blob: 8a02ade369db47c03bc35f83e702779dc73259f8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#include "d71_dev.h"
#include "komeda_kms.h"
#include "malidp_io.h"
#include "komeda_framebuffer.h"
#include "komeda_color_mgmt.h"
static void get_resources_id(u32 hw_id, u32 *pipe_id, u32 *comp_id)
{
u32 id = BLOCK_INFO_BLK_ID(hw_id);
u32 pipe = id;
switch (BLOCK_INFO_BLK_TYPE(hw_id)) {
case D71_BLK_TYPE_LPU_WB_LAYER:
id = KOMEDA_COMPONENT_WB_LAYER;
break;
case D71_BLK_TYPE_CU_SPLITTER:
id = KOMEDA_COMPONENT_SPLITTER;
break;
case D71_BLK_TYPE_CU_SCALER:
pipe = id / D71_PIPELINE_MAX_SCALERS;
id %= D71_PIPELINE_MAX_SCALERS;
id += KOMEDA_COMPONENT_SCALER0;
break;
case D71_BLK_TYPE_CU:
id += KOMEDA_COMPONENT_COMPIZ0;
break;
case D71_BLK_TYPE_LPU_LAYER:
pipe = id / D71_PIPELINE_MAX_LAYERS;
id %= D71_PIPELINE_MAX_LAYERS;
id += KOMEDA_COMPONENT_LAYER0;
break;
case D71_BLK_TYPE_DOU_IPS:
id += KOMEDA_COMPONENT_IPS0;
break;
case D71_BLK_TYPE_CU_MERGER:
id = KOMEDA_COMPONENT_MERGER;
break;
case D71_BLK_TYPE_DOU:
id = KOMEDA_COMPONENT_TIMING_CTRLR;
break;
default:
id = 0xFFFFFFFF;
}
if (comp_id)
*comp_id = id;
if (pipe_id)
*pipe_id = pipe;
}
static u32 get_valid_inputs(struct block_header *blk)
{
u32 valid_inputs = 0, comp_id;
int i;
for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) {
get_resources_id(blk->input_ids[i], NULL, &comp_id);
if (comp_id == 0xFFFFFFFF)
continue;
valid_inputs |= BIT(comp_id);
}
return valid_inputs;
}
static void get_values_from_reg(void __iomem *reg, u32 offset,
u32 count, u32 *val)
{
u32 i, addr;
for (i = 0; i < count; i++) {
addr = offset + (i << 2);
/* 0xA4 is WO register */
if (addr != 0xA4)
val[i] = malidp_read32(reg, addr);
else
val[i] = 0xDEADDEAD;
}
}
static void dump_block_header(struct seq_file *sf, void __iomem *reg)
{
struct block_header hdr;
u32 i, n_input, n_output;
d71_read_block_header(reg, &hdr);
seq_printf(sf, "BLOCK_INFO:\t\t0x%X\n", hdr.block_info);
seq_printf(sf, "PIPELINE_INFO:\t\t0x%X\n", hdr.pipeline_info);
n_output = PIPELINE_INFO_N_OUTPUTS(hdr.pipeline_info);
n_input = PIPELINE_INFO_N_VALID_INPUTS(hdr.pipeline_info);
for (i = 0; i < n_input; i++)
seq_printf(sf, "VALID_INPUT_ID%u:\t0x%X\n",
i, hdr.input_ids[i]);
for (i = 0; i < n_output; i++)
seq_printf(sf, "OUTPUT_ID%u:\t\t0x%X\n",
i, hdr.output_ids[i]);
}
/* On D71, we are using the global line size. From D32, every component have
* a line size register to indicate the fifo size.
*/
static u32 __get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg,
u32 max_default)
{
if (!d71->periph_addr)
max_default = malidp_read32(reg, BLK_MAX_LINE_SIZE);
return max_default;
}
static u32 get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg)
{
return __get_blk_line_size(d71, reg, d71->max_line_size);
}
static u32 to_rot_ctrl(u32 rot)
{
u32 lr_ctrl = 0;
switch (rot & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
lr_ctrl |= L_ROT(L_ROT_R0);
break;
case DRM_MODE_ROTATE_90:
lr_ctrl |= L_ROT(L_ROT_R90);
break;
case DRM_MODE_ROTATE_180:
lr_ctrl |= L_ROT(L_ROT_R180);
break;
case DRM_MODE_ROTATE_270:
lr_ctrl |= L_ROT(L_ROT_R270);
break;
}
if (rot & DRM_MODE_REFLECT_X)
lr_ctrl |= L_HFLIP;
if (rot & DRM_MODE_REFLECT_Y)
lr_ctrl |= L_VFLIP;
return lr_ctrl;
}
static u32 to_ad_ctrl(u64 modifier)
{
u32 afbc_ctrl = AD_AEN;
if (!modifier)
return 0;
if ((modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
afbc_ctrl |= AD_WB;
if (modifier & AFBC_FORMAT_MOD_YTR)
afbc_ctrl |= AD_YT;
if (modifier & AFBC_FORMAT_MOD_SPLIT)
afbc_ctrl |= AD_BS;
if (modifier & AFBC_FORMAT_MOD_TILED)
afbc_ctrl |= AD_TH;
return afbc_ctrl;
}
static inline u32 to_d71_input_id(struct komeda_component_state *st, int idx)
{
struct komeda_component_output *input = &st->inputs[idx];
/* if input is not active, set hw input_id(0) to disable it */
if (has_bit(idx, st->active_inputs))
return input->component->hw_id + input->output_port;
else
return 0;
}
static void d71_layer_update_fb(struct komeda_component *c,
struct komeda_fb *kfb,
dma_addr_t *addr)
{
struct drm_framebuffer *fb = &kfb->base;
const struct drm_format_info *info = fb->format;
u32 __iomem *reg = c->reg;
int block_h;
if (info->num_planes > 2)
malidp_write64(reg, BLK_P2_PTR_LOW, addr[2]);
if (info->num_planes > 1) {
block_h = drm_format_info_block_height(info, 1);
malidp_write32(reg, BLK_P1_STRIDE, fb->pitches[1] * block_h);
malidp_write64(reg, BLK_P1_PTR_LOW, addr[1]);
}
block_h = drm_format_info_block_height(info, 0);
malidp_write32(reg, BLK_P0_STRIDE, fb->pitches[0] * block_h);
malidp_write64(reg, BLK_P0_PTR_LOW, addr[0]);
malidp_write32(reg, LAYER_FMT, kfb->format_caps->hw_id);
}
static void d71_layer_disable(struct komeda_component *c)
{
malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
}
static void d71_layer_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_layer_state *st = to_layer_st(state);
struct drm_plane_state *plane_st = state->plane->state;
struct drm_framebuffer *fb = plane_st->fb;
struct komeda_fb *kfb = to_kfb(fb);
u32 __iomem *reg = c->reg;
u32 ctrl_mask = L_EN | L_ROT(L_ROT_R270) | L_HFLIP | L_VFLIP | L_TBU_EN;
u32 ctrl = L_EN | to_rot_ctrl(st->rot);
d71_layer_update_fb(c, kfb, st->addr);
malidp_write32(reg, AD_CONTROL, to_ad_ctrl(fb->modifier));
if (fb->modifier) {
u64 addr;
malidp_write32(reg, LAYER_AD_H_CROP, HV_CROP(st->afbc_crop_l,
st->afbc_crop_r));
malidp_write32(reg, LAYER_AD_V_CROP, HV_CROP(st->afbc_crop_t,
st->afbc_crop_b));
/* afbc 1.2 wants payload, afbc 1.0/1.1 wants end_addr */
if (fb->modifier & AFBC_FORMAT_MOD_TILED)
addr = st->addr[0] + kfb->offset_payload;
else
addr = st->addr[0] + kfb->afbc_size - 1;
malidp_write32(reg, BLK_P1_PTR_LOW, lower_32_bits(addr));
malidp_write32(reg, BLK_P1_PTR_HIGH, upper_32_bits(addr));
}
if (fb->format->is_yuv) {
u32 upsampling = 0;
switch (kfb->format_caps->fourcc) {
case DRM_FORMAT_YUYV:
upsampling = fb->modifier ? LR_CHI422_BILINEAR :
LR_CHI422_REPLICATION;
break;
case DRM_FORMAT_UYVY:
upsampling = LR_CHI422_REPLICATION;
break;
case DRM_FORMAT_NV12:
case DRM_FORMAT_YUV420_8BIT:
case DRM_FORMAT_YUV420_10BIT:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_P010:
/* these fmt support MPGE/JPEG both, here perfer JPEG*/
upsampling = LR_CHI420_JPEG;
break;
case DRM_FORMAT_X0L2:
upsampling = LR_CHI420_JPEG;
break;
default:
break;
}
malidp_write32(reg, LAYER_R_CONTROL, upsampling);
malidp_write_group(reg, LAYER_YUV_RGB_COEFF0,
KOMEDA_N_YUV2RGB_COEFFS,
komeda_select_yuv2rgb_coeffs(
plane_st->color_encoding,
plane_st->color_range));
}
malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
if (kfb->is_va)
ctrl |= L_TBU_EN;
malidp_write32_mask(reg, BLK_CONTROL, ctrl_mask, ctrl);
}
static void d71_layer_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[15], i;
bool rich, rgb2rgb;
char *prefix;
get_values_from_reg(c->reg, LAYER_INFO, 1, &v[14]);
if (v[14] & 0x1) {
rich = true;
prefix = "LR_";
} else {
rich = false;
prefix = "LS_";
}
rgb2rgb = !!(v[14] & L_INFO_CM);
dump_block_header(sf, c->reg);
seq_printf(sf, "%sLAYER_INFO:\t\t0x%X\n", prefix, v[14]);
get_values_from_reg(c->reg, 0xD0, 1, v);
seq_printf(sf, "%sCONTROL:\t\t0x%X\n", prefix, v[0]);
if (rich) {
get_values_from_reg(c->reg, 0xD4, 1, v);
seq_printf(sf, "LR_RICH_CONTROL:\t0x%X\n", v[0]);
}
get_values_from_reg(c->reg, 0xD8, 4, v);
seq_printf(sf, "%sFORMAT:\t\t0x%X\n", prefix, v[0]);
seq_printf(sf, "%sIT_COEFFTAB:\t\t0x%X\n", prefix, v[1]);
seq_printf(sf, "%sIN_SIZE:\t\t0x%X\n", prefix, v[2]);
seq_printf(sf, "%sPALPHA:\t\t0x%X\n", prefix, v[3]);
get_values_from_reg(c->reg, 0x100, 3, v);
seq_printf(sf, "%sP0_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
seq_printf(sf, "%sP0_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
seq_printf(sf, "%sP0_STRIDE:\t\t0x%X\n", prefix, v[2]);
get_values_from_reg(c->reg, 0x110, 2, v);
seq_printf(sf, "%sP1_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
seq_printf(sf, "%sP1_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
if (rich) {
get_values_from_reg(c->reg, 0x118, 1, v);
seq_printf(sf, "LR_P1_STRIDE:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0x120, 2, v);
seq_printf(sf, "LR_P2_PTR_LOW:\t\t0x%X\n", v[0]);
seq_printf(sf, "LR_P2_PTR_HIGH:\t\t0x%X\n", v[1]);
get_values_from_reg(c->reg, 0x130, 12, v);
for (i = 0; i < 12; i++)
seq_printf(sf, "LR_YUV_RGB_COEFF%u:\t0x%X\n", i, v[i]);
}
if (rgb2rgb) {
get_values_from_reg(c->reg, LAYER_RGB_RGB_COEFF0, 12, v);
for (i = 0; i < 12; i++)
seq_printf(sf, "LS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
}
get_values_from_reg(c->reg, 0x160, 3, v);
seq_printf(sf, "%sAD_CONTROL:\t\t0x%X\n", prefix, v[0]);
seq_printf(sf, "%sAD_H_CROP:\t\t0x%X\n", prefix, v[1]);
seq_printf(sf, "%sAD_V_CROP:\t\t0x%X\n", prefix, v[2]);
}
static int d71_layer_validate(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_layer_state *st = to_layer_st(state);
struct komeda_layer *layer = to_layer(c);
struct drm_plane_state *plane_st;
struct drm_framebuffer *fb;
u32 fourcc, line_sz, max_line_sz;
plane_st = drm_atomic_get_new_plane_state(state->obj.state,
state->plane);
fb = plane_st->fb;
fourcc = fb->format->format;
if (drm_rotation_90_or_270(st->rot))
line_sz = st->vsize - st->afbc_crop_t - st->afbc_crop_b;
else
line_sz = st->hsize - st->afbc_crop_l - st->afbc_crop_r;
if (fb->modifier) {
if ((fb->modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
max_line_sz = layer->line_sz;
else
max_line_sz = layer->line_sz / 2;
if (line_sz > max_line_sz) {
DRM_DEBUG_ATOMIC("afbc request line_sz: %d exceed the max afbc line_sz: %d.\n",
line_sz, max_line_sz);
return -EINVAL;
}
}
if (fourcc == DRM_FORMAT_YUV420_10BIT && line_sz > 2046 && (st->afbc_crop_l % 4)) {
DRM_DEBUG_ATOMIC("YUV420_10BIT input_hsize: %d exceed the max size 2046.\n",
line_sz);
return -EINVAL;
}
if (fourcc == DRM_FORMAT_X0L2 && line_sz > 2046 && (st->addr[0] % 16)) {
DRM_DEBUG_ATOMIC("X0L2 input_hsize: %d exceed the max size 2046.\n",
line_sz);
return -EINVAL;
}
return 0;
}
static const struct komeda_component_funcs d71_layer_funcs = {
.validate = d71_layer_validate,
.update = d71_layer_update,
.disable = d71_layer_disable,
.dump_register = d71_layer_dump,
};
static int d71_layer_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_layer *layer;
u32 pipe_id, layer_id, layer_info;
get_resources_id(blk->block_info, &pipe_id, &layer_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*layer),
layer_id,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_layer_funcs, 0,
get_valid_inputs(blk),
1, reg, "LPU%d_LAYER%d", pipe_id, layer_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to add layer component\n");
return PTR_ERR(c);
}
layer = to_layer(c);
layer_info = malidp_read32(reg, LAYER_INFO);
if (layer_info & L_INFO_RF)
layer->layer_type = KOMEDA_FMT_RICH_LAYER;
else
layer->layer_type = KOMEDA_FMT_SIMPLE_LAYER;
if (!d71->periph_addr) {
/* D32 or newer product */
layer->line_sz = malidp_read32(reg, BLK_MAX_LINE_SIZE);
layer->yuv_line_sz = L_INFO_YUV_MAX_LINESZ(layer_info);
} else if (d71->max_line_size > 2048) {
/* D71 4K */
layer->line_sz = d71->max_line_size;
layer->yuv_line_sz = layer->line_sz / 2;
} else {
/* D71 2K */
if (layer->layer_type == KOMEDA_FMT_RICH_LAYER) {
/* rich layer is 4K configuration */
layer->line_sz = d71->max_line_size * 2;
layer->yuv_line_sz = layer->line_sz / 2;
} else {
layer->line_sz = d71->max_line_size;
layer->yuv_line_sz = 0;
}
}
set_range(&layer->hsize_in, 4, layer->line_sz);
set_range(&layer->vsize_in, 4, d71->max_vsize);
malidp_write32(reg, LAYER_PALPHA, D71_PALPHA_DEF_MAP);
layer->supported_rots = DRM_MODE_ROTATE_MASK | DRM_MODE_REFLECT_MASK;
return 0;
}
static void d71_wb_layer_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_layer_state *st = to_layer_st(state);
struct drm_connector_state *conn_st = state->wb_conn->state;
struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
u32 ctrl = L_EN | LW_OFM, mask = L_EN | LW_OFM | LW_TBU_EN;
u32 __iomem *reg = c->reg;
d71_layer_update_fb(c, kfb, st->addr);
if (kfb->is_va)
ctrl |= LW_TBU_EN;
malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
}
static void d71_wb_layer_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[12], i;
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, 0x80, 1, v);
seq_printf(sf, "LW_INPUT_ID0:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0xD0, 3, v);
seq_printf(sf, "LW_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "LW_PROG_LINE:\t\t0x%X\n", v[1]);
seq_printf(sf, "LW_FORMAT:\t\t0x%X\n", v[2]);
get_values_from_reg(c->reg, 0xE0, 1, v);
seq_printf(sf, "LW_IN_SIZE:\t\t0x%X\n", v[0]);
for (i = 0; i < 2; i++) {
get_values_from_reg(c->reg, 0x100 + i * 0x10, 3, v);
seq_printf(sf, "LW_P%u_PTR_LOW:\t\t0x%X\n", i, v[0]);
seq_printf(sf, "LW_P%u_PTR_HIGH:\t\t0x%X\n", i, v[1]);
seq_printf(sf, "LW_P%u_STRIDE:\t\t0x%X\n", i, v[2]);
}
get_values_from_reg(c->reg, 0x130, 12, v);
for (i = 0; i < 12; i++)
seq_printf(sf, "LW_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
}
static void d71_wb_layer_disable(struct komeda_component *c)
{
malidp_write32(c->reg, BLK_INPUT_ID0, 0);
malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
}
static const struct komeda_component_funcs d71_wb_layer_funcs = {
.update = d71_wb_layer_update,
.disable = d71_wb_layer_disable,
.dump_register = d71_wb_layer_dump,
};
static int d71_wb_layer_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_layer *wb_layer;
u32 pipe_id, layer_id;
get_resources_id(blk->block_info, &pipe_id, &layer_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*wb_layer),
layer_id, BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_wb_layer_funcs,
1, get_valid_inputs(blk), 0, reg,
"LPU%d_LAYER_WR", pipe_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to add wb_layer component\n");
return PTR_ERR(c);
}
wb_layer = to_layer(c);
wb_layer->layer_type = KOMEDA_FMT_WB_LAYER;
wb_layer->line_sz = get_blk_line_size(d71, reg);
wb_layer->yuv_line_sz = wb_layer->line_sz;
set_range(&wb_layer->hsize_in, 64, wb_layer->line_sz);
set_range(&wb_layer->vsize_in, 64, d71->max_vsize);
return 0;
}
static void d71_component_disable(struct komeda_component *c)
{
u32 __iomem *reg = c->reg;
u32 i;
malidp_write32(reg, BLK_CONTROL, 0);
for (i = 0; i < c->max_active_inputs; i++) {
malidp_write32(reg, BLK_INPUT_ID0 + (i << 2), 0);
/* Besides clearing the input ID to zero, D71 compiz also has
* input enable bit in CU_INPUTx_CONTROL which need to be
* cleared.
*/
if (has_bit(c->id, KOMEDA_PIPELINE_COMPIZS))
malidp_write32(reg, CU_INPUT0_CONTROL +
i * CU_PER_INPUT_REGS * 4,
CU_INPUT_CTRL_ALPHA(0xFF));
}
}
static void compiz_enable_input(u32 __iomem *id_reg,
u32 __iomem *cfg_reg,
u32 input_hw_id,
struct komeda_compiz_input_cfg *cin)
{
u32 ctrl = CU_INPUT_CTRL_EN;
u8 blend = cin->pixel_blend_mode;
if (blend == DRM_MODE_BLEND_PIXEL_NONE)
ctrl |= CU_INPUT_CTRL_PAD;
else if (blend == DRM_MODE_BLEND_PREMULTI)
ctrl |= CU_INPUT_CTRL_PMUL;
ctrl |= CU_INPUT_CTRL_ALPHA(cin->layer_alpha);
malidp_write32(id_reg, BLK_INPUT_ID0, input_hw_id);
malidp_write32(cfg_reg, CU_INPUT0_SIZE,
HV_SIZE(cin->hsize, cin->vsize));
malidp_write32(cfg_reg, CU_INPUT0_OFFSET,
HV_OFFSET(cin->hoffset, cin->voffset));
malidp_write32(cfg_reg, CU_INPUT0_CONTROL, ctrl);
}
static void d71_compiz_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_compiz_state *st = to_compiz_st(state);
u32 __iomem *reg = c->reg;
u32 __iomem *id_reg, *cfg_reg;
u32 index;
for_each_changed_input(state, index) {
id_reg = reg + index;
cfg_reg = reg + index * CU_PER_INPUT_REGS;
if (state->active_inputs & BIT(index)) {
compiz_enable_input(id_reg, cfg_reg,
to_d71_input_id(state, index),
&st->cins[index]);
} else {
malidp_write32(id_reg, BLK_INPUT_ID0, 0);
malidp_write32(cfg_reg, CU_INPUT0_CONTROL, 0);
}
}
malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
}
static void d71_compiz_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[8], i;
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, 0x80, 5, v);
for (i = 0; i < 5; i++)
seq_printf(sf, "CU_INPUT_ID%u:\t\t0x%X\n", i, v[i]);
get_values_from_reg(c->reg, 0xA0, 5, v);
seq_printf(sf, "CU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
seq_printf(sf, "CU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
seq_printf(sf, "CU_IRQ_MASK:\t\t0x%X\n", v[2]);
seq_printf(sf, "CU_IRQ_STATUS:\t\t0x%X\n", v[3]);
seq_printf(sf, "CU_STATUS:\t\t0x%X\n", v[4]);
get_values_from_reg(c->reg, 0xD0, 2, v);
seq_printf(sf, "CU_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "CU_SIZE:\t\t0x%X\n", v[1]);
get_values_from_reg(c->reg, 0xDC, 1, v);
seq_printf(sf, "CU_BG_COLOR:\t\t0x%X\n", v[0]);
for (i = 0, v[4] = 0xE0; i < 5; i++, v[4] += 0x10) {
get_values_from_reg(c->reg, v[4], 3, v);
seq_printf(sf, "CU_INPUT%u_SIZE:\t\t0x%X\n", i, v[0]);
seq_printf(sf, "CU_INPUT%u_OFFSET:\t0x%X\n", i, v[1]);
seq_printf(sf, "CU_INPUT%u_CONTROL:\t0x%X\n", i, v[2]);
}
get_values_from_reg(c->reg, 0x130, 2, v);
seq_printf(sf, "CU_USER_LOW:\t\t0x%X\n", v[0]);
seq_printf(sf, "CU_USER_HIGH:\t\t0x%X\n", v[1]);
}
static const struct komeda_component_funcs d71_compiz_funcs = {
.update = d71_compiz_update,
.disable = d71_component_disable,
.dump_register = d71_compiz_dump,
};
static int d71_compiz_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_compiz *compiz;
u32 pipe_id, comp_id;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*compiz),
comp_id,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_compiz_funcs,
CU_NUM_INPUT_IDS, get_valid_inputs(blk),
CU_NUM_OUTPUT_IDS, reg,
"CU%d", pipe_id);
if (IS_ERR(c))
return PTR_ERR(c);
compiz = to_compiz(c);
set_range(&compiz->hsize, 64, get_blk_line_size(d71, reg));
set_range(&compiz->vsize, 64, d71->max_vsize);
return 0;
}
static void d71_scaler_update_filter_lut(u32 __iomem *reg, u32 hsize_in,
u32 vsize_in, u32 hsize_out,
u32 vsize_out)
{
u32 val = 0;
if (hsize_in <= hsize_out)
val |= 0x62;
else if (hsize_in <= (hsize_out + hsize_out / 2))
val |= 0x63;
else if (hsize_in <= hsize_out * 2)
val |= 0x64;
else if (hsize_in <= hsize_out * 2 + (hsize_out * 3) / 4)
val |= 0x65;
else
val |= 0x66;
if (vsize_in <= vsize_out)
val |= SC_VTSEL(0x6A);
else if (vsize_in <= (vsize_out + vsize_out / 2))
val |= SC_VTSEL(0x6B);
else if (vsize_in <= vsize_out * 2)
val |= SC_VTSEL(0x6C);
else if (vsize_in <= vsize_out * 2 + vsize_out * 3 / 4)
val |= SC_VTSEL(0x6D);
else
val |= SC_VTSEL(0x6E);
malidp_write32(reg, SC_COEFFTAB, val);
}
static void d71_scaler_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_scaler_state *st = to_scaler_st(state);
u32 __iomem *reg = c->reg;
u32 init_ph, delta_ph, ctrl;
d71_scaler_update_filter_lut(reg, st->hsize_in, st->vsize_in,
st->hsize_out, st->vsize_out);
malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize_in, st->vsize_in));
malidp_write32(reg, SC_OUT_SIZE, HV_SIZE(st->hsize_out, st->vsize_out));
malidp_write32(reg, SC_H_CROP, HV_CROP(st->left_crop, st->right_crop));
/* for right part, HW only sample the valid pixel which means the pixels
* in left_crop will be jumpped, and the first sample pixel is:
*
* dst_a = st->total_hsize_out - st->hsize_out + st->left_crop + 0.5;
*
* Then the corresponding texel in src is:
*
* h_delta_phase = st->total_hsize_in / st->total_hsize_out;
* src_a = dst_A * h_delta_phase;
*
* and h_init_phase is src_a deduct the real source start src_S;
*
* src_S = st->total_hsize_in - st->hsize_in;
* h_init_phase = src_a - src_S;
*
* And HW precision for the initial/delta_phase is 16:16 fixed point,
* the following is the simplified formula
*/
if (st->right_part) {
u32 dst_a = st->total_hsize_out - st->hsize_out + st->left_crop;
if (st->en_img_enhancement)
dst_a -= 1;
init_ph = ((st->total_hsize_in * (2 * dst_a + 1) -
2 * st->total_hsize_out * (st->total_hsize_in -
st->hsize_in)) << 15) / st->total_hsize_out;
} else {
init_ph = (st->total_hsize_in << 15) / st->total_hsize_out;
}
malidp_write32(reg, SC_H_INIT_PH, init_ph);
delta_ph = (st->total_hsize_in << 16) / st->total_hsize_out;
malidp_write32(reg, SC_H_DELTA_PH, delta_ph);
init_ph = (st->total_vsize_in << 15) / st->vsize_out;
malidp_write32(reg, SC_V_INIT_PH, init_ph);
delta_ph = (st->total_vsize_in << 16) / st->vsize_out;
malidp_write32(reg, SC_V_DELTA_PH, delta_ph);
ctrl = 0;
ctrl |= st->en_scaling ? SC_CTRL_SCL : 0;
ctrl |= st->en_alpha ? SC_CTRL_AP : 0;
ctrl |= st->en_img_enhancement ? SC_CTRL_IENH : 0;
/* If we use the hardware splitter we shouldn't set SC_CTRL_LS */
if (st->en_split &&
state->inputs[0].component->id != KOMEDA_COMPONENT_SPLITTER)
ctrl |= SC_CTRL_LS;
malidp_write32(reg, BLK_CONTROL, ctrl);
malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
}
static void d71_scaler_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[10];
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, 0x80, 1, v);
seq_printf(sf, "SC_INPUT_ID0:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0xD0, 1, v);
seq_printf(sf, "SC_CONTROL:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0xDC, 9, v);
seq_printf(sf, "SC_COEFFTAB:\t\t0x%X\n", v[0]);
seq_printf(sf, "SC_IN_SIZE:\t\t0x%X\n", v[1]);
seq_printf(sf, "SC_OUT_SIZE:\t\t0x%X\n", v[2]);
seq_printf(sf, "SC_H_CROP:\t\t0x%X\n", v[3]);
seq_printf(sf, "SC_V_CROP:\t\t0x%X\n", v[4]);
seq_printf(sf, "SC_H_INIT_PH:\t\t0x%X\n", v[5]);
seq_printf(sf, "SC_H_DELTA_PH:\t\t0x%X\n", v[6]);
seq_printf(sf, "SC_V_INIT_PH:\t\t0x%X\n", v[7]);
seq_printf(sf, "SC_V_DELTA_PH:\t\t0x%X\n", v[8]);
get_values_from_reg(c->reg, 0x130, 10, v);
seq_printf(sf, "SC_ENH_LIMITS:\t\t0x%X\n", v[0]);
seq_printf(sf, "SC_ENH_COEFF0:\t\t0x%X\n", v[1]);
seq_printf(sf, "SC_ENH_COEFF1:\t\t0x%X\n", v[2]);
seq_printf(sf, "SC_ENH_COEFF2:\t\t0x%X\n", v[3]);
seq_printf(sf, "SC_ENH_COEFF3:\t\t0x%X\n", v[4]);
seq_printf(sf, "SC_ENH_COEFF4:\t\t0x%X\n", v[5]);
seq_printf(sf, "SC_ENH_COEFF5:\t\t0x%X\n", v[6]);
seq_printf(sf, "SC_ENH_COEFF6:\t\t0x%X\n", v[7]);
seq_printf(sf, "SC_ENH_COEFF7:\t\t0x%X\n", v[8]);
seq_printf(sf, "SC_ENH_COEFF8:\t\t0x%X\n", v[9]);
}
static const struct komeda_component_funcs d71_scaler_funcs = {
.update = d71_scaler_update,
.disable = d71_component_disable,
.dump_register = d71_scaler_dump,
};
static int d71_scaler_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_scaler *scaler;
u32 pipe_id, comp_id;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*scaler),
comp_id, BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_scaler_funcs,
1, get_valid_inputs(blk), 1, reg,
"CU%d_SCALER%d",
pipe_id, BLOCK_INFO_BLK_ID(blk->block_info));
if (IS_ERR(c)) {
DRM_ERROR("Failed to initialize scaler");
return PTR_ERR(c);
}
scaler = to_scaler(c);
set_range(&scaler->hsize, 4, __get_blk_line_size(d71, reg, 2048));
set_range(&scaler->vsize, 4, 4096);
scaler->max_downscaling = 6;
scaler->max_upscaling = 64;
scaler->scaling_split_overlap = 8;
scaler->enh_split_overlap = 1;
malidp_write32(c->reg, BLK_CONTROL, 0);
return 0;
}
static int d71_downscaling_clk_check(struct komeda_pipeline *pipe,
struct drm_display_mode *mode,
unsigned long aclk_rate,
struct komeda_data_flow_cfg *dflow)
{
u32 h_in = dflow->in_w;
u32 v_in = dflow->in_h;
u32 v_out = dflow->out_h;
u64 fraction, denominator;
/* D71 downscaling must satisfy the following equation
*
* ACLK h_in * v_in
* ------- >= ---------------------------------------------
* PXLCLK (h_total - (1 + 2 * v_in / v_out)) * v_out
*
* In only horizontal downscaling situation, the right side should be
* multiplied by (h_total - 3) / (h_active - 3), then equation becomes
*
* ACLK h_in
* ------- >= ----------------
* PXLCLK (h_active - 3)
*
* To avoid precision lost the equation 1 will be convert to:
*
* ACLK h_in * v_in
* ------- >= -----------------------------------
* PXLCLK (h_total -1 ) * v_out - 2 * v_in
*/
if (v_in == v_out) {
fraction = h_in;
denominator = mode->hdisplay - 3;
} else {
fraction = h_in * v_in;
denominator = (mode->htotal - 1) * v_out - 2 * v_in;
}
return aclk_rate * denominator >= mode->crtc_clock * 1000 * fraction ?
0 : -EINVAL;
}
static void d71_splitter_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_splitter_state *st = to_splitter_st(state);
u32 __iomem *reg = c->reg;
malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
malidp_write32(reg, SP_OVERLAP_SIZE, st->overlap & 0x1FFF);
malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
}
static void d71_splitter_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[3];
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, BLK_INPUT_ID0, 1, v);
seq_printf(sf, "SP_INPUT_ID0:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, BLK_CONTROL, 3, v);
seq_printf(sf, "SP_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "SP_SIZE:\t\t0x%X\n", v[1]);
seq_printf(sf, "SP_OVERLAP_SIZE:\t0x%X\n", v[2]);
}
static const struct komeda_component_funcs d71_splitter_funcs = {
.update = d71_splitter_update,
.disable = d71_component_disable,
.dump_register = d71_splitter_dump,
};
static int d71_splitter_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_splitter *splitter;
u32 pipe_id, comp_id;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*splitter),
comp_id,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_splitter_funcs,
1, get_valid_inputs(blk), 2, reg,
"CU%d_SPLITTER", pipe_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to initialize splitter");
return -1;
}
splitter = to_splitter(c);
set_range(&splitter->hsize, 4, get_blk_line_size(d71, reg));
set_range(&splitter->vsize, 4, d71->max_vsize);
return 0;
}
static void d71_merger_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct komeda_merger_state *st = to_merger_st(state);
u32 __iomem *reg = c->reg;
u32 index;
for_each_changed_input(state, index)
malidp_write32(reg, MG_INPUT_ID0 + index * 4,
to_d71_input_id(state, index));
malidp_write32(reg, MG_SIZE, HV_SIZE(st->hsize_merged,
st->vsize_merged));
malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
}
static void d71_merger_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v;
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, MG_INPUT_ID0, 1, &v);
seq_printf(sf, "MG_INPUT_ID0:\t\t0x%X\n", v);
get_values_from_reg(c->reg, MG_INPUT_ID1, 1, &v);
seq_printf(sf, "MG_INPUT_ID1:\t\t0x%X\n", v);
get_values_from_reg(c->reg, BLK_CONTROL, 1, &v);
seq_printf(sf, "MG_CONTROL:\t\t0x%X\n", v);
get_values_from_reg(c->reg, MG_SIZE, 1, &v);
seq_printf(sf, "MG_SIZE:\t\t0x%X\n", v);
}
static const struct komeda_component_funcs d71_merger_funcs = {
.update = d71_merger_update,
.disable = d71_component_disable,
.dump_register = d71_merger_dump,
};
static int d71_merger_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_merger *merger;
u32 pipe_id, comp_id;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*merger),
comp_id,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_merger_funcs,
MG_NUM_INPUTS_IDS, get_valid_inputs(blk),
MG_NUM_OUTPUTS_IDS, reg,
"CU%d_MERGER", pipe_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to initialize merger.\n");
return PTR_ERR(c);
}
merger = to_merger(c);
set_range(&merger->hsize_merged, 4,
__get_blk_line_size(d71, reg, 4032));
set_range(&merger->vsize_merged, 4, 4096);
return 0;
}
static void d71_improc_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct drm_crtc_state *crtc_st = state->crtc->state;
struct komeda_improc_state *st = to_improc_st(state);
struct d71_pipeline *pipe = to_d71_pipeline(c->pipeline);
u32 __iomem *reg = c->reg;
u32 index, mask = 0, ctrl = 0;
for_each_changed_input(state, index)
malidp_write32(reg, BLK_INPUT_ID0 + index * 4,
to_d71_input_id(state, index));
malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
malidp_write32(reg, IPS_DEPTH, st->color_depth);
if (crtc_st->color_mgmt_changed) {
mask |= IPS_CTRL_FT | IPS_CTRL_RGB;
if (crtc_st->gamma_lut) {
malidp_write_group(pipe->dou_ft_coeff_addr, FT_COEFF0,
KOMEDA_N_GAMMA_COEFFS,
st->fgamma_coeffs);
ctrl |= IPS_CTRL_FT; /* enable gamma */
}
if (crtc_st->ctm) {
malidp_write_group(reg, IPS_RGB_RGB_COEFF0,
KOMEDA_N_CTM_COEFFS,
st->ctm_coeffs);
ctrl |= IPS_CTRL_RGB; /* enable gamut */
}
}
mask |= IPS_CTRL_YUV | IPS_CTRL_CHD422 | IPS_CTRL_CHD420;
/* config color format */
if (st->color_format == DRM_COLOR_FORMAT_YCRCB420)
ctrl |= IPS_CTRL_YUV | IPS_CTRL_CHD422 | IPS_CTRL_CHD420;
else if (st->color_format == DRM_COLOR_FORMAT_YCRCB422)
ctrl |= IPS_CTRL_YUV | IPS_CTRL_CHD422;
else if (st->color_format == DRM_COLOR_FORMAT_YCRCB444)
ctrl |= IPS_CTRL_YUV;
malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
}
static void d71_improc_dump(struct komeda_component *c, struct seq_file *sf)
{
u32 v[12], i;
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, 0x80, 2, v);
seq_printf(sf, "IPS_INPUT_ID0:\t\t0x%X\n", v[0]);
seq_printf(sf, "IPS_INPUT_ID1:\t\t0x%X\n", v[1]);
get_values_from_reg(c->reg, 0xC0, 1, v);
seq_printf(sf, "IPS_INFO:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0xD0, 3, v);
seq_printf(sf, "IPS_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "IPS_SIZE:\t\t0x%X\n", v[1]);
seq_printf(sf, "IPS_DEPTH:\t\t0x%X\n", v[2]);
get_values_from_reg(c->reg, 0x130, 12, v);
for (i = 0; i < 12; i++)
seq_printf(sf, "IPS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
get_values_from_reg(c->reg, 0x170, 12, v);
for (i = 0; i < 12; i++)
seq_printf(sf, "IPS_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
}
static const struct komeda_component_funcs d71_improc_funcs = {
.update = d71_improc_update,
.disable = d71_component_disable,
.dump_register = d71_improc_dump,
};
static int d71_improc_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_improc *improc;
u32 pipe_id, comp_id, value;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*improc),
comp_id,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_improc_funcs, IPS_NUM_INPUT_IDS,
get_valid_inputs(blk),
IPS_NUM_OUTPUT_IDS, reg, "DOU%d_IPS", pipe_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to add improc component\n");
return PTR_ERR(c);
}
improc = to_improc(c);
improc->supported_color_depths = BIT(8) | BIT(10);
improc->supported_color_formats = DRM_COLOR_FORMAT_RGB444 |
DRM_COLOR_FORMAT_YCRCB444 |
DRM_COLOR_FORMAT_YCRCB422;
value = malidp_read32(reg, BLK_INFO);
if (value & IPS_INFO_CHD420)
improc->supported_color_formats |= DRM_COLOR_FORMAT_YCRCB420;
improc->supports_csc = true;
improc->supports_gamma = true;
return 0;
}
static void d71_timing_ctrlr_disable(struct komeda_component *c)
{
malidp_write32_mask(c->reg, BLK_CONTROL, BS_CTRL_EN, 0);
}
static void d71_timing_ctrlr_update(struct komeda_component *c,
struct komeda_component_state *state)
{
struct drm_crtc_state *crtc_st = state->crtc->state;
struct drm_display_mode *mode = &crtc_st->adjusted_mode;
u32 __iomem *reg = c->reg;
u32 hactive, hfront_porch, hback_porch, hsync_len;
u32 vactive, vfront_porch, vback_porch, vsync_len;
u32 value;
hactive = mode->crtc_hdisplay;
hfront_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
hback_porch = mode->crtc_htotal - mode->crtc_hsync_end;
vactive = mode->crtc_vdisplay;
vfront_porch = mode->crtc_vsync_start - mode->crtc_vdisplay;
vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
vback_porch = mode->crtc_vtotal - mode->crtc_vsync_end;
malidp_write32(reg, BS_ACTIVESIZE, HV_SIZE(hactive, vactive));
malidp_write32(reg, BS_HINTERVALS, BS_H_INTVALS(hfront_porch,
hback_porch));
malidp_write32(reg, BS_VINTERVALS, BS_V_INTVALS(vfront_porch,
vback_porch));
value = BS_SYNC_VSW(vsync_len) | BS_SYNC_HSW(hsync_len);
value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? BS_SYNC_VSP : 0;
value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? BS_SYNC_HSP : 0;
malidp_write32(reg, BS_SYNC, value);
malidp_write32(reg, BS_PROG_LINE, D71_DEFAULT_PREPRETCH_LINE - 1);
malidp_write32(reg, BS_PREFETCH_LINE, D71_DEFAULT_PREPRETCH_LINE);
/* configure bs control register */
value = BS_CTRL_EN | BS_CTRL_VM;
if (c->pipeline->dual_link) {
malidp_write32(reg, BS_DRIFT_TO, hfront_porch + 16);
value |= BS_CTRL_DL;
}
malidp_write32(reg, BLK_CONTROL, value);
}
static void d71_timing_ctrlr_dump(struct komeda_component *c,
struct seq_file *sf)
{
u32 v[8], i;
dump_block_header(sf, c->reg);
get_values_from_reg(c->reg, 0xC0, 1, v);
seq_printf(sf, "BS_INFO:\t\t0x%X\n", v[0]);
get_values_from_reg(c->reg, 0xD0, 8, v);
seq_printf(sf, "BS_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "BS_PROG_LINE:\t\t0x%X\n", v[1]);
seq_printf(sf, "BS_PREFETCH_LINE:\t0x%X\n", v[2]);
seq_printf(sf, "BS_BG_COLOR:\t\t0x%X\n", v[3]);
seq_printf(sf, "BS_ACTIVESIZE:\t\t0x%X\n", v[4]);
seq_printf(sf, "BS_HINTERVALS:\t\t0x%X\n", v[5]);
seq_printf(sf, "BS_VINTERVALS:\t\t0x%X\n", v[6]);
seq_printf(sf, "BS_SYNC:\t\t0x%X\n", v[7]);
get_values_from_reg(c->reg, 0x100, 3, v);
seq_printf(sf, "BS_DRIFT_TO:\t\t0x%X\n", v[0]);
seq_printf(sf, "BS_FRAME_TO:\t\t0x%X\n", v[1]);
seq_printf(sf, "BS_TE_TO:\t\t0x%X\n", v[2]);
get_values_from_reg(c->reg, 0x110, 3, v);
for (i = 0; i < 3; i++)
seq_printf(sf, "BS_T%u_INTERVAL:\t\t0x%X\n", i, v[i]);
get_values_from_reg(c->reg, 0x120, 5, v);
for (i = 0; i < 2; i++) {
seq_printf(sf, "BS_CRC%u_LOW:\t\t0x%X\n", i, v[i << 1]);
seq_printf(sf, "BS_CRC%u_HIGH:\t\t0x%X\n", i, v[(i << 1) + 1]);
}
seq_printf(sf, "BS_USER:\t\t0x%X\n", v[4]);
}
static const struct komeda_component_funcs d71_timing_ctrlr_funcs = {
.update = d71_timing_ctrlr_update,
.disable = d71_timing_ctrlr_disable,
.dump_register = d71_timing_ctrlr_dump,
};
static int d71_timing_ctrlr_init(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct komeda_component *c;
struct komeda_timing_ctrlr *ctrlr;
u32 pipe_id, comp_id;
get_resources_id(blk->block_info, &pipe_id, &comp_id);
c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*ctrlr),
KOMEDA_COMPONENT_TIMING_CTRLR,
BLOCK_INFO_INPUT_ID(blk->block_info),
&d71_timing_ctrlr_funcs,
1, BIT(KOMEDA_COMPONENT_IPS0 + pipe_id),
BS_NUM_OUTPUT_IDS, reg, "DOU%d_BS", pipe_id);
if (IS_ERR(c)) {
DRM_ERROR("Failed to add display_ctrl component\n");
return PTR_ERR(c);
}
ctrlr = to_ctrlr(c);
ctrlr->supports_dual_link = d71->supports_dual_link;
return 0;
}
int d71_probe_block(struct d71_dev *d71,
struct block_header *blk, u32 __iomem *reg)
{
struct d71_pipeline *pipe;
int blk_id = BLOCK_INFO_BLK_ID(blk->block_info);
int err = 0;
switch (BLOCK_INFO_BLK_TYPE(blk->block_info)) {
case D71_BLK_TYPE_GCU:
break;
case D71_BLK_TYPE_LPU:
pipe = d71->pipes[blk_id];
pipe->lpu_addr = reg;
break;
case D71_BLK_TYPE_LPU_LAYER:
err = d71_layer_init(d71, blk, reg);
break;
case D71_BLK_TYPE_LPU_WB_LAYER:
err = d71_wb_layer_init(d71, blk, reg);
break;
case D71_BLK_TYPE_CU:
pipe = d71->pipes[blk_id];
pipe->cu_addr = reg;
err = d71_compiz_init(d71, blk, reg);
break;
case D71_BLK_TYPE_CU_SCALER:
err = d71_scaler_init(d71, blk, reg);
break;
case D71_BLK_TYPE_CU_SPLITTER:
err = d71_splitter_init(d71, blk, reg);
break;
case D71_BLK_TYPE_CU_MERGER:
err = d71_merger_init(d71, blk, reg);
break;
case D71_BLK_TYPE_DOU:
pipe = d71->pipes[blk_id];
pipe->dou_addr = reg;
break;
case D71_BLK_TYPE_DOU_IPS:
err = d71_improc_init(d71, blk, reg);
break;
case D71_BLK_TYPE_DOU_FT_COEFF:
pipe = d71->pipes[blk_id];
pipe->dou_ft_coeff_addr = reg;
break;
case D71_BLK_TYPE_DOU_BS:
err = d71_timing_ctrlr_init(d71, blk, reg);
break;
case D71_BLK_TYPE_GLB_LT_COEFF:
break;
case D71_BLK_TYPE_GLB_SCL_COEFF:
d71->glb_scl_coeff_addr[blk_id] = reg;
break;
default:
DRM_ERROR("Unknown block (block_info: 0x%x) is found\n",
blk->block_info);
err = -EINVAL;
break;
}
return err;
}
static void d71_gcu_dump(struct d71_dev *d71, struct seq_file *sf)
{
u32 v[5];
seq_puts(sf, "\n------ GCU ------\n");
get_values_from_reg(d71->gcu_addr, 0, 3, v);
seq_printf(sf, "GLB_ARCH_ID:\t\t0x%X\n", v[0]);
seq_printf(sf, "GLB_CORE_ID:\t\t0x%X\n", v[1]);
seq_printf(sf, "GLB_CORE_INFO:\t\t0x%X\n", v[2]);
get_values_from_reg(d71->gcu_addr, 0x10, 1, v);
seq_printf(sf, "GLB_IRQ_STATUS:\t\t0x%X\n", v[0]);
get_values_from_reg(d71->gcu_addr, 0xA0, 5, v);
seq_printf(sf, "GCU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
seq_printf(sf, "GCU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
seq_printf(sf, "GCU_IRQ_MASK:\t\t0x%X\n", v[2]);
seq_printf(sf, "GCU_IRQ_STATUS:\t\t0x%X\n", v[3]);
seq_printf(sf, "GCU_STATUS:\t\t0x%X\n", v[4]);
get_values_from_reg(d71->gcu_addr, 0xD0, 3, v);
seq_printf(sf, "GCU_CONTROL:\t\t0x%X\n", v[0]);
seq_printf(sf, "GCU_CONFIG_VALID0:\t0x%X\n", v[1]);
seq_printf(sf, "GCU_CONFIG_VALID1:\t0x%X\n", v[2]);
}
static void d71_lpu_dump(struct d71_pipeline *pipe, struct seq_file *sf)
{
u32 v[6];
seq_printf(sf, "\n------ LPU%d ------\n", pipe->base.id);
dump_block_header(sf, pipe->lpu_addr);
get_values_from_reg(pipe->lpu_addr, 0xA0, 6, v);
seq_printf(sf, "LPU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
seq_printf(sf, "LPU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
seq_printf(sf, "LPU_IRQ_MASK:\t\t0x%X\n", v[2]);
seq_printf(sf, "LPU_IRQ_STATUS:\t\t0x%X\n", v[3]);
seq_printf(sf, "LPU_STATUS:\t\t0x%X\n", v[4]);
seq_printf(sf, "LPU_TBU_STATUS:\t\t0x%X\n", v[5]);
get_values_from_reg(pipe->lpu_addr, 0xC0, 1, v);
seq_printf(sf, "LPU_INFO:\t\t0x%X\n", v[0]);
get_values_from_reg(pipe->lpu_addr, 0xD0, 3, v);
seq_printf(sf, "LPU_RAXI_CONTROL:\t0x%X\n", v[0]);
seq_printf(sf, "LPU_WAXI_CONTROL:\t0x%X\n", v[1]);
seq_printf(sf, "LPU_TBU_CONTROL:\t0x%X\n", v[2]);
}
static void d71_dou_dump(struct d71_pipeline *pipe, struct seq_file *sf)
{
u32 v[5];
seq_printf(sf, "\n------ DOU%d ------\n", pipe->base.id);
dump_block_header(sf, pipe->dou_addr);
get_values_from_reg(pipe->dou_addr, 0xA0, 5, v);
seq_printf(sf, "DOU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
seq_printf(sf, "DOU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
seq_printf(sf, "DOU_IRQ_MASK:\t\t0x%X\n", v[2]);
seq_printf(sf, "DOU_IRQ_STATUS:\t\t0x%X\n", v[3]);
seq_printf(sf, "DOU_STATUS:\t\t0x%X\n", v[4]);
}
static void d71_pipeline_dump(struct komeda_pipeline *pipe, struct seq_file *sf)
{
struct d71_pipeline *d71_pipe = to_d71_pipeline(pipe);
d71_lpu_dump(d71_pipe, sf);
d71_dou_dump(d71_pipe, sf);
}
const struct komeda_pipeline_funcs d71_pipeline_funcs = {
.downscaling_clk_check = d71_downscaling_clk_check,
.dump_register = d71_pipeline_dump,
};
void d71_dump(struct komeda_dev *mdev, struct seq_file *sf)
{
struct d71_dev *d71 = mdev->chip_data;
d71_gcu_dump(d71, sf);
}