] PHY Identifier
** [8:11] link rate 1.5G, 3G, 6G
** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both
** [14] 0b disable spin up hold; 1b enable spin up hold
*/
payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
LINKMODE_AUTO | LINKRATE_15 |
LINKRATE_30 | LINKRATE_60 | phy_id);
payload.sas_identify.dev_type = SAS_END_DEV;
payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
memcpy(payload.sas_identify.sas_addr,
pm8001_ha->sas_addr, SAS_ADDR_SIZE);
payload.sas_identify.phy_id = phy_id;
ret = mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
return ret;
}
/**
* pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
* @pm8001_ha: our hba card information.
* @num: the inbound queue number
* @phy_id: the phy id which we wanted to start up.
*/
static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
u8 phy_id)
{
struct phy_stop_req payload;
struct inbound_queue_table *circularQ;
int ret;
u32 tag = 0x01;
u32 opcode = OPC_INB_PHYSTOP;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&payload, 0, sizeof(payload));
payload.tag = cpu_to_le32(tag);
payload.phy_id = cpu_to_le32(phy_id);
ret = mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
return ret;
}
/**
* see comments on mpi_reg_resp.
*/
static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_device *pm8001_dev, u32 flag)
{
struct reg_dev_req payload;
u32 opc;
u32 stp_sspsmp_sata = 0x4;
struct inbound_queue_table *circularQ;
u32 linkrate, phy_id;
int rc, tag = 0xdeadbeef;
struct pm8001_ccb_info *ccb;
u8 retryFlag = 0x1;
u16 firstBurstSize = 0;
u16 ITNT = 2000;
struct domain_device *dev = pm8001_dev->sas_device;
struct domain_device *parent_dev = dev->parent;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&payload, 0, sizeof(payload));
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return rc;
ccb = &pm8001_ha->ccb_info[tag];
ccb->device = pm8001_dev;
ccb->ccb_tag = tag;
payload.tag = cpu_to_le32(tag);
if (flag == 1)
stp_sspsmp_sata = 0x02; /*direct attached sata */
else {
if (pm8001_dev->dev_type == SATA_DEV)
stp_sspsmp_sata = 0x00; /* stp*/
else if (pm8001_dev->dev_type == SAS_END_DEV ||
pm8001_dev->dev_type == EDGE_DEV ||
pm8001_dev->dev_type == FANOUT_DEV)
stp_sspsmp_sata = 0x01; /*ssp or smp*/
}
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
phy_id = parent_dev->ex_dev.ex_phy->phy_id;
else
phy_id = pm8001_dev->attached_phy;
opc = OPC_INB_REG_DEV;
linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
pm8001_dev->sas_device->linkrate : dev->port->linkrate;
payload.phyid_portid =
cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) |
((phy_id & 0x0F) << 4));
payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) |
((linkrate & 0x0F) * 0x1000000) |
((stp_sspsmp_sata & 0x03) * 0x10000000));
payload.firstburstsize_ITNexustimeout =
cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr,
SAS_ADDR_SIZE);
rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return rc;
}
/**
* see comments on mpi_reg_resp.
*/
static int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha,
u32 device_id)
{
struct dereg_dev_req payload;
u32 opc = OPC_INB_DEREG_DEV_HANDLE;
int ret;
struct inbound_queue_table *circularQ;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&payload, 0, sizeof(payload));
payload.tag = 1;
payload.device_id = cpu_to_le32(device_id);
PM8001_MSG_DBG(pm8001_ha,
pm8001_printk("unregister device device_id = %d\n", device_id));
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return ret;
}
/**
* pm8001_chip_phy_ctl_req - support the local phy operation
* @pm8001_ha: our hba card information.
* @num: the inbound queue number
* @phy_id: the phy id which we wanted to operate
* @phy_op:
*/
static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
u32 phyId, u32 phy_op)
{
struct local_phy_ctl_req payload;
struct inbound_queue_table *circularQ;
int ret;
u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
memset(&payload, 0, sizeof(payload));
circularQ = &pm8001_ha->inbnd_q_tbl[0];
payload.tag = 1;
payload.phyop_phyid =
cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F));
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return ret;
}
static u32 pm8001_chip_is_our_interupt(struct pm8001_hba_info *pm8001_ha)
{
u32 value;
#ifdef PM8001_USE_MSIX
return 1;
#endif
value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
if (value)
return 1;
return 0;
}
/**
* pm8001_chip_isr - PM8001 isr handler.
* @pm8001_ha: our hba card information.
* @irq: irq number.
* @stat: stat.
*/
static irqreturn_t
pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha)
{
unsigned long flags;
spin_lock_irqsave(&pm8001_ha->lock, flags);
pm8001_chip_interrupt_disable(pm8001_ha);
process_oq(pm8001_ha);
pm8001_chip_interrupt_enable(pm8001_ha);
spin_unlock_irqrestore(&pm8001_ha->lock, flags);
return IRQ_HANDLED;
}
static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc,
u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag)
{
struct task_abort_req task_abort;
struct inbound_queue_table *circularQ;
int ret;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&task_abort, 0, sizeof(task_abort));
if (ABORT_SINGLE == (flag & ABORT_MASK)) {
task_abort.abort_all = 0;
task_abort.device_id = cpu_to_le32(dev_id);
task_abort.tag_to_abort = cpu_to_le32(task_tag);
task_abort.tag = cpu_to_le32(cmd_tag);
} else if (ABORT_ALL == (flag & ABORT_MASK)) {
task_abort.abort_all = cpu_to_le32(1);
task_abort.device_id = cpu_to_le32(dev_id);
task_abort.tag = cpu_to_le32(cmd_tag);
}
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort);
return ret;
}
/**
* pm8001_chip_abort_task - SAS abort task when error or exception happened.
* @task: the task we wanted to aborted.
* @flag: the abort flag.
*/
static int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha,
struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag)
{
u32 opc, device_id;
int rc = TMF_RESP_FUNC_FAILED;
PM8001_EH_DBG(pm8001_ha, pm8001_printk("cmd_tag = %x, abort task tag"
" = %x", cmd_tag, task_tag));
if (pm8001_dev->dev_type == SAS_END_DEV)
opc = OPC_INB_SSP_ABORT;
else if (pm8001_dev->dev_type == SATA_DEV)
opc = OPC_INB_SATA_ABORT;
else
opc = OPC_INB_SMP_ABORT;/* SMP */
device_id = pm8001_dev->device_id;
rc = send_task_abort(pm8001_ha, opc, device_id, flag,
task_tag, cmd_tag);
if (rc != TMF_RESP_FUNC_COMPLETE)
PM8001_EH_DBG(pm8001_ha, pm8001_printk("rc= %d\n", rc));
return rc;
}
/**
* pm8001_chip_ssp_tm_req - built the task management command.
* @pm8001_ha: our hba card information.
* @ccb: the ccb information.
* @tmf: task management function.
*/
static int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
{
struct sas_task *task = ccb->task;
struct domain_device *dev = task->dev;
struct pm8001_device *pm8001_dev = dev->lldd_dev;
u32 opc = OPC_INB_SSPINITMSTART;
struct inbound_queue_table *circularQ;
struct ssp_ini_tm_start_req sspTMCmd;
int ret;
memset(&sspTMCmd, 0, sizeof(sspTMCmd));
sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id);
sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed);
sspTMCmd.tmf = cpu_to_le32(tmf->tmf);
memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8);
sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag);
circularQ = &pm8001_ha->inbnd_q_tbl[0];
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd);
return ret;
}
static int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha,
void *payload)
{
u32 opc = OPC_INB_GET_NVMD_DATA;
u32 nvmd_type;
int rc;
u32 tag;
struct pm8001_ccb_info *ccb;
struct inbound_queue_table *circularQ;
struct get_nvm_data_req nvmd_req;
struct fw_control_ex *fw_control_context;
struct pm8001_ioctl_payload *ioctl_payload = payload;
nvmd_type = ioctl_payload->minor_function;
fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
fw_control_context->usrAddr = (u8 *)&ioctl_payload->func_specific[0];
fw_control_context->len = ioctl_payload->length;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memset(&nvmd_req, 0, sizeof(nvmd_req));
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return rc;
ccb = &pm8001_ha->ccb_info[tag];
ccb->ccb_tag = tag;
ccb->fw_control_context = fw_control_context;
nvmd_req.tag = cpu_to_le32(tag);
switch (nvmd_type) {
case TWI_DEVICE: {
u32 twi_addr, twi_page_size;
twi_addr = 0xa8;
twi_page_size = 2;
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
twi_page_size << 8 | TWI_DEVICE);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
}
case C_SEEPROM: {
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
}
case VPD_FLASH: {
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
}
case EXPAN_ROM: {
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
}
default:
break;
}
rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
return rc;
}
static int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha,
void *payload)
{
u32 opc = OPC_INB_SET_NVMD_DATA;
u32 nvmd_type;
int rc;
u32 tag;
struct pm8001_ccb_info *ccb;
struct inbound_queue_table *circularQ;
struct set_nvm_data_req nvmd_req;
struct fw_control_ex *fw_control_context;
struct pm8001_ioctl_payload *ioctl_payload = payload;
nvmd_type = ioctl_payload->minor_function;
fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
circularQ = &pm8001_ha->inbnd_q_tbl[0];
memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr,
ioctl_payload->func_specific,
ioctl_payload->length);
memset(&nvmd_req, 0, sizeof(nvmd_req));
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return rc;
ccb = &pm8001_ha->ccb_info[tag];
ccb->fw_control_context = fw_control_context;
ccb->ccb_tag = tag;
nvmd_req.tag = cpu_to_le32(tag);
switch (nvmd_type) {
case TWI_DEVICE: {
u32 twi_addr, twi_page_size;
twi_addr = 0xa8;
twi_page_size = 2;
nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
twi_page_size << 8 | TWI_DEVICE);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
}
case C_SEEPROM:
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
case VPD_FLASH:
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
case EXPAN_ROM:
nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
nvmd_req.resp_addr_hi =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
nvmd_req.resp_addr_lo =
cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
break;
default:
break;
}
rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
return rc;
}
/**
* pm8001_chip_fw_flash_update_build - support the firmware update operation
* @pm8001_ha: our hba card information.
* @fw_flash_updata_info: firmware flash update param
*/
static int
pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha,
void *fw_flash_updata_info, u32 tag)
{
struct fw_flash_Update_req payload;
struct fw_flash_updata_info *info;
struct inbound_queue_table *circularQ;
int ret;
u32 opc = OPC_INB_FW_FLASH_UPDATE;
memset(&payload, 0, sizeof(struct fw_flash_Update_req));
circularQ = &pm8001_ha->inbnd_q_tbl[0];
info = fw_flash_updata_info;
payload.tag = cpu_to_le32(tag);
payload.cur_image_len = cpu_to_le32(info->cur_image_len);
payload.cur_image_offset = cpu_to_le32(info->cur_image_offset);
payload.total_image_len = cpu_to_le32(info->total_image_len);
payload.len = info->sgl.im_len.len ;
payload.sgl_addr_lo = lower_32_bits(info->sgl.addr);
payload.sgl_addr_hi = upper_32_bits(info->sgl.addr);
ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return ret;
}
static int
pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha,
void *payload)
{
struct fw_flash_updata_info flash_update_info;
struct fw_control_info *fw_control;
struct fw_control_ex *fw_control_context;
int rc;
u32 tag;
struct pm8001_ccb_info *ccb;
void *buffer = NULL;
dma_addr_t phys_addr;
u32 phys_addr_hi;
u32 phys_addr_lo;
struct pm8001_ioctl_payload *ioctl_payload = payload;
fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
fw_control = (struct fw_control_info *)&ioctl_payload->func_specific[0];
if (fw_control->len != 0) {
if (pm8001_mem_alloc(pm8001_ha->pdev,
(void **)&buffer,
&phys_addr,
&phys_addr_hi,
&phys_addr_lo,
fw_control->len, 0) != 0) {
PM8001_FAIL_DBG(pm8001_ha,
pm8001_printk("Mem alloc failure\n"));
return -ENOMEM;
}
}
memcpy(buffer, fw_control->buffer, fw_control->len);
flash_update_info.sgl.addr = cpu_to_le64(phys_addr);
flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len);
flash_update_info.sgl.im_len.e = 0;
flash_update_info.cur_image_offset = fw_control->offset;
flash_update_info.cur_image_len = fw_control->len;
flash_update_info.total_image_len = fw_control->size;
fw_control_context->fw_control = fw_control;
fw_control_context->virtAddr = buffer;
fw_control_context->len = fw_control->len;
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return rc;
ccb = &pm8001_ha->ccb_info[tag];
ccb->fw_control_context = fw_control_context;
ccb->ccb_tag = tag;
rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info,
tag);
return rc;
}
static int
pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha,
struct pm8001_device *pm8001_dev, u32 state)
{
struct set_dev_state_req payload;
struct inbound_queue_table *circularQ;
struct pm8001_ccb_info *ccb;
int rc;
u32 tag;
u32 opc = OPC_INB_SET_DEVICE_STATE;
memset(&payload, 0, sizeof(payload));
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return -1;
ccb = &pm8001_ha->ccb_info[tag];
ccb->ccb_tag = tag;
ccb->device = pm8001_dev;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
payload.tag = cpu_to_le32(tag);
payload.device_id = cpu_to_le32(pm8001_dev->device_id);
payload.nds = cpu_to_le32(state);
rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return rc;
}
static int
pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha)
{
struct sas_re_initialization_req payload;
struct inbound_queue_table *circularQ;
struct pm8001_ccb_info *ccb;
int rc;
u32 tag;
u32 opc = OPC_INB_SAS_RE_INITIALIZE;
memset(&payload, 0, sizeof(payload));
rc = pm8001_tag_alloc(pm8001_ha, &tag);
if (rc)
return -1;
ccb = &pm8001_ha->ccb_info[tag];
ccb->ccb_tag = tag;
circularQ = &pm8001_ha->inbnd_q_tbl[0];
payload.tag = cpu_to_le32(tag);
payload.SSAHOLT = cpu_to_le32(0xd << 25);
payload.sata_hol_tmo = cpu_to_le32(80);
payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff);
rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
return rc;
}
const struct pm8001_dispatch pm8001_8001_dispatch = {
.name = "pmc8001",
.chip_init = pm8001_chip_init,
.chip_soft_rst = pm8001_chip_soft_rst,
.chip_rst = pm8001_hw_chip_rst,
.chip_iounmap = pm8001_chip_iounmap,
.isr = pm8001_chip_isr,
.is_our_interupt = pm8001_chip_is_our_interupt,
.isr_process_oq = process_oq,
.interrupt_enable = pm8001_chip_interrupt_enable,
.interrupt_disable = pm8001_chip_interrupt_disable,
.make_prd = pm8001_chip_make_sg,
.smp_req = pm8001_chip_smp_req,
.ssp_io_req = pm8001_chip_ssp_io_req,
.sata_req = pm8001_chip_sata_req,
.phy_start_req = pm8001_chip_phy_start_req,
.phy_stop_req = pm8001_chip_phy_stop_req,
.reg_dev_req = pm8001_chip_reg_dev_req,
.dereg_dev_req = pm8001_chip_dereg_dev_req,
.phy_ctl_req = pm8001_chip_phy_ctl_req,
.task_abort = pm8001_chip_abort_task,
.ssp_tm_req = pm8001_chip_ssp_tm_req,
.get_nvmd_req = pm8001_chip_get_nvmd_req,
.set_nvmd_req = pm8001_chip_set_nvmd_req,
.fw_flash_update_req = pm8001_chip_fw_flash_update_req,
.set_dev_state_req = pm8001_chip_set_dev_state_req,
.sas_re_init_req = pm8001_chip_sas_re_initialization,
};