| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (c) 2014-2017 Oracle. All rights reserved. |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * rpc_rdma.c |
| * |
| * This file contains the guts of the RPC RDMA protocol, and |
| * does marshaling/unmarshaling, etc. It is also where interfacing |
| * to the Linux RPC framework lives. |
| */ |
| |
| #include <linux/highmem.h> |
| |
| #include <linux/sunrpc/svc_rdma.h> |
| |
| #include "xprt_rdma.h" |
| #include <trace/events/rpcrdma.h> |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| /* Returns size of largest RPC-over-RDMA header in a Call message |
| * |
| * The largest Call header contains a full-size Read list and a |
| * minimal Reply chunk. |
| */ |
| static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Read list size */ |
| size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); |
| |
| /* Minimal Read chunk size */ |
| size += sizeof(__be32); /* segment count */ |
| size += rpcrdma_segment_maxsz * sizeof(__be32); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| return size; |
| } |
| |
| /* Returns size of largest RPC-over-RDMA header in a Reply message |
| * |
| * There is only one Write list or one Reply chunk per Reply |
| * message. The larger list is the Write list. |
| */ |
| static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Write list size */ |
| size = sizeof(__be32); /* segment count */ |
| size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| return size; |
| } |
| |
| /** |
| * rpcrdma_set_max_header_sizes - Initialize inline payload sizes |
| * @r_xprt: transport instance to initialize |
| * |
| * The max_inline fields contain the maximum size of an RPC message |
| * so the marshaling code doesn't have to repeat this calculation |
| * for every RPC. |
| */ |
| void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) |
| { |
| unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs; |
| struct rpcrdma_ep *ep = &r_xprt->rx_ep; |
| |
| ep->rep_max_inline_send = |
| ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs); |
| ep->rep_max_inline_recv = |
| ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs); |
| } |
| |
| /* The client can send a request inline as long as the RPCRDMA header |
| * plus the RPC call fit under the transport's inline limit. If the |
| * combined call message size exceeds that limit, the client must use |
| * a Read chunk for this operation. |
| * |
| * A Read chunk is also required if sending the RPC call inline would |
| * exceed this device's max_sge limit. |
| */ |
| static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_buf *xdr = &rqst->rq_snd_buf; |
| unsigned int count, remaining, offset; |
| |
| if (xdr->len > r_xprt->rx_ep.rep_max_inline_send) |
| return false; |
| |
| if (xdr->page_len) { |
| remaining = xdr->page_len; |
| offset = offset_in_page(xdr->page_base); |
| count = RPCRDMA_MIN_SEND_SGES; |
| while (remaining) { |
| remaining -= min_t(unsigned int, |
| PAGE_SIZE - offset, remaining); |
| offset = 0; |
| if (++count > r_xprt->rx_ia.ri_max_send_sges) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* The client can't know how large the actual reply will be. Thus it |
| * plans for the largest possible reply for that particular ULP |
| * operation. If the maximum combined reply message size exceeds that |
| * limit, the client must provide a write list or a reply chunk for |
| * this request. |
| */ |
| static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv; |
| } |
| |
| /* The client is required to provide a Reply chunk if the maximum |
| * size of the non-payload part of the RPC Reply is larger than |
| * the inline threshold. |
| */ |
| static bool |
| rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt, |
| const struct rpc_rqst *rqst) |
| { |
| const struct xdr_buf *buf = &rqst->rq_rcv_buf; |
| |
| return (buf->head[0].iov_len + buf->tail[0].iov_len) < |
| r_xprt->rx_ep.rep_max_inline_recv; |
| } |
| |
| /* Split @vec on page boundaries into SGEs. FMR registers pages, not |
| * a byte range. Other modes coalesce these SGEs into a single MR |
| * when they can. |
| * |
| * Returns pointer to next available SGE, and bumps the total number |
| * of SGEs consumed. |
| */ |
| static struct rpcrdma_mr_seg * |
| rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, |
| unsigned int *n) |
| { |
| u32 remaining, page_offset; |
| char *base; |
| |
| base = vec->iov_base; |
| page_offset = offset_in_page(base); |
| remaining = vec->iov_len; |
| while (remaining) { |
| seg->mr_page = NULL; |
| seg->mr_offset = base; |
| seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); |
| remaining -= seg->mr_len; |
| base += seg->mr_len; |
| ++seg; |
| ++(*n); |
| page_offset = 0; |
| } |
| return seg; |
| } |
| |
| /* Convert @xdrbuf into SGEs no larger than a page each. As they |
| * are registered, these SGEs are then coalesced into RDMA segments |
| * when the selected memreg mode supports it. |
| * |
| * Returns positive number of SGEs consumed, or a negative errno. |
| */ |
| |
| static int |
| rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, |
| unsigned int pos, enum rpcrdma_chunktype type, |
| struct rpcrdma_mr_seg *seg) |
| { |
| unsigned long page_base; |
| unsigned int len, n; |
| struct page **ppages; |
| |
| n = 0; |
| if (pos == 0) |
| seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); |
| |
| len = xdrbuf->page_len; |
| ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(xdrbuf->page_base); |
| while (len) { |
| /* ACL likes to be lazy in allocating pages - ACLs |
| * are small by default but can get huge. |
| */ |
| if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) { |
| if (!*ppages) |
| *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN); |
| if (!*ppages) |
| return -ENOBUFS; |
| } |
| seg->mr_page = *ppages; |
| seg->mr_offset = (char *)page_base; |
| seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); |
| len -= seg->mr_len; |
| ++ppages; |
| ++seg; |
| ++n; |
| page_base = 0; |
| } |
| |
| /* When encoding a Read chunk, the tail iovec contains an |
| * XDR pad and may be omitted. |
| */ |
| if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) |
| goto out; |
| |
| /* When encoding a Write chunk, some servers need to see an |
| * extra segment for non-XDR-aligned Write chunks. The upper |
| * layer provides space in the tail iovec that may be used |
| * for this purpose. |
| */ |
| if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) |
| goto out; |
| |
| if (xdrbuf->tail[0].iov_len) |
| seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); |
| |
| out: |
| if (unlikely(n > RPCRDMA_MAX_SEGS)) |
| return -EIO; |
| return n; |
| } |
| |
| static inline int |
| encode_item_present(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p = xdr_one; |
| return 0; |
| } |
| |
| static inline int |
| encode_item_not_present(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p = xdr_zero; |
| return 0; |
| } |
| |
| static void |
| xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) |
| { |
| *iptr++ = cpu_to_be32(mr->mr_handle); |
| *iptr++ = cpu_to_be32(mr->mr_length); |
| xdr_encode_hyper(iptr, mr->mr_offset); |
| } |
| |
| static int |
| encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| xdr_encode_rdma_segment(p, mr); |
| return 0; |
| } |
| |
| static int |
| encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, |
| u32 position) |
| { |
| __be32 *p; |
| |
| p = xdr_reserve_space(xdr, 6 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EMSGSIZE; |
| |
| *p++ = xdr_one; /* Item present */ |
| *p++ = cpu_to_be32(position); |
| xdr_encode_rdma_segment(p, mr); |
| return 0; |
| } |
| |
| static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct rpcrdma_mr_seg *seg, |
| int nsegs, bool writing, |
| struct rpcrdma_mr **mr) |
| { |
| *mr = rpcrdma_mr_pop(&req->rl_free_mrs); |
| if (!*mr) { |
| *mr = rpcrdma_mr_get(r_xprt); |
| if (!*mr) |
| goto out_getmr_err; |
| trace_xprtrdma_mr_get(req); |
| (*mr)->mr_req = req; |
| } |
| |
| rpcrdma_mr_push(*mr, &req->rl_registered); |
| return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr); |
| |
| out_getmr_err: |
| trace_xprtrdma_nomrs(req); |
| xprt_wait_for_buffer_space(&r_xprt->rx_xprt); |
| rpcrdma_mrs_refresh(r_xprt); |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| /* Register and XDR encode the Read list. Supports encoding a list of read |
| * segments that belong to a single read chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Read chunklist (a linked list): |
| * N elements, position P (same P for all chunks of same arg!): |
| * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| * |
| * Only a single @pos value is currently supported. |
| */ |
| static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, |
| enum rpcrdma_chunktype rtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| unsigned int pos; |
| int nsegs; |
| |
| if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped) |
| goto done; |
| |
| pos = rqst->rq_snd_buf.head[0].iov_len; |
| if (rtype == rpcrdma_areadch) |
| pos = 0; |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, |
| rtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| do { |
| seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr); |
| if (IS_ERR(seg)) |
| return PTR_ERR(seg); |
| |
| if (encode_read_segment(xdr, mr, pos) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs); |
| r_xprt->rx_stats.read_chunk_count++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| done: |
| return encode_item_not_present(xdr); |
| } |
| |
| /* Register and XDR encode the Write list. Supports encoding a list |
| * containing one array of plain segments that belong to a single |
| * write chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Write chunklist (a list of (one) counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO - 0 |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| * |
| * Only a single Write chunk is currently supported. |
| */ |
| static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, |
| enum rpcrdma_chunktype wtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| int nsegs, nchunks; |
| __be32 *segcount; |
| |
| if (wtype != rpcrdma_writech) |
| goto done; |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, |
| rqst->rq_rcv_buf.head[0].iov_len, |
| wtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| if (encode_item_present(xdr) < 0) |
| return -EMSGSIZE; |
| segcount = xdr_reserve_space(xdr, sizeof(*segcount)); |
| if (unlikely(!segcount)) |
| return -EMSGSIZE; |
| /* Actual value encoded below */ |
| |
| nchunks = 0; |
| do { |
| seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); |
| if (IS_ERR(seg)) |
| return PTR_ERR(seg); |
| |
| if (encode_rdma_segment(xdr, mr) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs); |
| r_xprt->rx_stats.write_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += mr->mr_length; |
| nchunks++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| /* Update count of segments in this Write chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| done: |
| return encode_item_not_present(xdr); |
| } |
| |
| /* Register and XDR encode the Reply chunk. Supports encoding an array |
| * of plain segments that belong to a single write (reply) chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Reply chunk (a counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO |
| * |
| * Returns zero on success, or a negative errno if a failure occurred. |
| * @xdr is advanced to the next position in the stream. |
| */ |
| static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, |
| enum rpcrdma_chunktype wtype) |
| { |
| struct xdr_stream *xdr = &req->rl_stream; |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mr *mr; |
| int nsegs, nchunks; |
| __be32 *segcount; |
| |
| if (wtype != rpcrdma_replych) |
| return encode_item_not_present(xdr); |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); |
| if (nsegs < 0) |
| return nsegs; |
| |
| if (encode_item_present(xdr) < 0) |
| return -EMSGSIZE; |
| segcount = xdr_reserve_space(xdr, sizeof(*segcount)); |
| if (unlikely(!segcount)) |
| return -EMSGSIZE; |
| /* Actual value encoded below */ |
| |
| nchunks = 0; |
| do { |
| seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); |
| if (IS_ERR(seg)) |
| return PTR_ERR(seg); |
| |
| if (encode_rdma_segment(xdr, mr) < 0) |
| return -EMSGSIZE; |
| |
| trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs); |
| r_xprt->rx_stats.reply_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += mr->mr_length; |
| nchunks++; |
| nsegs -= mr->mr_nents; |
| } while (nsegs); |
| |
| /* Update count of segments in the Reply chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| return 0; |
| } |
| |
| static void rpcrdma_sendctx_done(struct kref *kref) |
| { |
| struct rpcrdma_req *req = |
| container_of(kref, struct rpcrdma_req, rl_kref); |
| struct rpcrdma_rep *rep = req->rl_reply; |
| |
| rpcrdma_complete_rqst(rep); |
| rep->rr_rxprt->rx_stats.reply_waits_for_send++; |
| } |
| |
| /** |
| * rpcrdma_sendctx_unmap - DMA-unmap Send buffer |
| * @sc: sendctx containing SGEs to unmap |
| * |
| */ |
| void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc) |
| { |
| struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf; |
| struct ib_sge *sge; |
| |
| if (!sc->sc_unmap_count) |
| return; |
| |
| /* The first two SGEs contain the transport header and |
| * the inline buffer. These are always left mapped so |
| * they can be cheaply re-used. |
| */ |
| for (sge = &sc->sc_sges[2]; sc->sc_unmap_count; |
| ++sge, --sc->sc_unmap_count) |
| ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length, |
| DMA_TO_DEVICE); |
| |
| kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done); |
| } |
| |
| /* Prepare an SGE for the RPC-over-RDMA transport header. |
| */ |
| static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, u32 len) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| struct rpcrdma_regbuf *rb = req->rl_rdmabuf; |
| struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; |
| |
| if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) |
| return false; |
| sge->addr = rdmab_addr(rb); |
| sge->length = len; |
| sge->lkey = rdmab_lkey(rb); |
| |
| ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, |
| DMA_TO_DEVICE); |
| return true; |
| } |
| |
| /* The head iovec is straightforward, as it is usually already |
| * DMA-mapped. Sync the content that has changed. |
| */ |
| static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, unsigned int len) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; |
| struct rpcrdma_regbuf *rb = req->rl_sendbuf; |
| |
| if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) |
| return false; |
| |
| sge->addr = rdmab_addr(rb); |
| sge->length = len; |
| sge->lkey = rdmab_lkey(rb); |
| |
| ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, |
| DMA_TO_DEVICE); |
| return true; |
| } |
| |
| /* If there is a page list present, DMA map and prepare an |
| * SGE for each page to be sent. |
| */ |
| static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| struct rpcrdma_regbuf *rb = req->rl_sendbuf; |
| unsigned int page_base, len, remaining; |
| struct page **ppages; |
| struct ib_sge *sge; |
| |
| ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(xdr->page_base); |
| remaining = xdr->page_len; |
| while (remaining) { |
| sge = &sc->sc_sges[req->rl_wr.num_sge++]; |
| len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); |
| sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages, |
| page_base, len, DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) |
| goto out_mapping_err; |
| |
| sge->length = len; |
| sge->lkey = rdmab_lkey(rb); |
| |
| sc->sc_unmap_count++; |
| ppages++; |
| remaining -= len; |
| page_base = 0; |
| } |
| |
| return true; |
| |
| out_mapping_err: |
| trace_xprtrdma_dma_maperr(sge->addr); |
| return false; |
| } |
| |
| /* The tail iovec may include an XDR pad for the page list, |
| * as well as additional content, and may not reside in the |
| * same page as the head iovec. |
| */ |
| static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req, |
| struct xdr_buf *xdr, |
| unsigned int page_base, unsigned int len) |
| { |
| struct rpcrdma_sendctx *sc = req->rl_sendctx; |
| struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; |
| struct rpcrdma_regbuf *rb = req->rl_sendbuf; |
| struct page *page = virt_to_page(xdr->tail[0].iov_base); |
| |
| sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len, |
| DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) |
| goto out_mapping_err; |
| |
| sge->length = len; |
| sge->lkey = rdmab_lkey(rb); |
| ++sc->sc_unmap_count; |
| return true; |
| |
| out_mapping_err: |
| trace_xprtrdma_dma_maperr(sge->addr); |
| return false; |
| } |
| |
| /* Copy the tail to the end of the head buffer. |
| */ |
| static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| unsigned char *dst; |
| |
| dst = (unsigned char *)xdr->head[0].iov_base; |
| dst += xdr->head[0].iov_len + xdr->page_len; |
| memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len); |
| r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len; |
| } |
| |
| /* Copy pagelist content into the head buffer. |
| */ |
| static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| unsigned int len, page_base, remaining; |
| struct page **ppages; |
| unsigned char *src, *dst; |
| |
| dst = (unsigned char *)xdr->head[0].iov_base; |
| dst += xdr->head[0].iov_len; |
| ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(xdr->page_base); |
| remaining = xdr->page_len; |
| while (remaining) { |
| src = page_address(*ppages); |
| src += page_base; |
| len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); |
| memcpy(dst, src, len); |
| r_xprt->rx_stats.pullup_copy_count += len; |
| |
| ppages++; |
| dst += len; |
| remaining -= len; |
| page_base = 0; |
| } |
| } |
| |
| /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it. |
| * When the head, pagelist, and tail are small, a pull-up copy |
| * is considerably less costly than DMA mapping the components |
| * of @xdr. |
| * |
| * Assumptions: |
| * - the caller has already verified that the total length |
| * of the RPC Call body will fit into @rl_sendbuf. |
| */ |
| static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| if (unlikely(xdr->tail[0].iov_len)) |
| rpcrdma_pullup_tail_iov(r_xprt, req, xdr); |
| |
| if (unlikely(xdr->page_len)) |
| rpcrdma_pullup_pagelist(r_xprt, req, xdr); |
| |
| /* The whole RPC message resides in the head iovec now */ |
| return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len); |
| } |
| |
| static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| struct kvec *tail = &xdr->tail[0]; |
| |
| if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) |
| return false; |
| if (xdr->page_len) |
| if (!rpcrdma_prepare_pagelist(req, xdr)) |
| return false; |
| if (tail->iov_len) |
| if (!rpcrdma_prepare_tail_iov(req, xdr, |
| offset_in_page(tail->iov_base), |
| tail->iov_len)) |
| return false; |
| |
| if (req->rl_sendctx->sc_unmap_count) |
| kref_get(&req->rl_kref); |
| return true; |
| } |
| |
| static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, |
| struct xdr_buf *xdr) |
| { |
| if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) |
| return false; |
| |
| /* If there is a Read chunk, the page list is being handled |
| * via explicit RDMA, and thus is skipped here. |
| */ |
| |
| /* Do not include the tail if it is only an XDR pad */ |
| if (xdr->tail[0].iov_len > 3) { |
| unsigned int page_base, len; |
| |
| /* If the content in the page list is an odd length, |
| * xdr_write_pages() adds a pad at the beginning of |
| * the tail iovec. Force the tail's non-pad content to |
| * land at the next XDR position in the Send message. |
| */ |
| page_base = offset_in_page(xdr->tail[0].iov_base); |
| len = xdr->tail[0].iov_len; |
| page_base += len & 3; |
| len -= len & 3; |
| if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len)) |
| return false; |
| kref_get(&req->rl_kref); |
| } |
| |
| return true; |
| } |
| |
| /** |
| * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR |
| * @r_xprt: controlling transport |
| * @req: context of RPC Call being marshalled |
| * @hdrlen: size of transport header, in bytes |
| * @xdr: xdr_buf containing RPC Call |
| * @rtype: chunk type being encoded |
| * |
| * Returns 0 on success; otherwise a negative errno is returned. |
| */ |
| inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, u32 hdrlen, |
| struct xdr_buf *xdr, |
| enum rpcrdma_chunktype rtype) |
| { |
| int ret; |
| |
| ret = -EAGAIN; |
| req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt); |
| if (!req->rl_sendctx) |
| goto out_nosc; |
| req->rl_sendctx->sc_unmap_count = 0; |
| req->rl_sendctx->sc_req = req; |
| kref_init(&req->rl_kref); |
| req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe; |
| req->rl_wr.sg_list = req->rl_sendctx->sc_sges; |
| req->rl_wr.num_sge = 0; |
| req->rl_wr.opcode = IB_WR_SEND; |
| |
| ret = -EIO; |
| if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen)) |
| goto out_unmap; |
| |
| switch (rtype) { |
| case rpcrdma_noch_pullup: |
| if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr)) |
| goto out_unmap; |
| break; |
| case rpcrdma_noch_mapped: |
| if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr)) |
| goto out_unmap; |
| break; |
| case rpcrdma_readch: |
| if (!rpcrdma_prepare_readch(r_xprt, req, xdr)) |
| goto out_unmap; |
| break; |
| case rpcrdma_areadch: |
| break; |
| default: |
| goto out_unmap; |
| } |
| |
| return 0; |
| |
| out_unmap: |
| rpcrdma_sendctx_unmap(req->rl_sendctx); |
| out_nosc: |
| trace_xprtrdma_prepsend_failed(&req->rl_slot, ret); |
| return ret; |
| } |
| |
| /** |
| * rpcrdma_marshal_req - Marshal and send one RPC request |
| * @r_xprt: controlling transport |
| * @rqst: RPC request to be marshaled |
| * |
| * For the RPC in "rqst", this function: |
| * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) |
| * - Registers Read, Write, and Reply chunks |
| * - Constructs the transport header |
| * - Posts a Send WR to send the transport header and request |
| * |
| * Returns: |
| * %0 if the RPC was sent successfully, |
| * %-ENOTCONN if the connection was lost, |
| * %-EAGAIN if the caller should call again with the same arguments, |
| * %-ENOBUFS if the caller should call again after a delay, |
| * %-EMSGSIZE if the transport header is too small, |
| * %-EIO if a permanent problem occurred while marshaling. |
| */ |
| int |
| rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) |
| { |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| struct xdr_stream *xdr = &req->rl_stream; |
| enum rpcrdma_chunktype rtype, wtype; |
| struct xdr_buf *buf = &rqst->rq_snd_buf; |
| bool ddp_allowed; |
| __be32 *p; |
| int ret; |
| |
| rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); |
| xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf), |
| rqst); |
| |
| /* Fixed header fields */ |
| ret = -EMSGSIZE; |
| p = xdr_reserve_space(xdr, 4 * sizeof(*p)); |
| if (!p) |
| goto out_err; |
| *p++ = rqst->rq_xid; |
| *p++ = rpcrdma_version; |
| *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); |
| |
| /* When the ULP employs a GSS flavor that guarantees integrity |
| * or privacy, direct data placement of individual data items |
| * is not allowed. |
| */ |
| ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & |
| RPCAUTH_AUTH_DATATOUCH); |
| |
| /* |
| * Chunks needed for results? |
| * |
| * o If the expected result is under the inline threshold, all ops |
| * return as inline. |
| * o Large read ops return data as write chunk(s), header as |
| * inline. |
| * o Large non-read ops return as a single reply chunk. |
| */ |
| if (rpcrdma_results_inline(r_xprt, rqst)) |
| wtype = rpcrdma_noch; |
| else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) && |
| rpcrdma_nonpayload_inline(r_xprt, rqst)) |
| wtype = rpcrdma_writech; |
| else |
| wtype = rpcrdma_replych; |
| |
| /* |
| * Chunks needed for arguments? |
| * |
| * o If the total request is under the inline threshold, all ops |
| * are sent as inline. |
| * o Large write ops transmit data as read chunk(s), header as |
| * inline. |
| * o Large non-write ops are sent with the entire message as a |
| * single read chunk (protocol 0-position special case). |
| * |
| * This assumes that the upper layer does not present a request |
| * that both has a data payload, and whose non-data arguments |
| * by themselves are larger than the inline threshold. |
| */ |
| if (rpcrdma_args_inline(r_xprt, rqst)) { |
| *p++ = rdma_msg; |
| rtype = buf->len < rdmab_length(req->rl_sendbuf) ? |
| rpcrdma_noch_pullup : rpcrdma_noch_mapped; |
| } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) { |
| *p++ = rdma_msg; |
| rtype = rpcrdma_readch; |
| } else { |
| r_xprt->rx_stats.nomsg_call_count++; |
| *p++ = rdma_nomsg; |
| rtype = rpcrdma_areadch; |
| } |
| |
| /* This implementation supports the following combinations |
| * of chunk lists in one RPC-over-RDMA Call message: |
| * |
| * - Read list |
| * - Write list |
| * - Reply chunk |
| * - Read list + Reply chunk |
| * |
| * It might not yet support the following combinations: |
| * |
| * - Read list + Write list |
| * |
| * It does not support the following combinations: |
| * |
| * - Write list + Reply chunk |
| * - Read list + Write list + Reply chunk |
| * |
| * This implementation supports only a single chunk in each |
| * Read or Write list. Thus for example the client cannot |
| * send a Call message with a Position Zero Read chunk and a |
| * regular Read chunk at the same time. |
| */ |
| ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); |
| if (ret) |
| goto out_err; |
| ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); |
| if (ret) |
| goto out_err; |
| ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); |
| if (ret) |
| goto out_err; |
| |
| ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len, |
| buf, rtype); |
| if (ret) |
| goto out_err; |
| |
| trace_xprtrdma_marshal(req, rtype, wtype); |
| return 0; |
| |
| out_err: |
| trace_xprtrdma_marshal_failed(rqst, ret); |
| r_xprt->rx_stats.failed_marshal_count++; |
| frwr_reset(req); |
| return ret; |
| } |
| |
| static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt, |
| struct rpcrdma_buffer *buf, |
| u32 grant) |
| { |
| buf->rb_credits = grant; |
| xprt->cwnd = grant << RPC_CWNDSHIFT; |
| } |
| |
| static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant) |
| { |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| |
| spin_lock(&xprt->transport_lock); |
| __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant); |
| spin_unlock(&xprt->transport_lock); |
| } |
| |
| /** |
| * rpcrdma_reset_cwnd - Reset the xprt's congestion window |
| * @r_xprt: controlling transport instance |
| * |
| * Prepare @r_xprt for the next connection by reinitializing |
| * its credit grant to one (see RFC 8166, Section 3.3.3). |
| */ |
| void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| |
| spin_lock(&xprt->transport_lock); |
| xprt->cong = 0; |
| __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1); |
| spin_unlock(&xprt->transport_lock); |
| } |
| |
| /** |
| * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs |
| * @rqst: controlling RPC request |
| * @srcp: points to RPC message payload in receive buffer |
| * @copy_len: remaining length of receive buffer content |
| * @pad: Write chunk pad bytes needed (zero for pure inline) |
| * |
| * The upper layer has set the maximum number of bytes it can |
| * receive in each component of rq_rcv_buf. These values are set in |
| * the head.iov_len, page_len, tail.iov_len, and buflen fields. |
| * |
| * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in |
| * many cases this function simply updates iov_base pointers in |
| * rq_rcv_buf to point directly to the received reply data, to |
| * avoid copying reply data. |
| * |
| * Returns the count of bytes which had to be memcopied. |
| */ |
| static unsigned long |
| rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) |
| { |
| unsigned long fixup_copy_count; |
| int i, npages, curlen; |
| char *destp; |
| struct page **ppages; |
| int page_base; |
| |
| /* The head iovec is redirected to the RPC reply message |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| rqst->rq_rcv_buf.head[0].iov_base = srcp; |
| rqst->rq_private_buf.head[0].iov_base = srcp; |
| |
| /* The contents of the receive buffer that follow |
| * head.iov_len bytes are copied into the page list. |
| */ |
| curlen = rqst->rq_rcv_buf.head[0].iov_len; |
| if (curlen > copy_len) |
| curlen = copy_len; |
| srcp += curlen; |
| copy_len -= curlen; |
| |
| ppages = rqst->rq_rcv_buf.pages + |
| (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); |
| page_base = offset_in_page(rqst->rq_rcv_buf.page_base); |
| fixup_copy_count = 0; |
| if (copy_len && rqst->rq_rcv_buf.page_len) { |
| int pagelist_len; |
| |
| pagelist_len = rqst->rq_rcv_buf.page_len; |
| if (pagelist_len > copy_len) |
| pagelist_len = copy_len; |
| npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; |
| for (i = 0; i < npages; i++) { |
| curlen = PAGE_SIZE - page_base; |
| if (curlen > pagelist_len) |
| curlen = pagelist_len; |
| |
| destp = kmap_atomic(ppages[i]); |
| memcpy(destp + page_base, srcp, curlen); |
| flush_dcache_page(ppages[i]); |
| kunmap_atomic(destp); |
| srcp += curlen; |
| copy_len -= curlen; |
| fixup_copy_count += curlen; |
| pagelist_len -= curlen; |
| if (!pagelist_len) |
| break; |
| page_base = 0; |
| } |
| |
| /* Implicit padding for the last segment in a Write |
| * chunk is inserted inline at the front of the tail |
| * iovec. The upper layer ignores the content of |
| * the pad. Simply ensure inline content in the tail |
| * that follows the Write chunk is properly aligned. |
| */ |
| if (pad) |
| srcp -= pad; |
| } |
| |
| /* The tail iovec is redirected to the remaining data |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| if (copy_len || pad) { |
| rqst->rq_rcv_buf.tail[0].iov_base = srcp; |
| rqst->rq_private_buf.tail[0].iov_base = srcp; |
| } |
| |
| if (fixup_copy_count) |
| trace_xprtrdma_fixup(rqst, fixup_copy_count); |
| return fixup_copy_count; |
| } |
| |
| /* By convention, backchannel calls arrive via rdma_msg type |
| * messages, and never populate the chunk lists. This makes |
| * the RPC/RDMA header small and fixed in size, so it is |
| * straightforward to check the RPC header's direction field. |
| */ |
| static bool |
| rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| __be32 *p; |
| |
| if (rep->rr_proc != rdma_msg) |
| return false; |
| |
| /* Peek at stream contents without advancing. */ |
| p = xdr_inline_decode(xdr, 0); |
| |
| /* Chunk lists */ |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| |
| /* RPC header */ |
| if (*p++ != rep->rr_xid) |
| return false; |
| if (*p != cpu_to_be32(RPC_CALL)) |
| return false; |
| |
| /* Now that we are sure this is a backchannel call, |
| * advance to the RPC header. |
| */ |
| p = xdr_inline_decode(xdr, 3 * sizeof(*p)); |
| if (unlikely(!p)) |
| goto out_short; |
| |
| rpcrdma_bc_receive_call(r_xprt, rep); |
| return true; |
| |
| out_short: |
| pr_warn("RPC/RDMA short backward direction call\n"); |
| return true; |
| } |
| #else /* CONFIG_SUNRPC_BACKCHANNEL */ |
| { |
| return false; |
| } |
| #endif /* CONFIG_SUNRPC_BACKCHANNEL */ |
| |
| static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 handle; |
| u64 offset; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| handle = be32_to_cpup(p++); |
| *length = be32_to_cpup(p++); |
| xdr_decode_hyper(p, &offset); |
| |
| trace_xprtrdma_decode_seg(handle, *length, offset); |
| return 0; |
| } |
| |
| static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 segcount, seglength; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| *length = 0; |
| segcount = be32_to_cpup(p); |
| while (segcount--) { |
| if (decode_rdma_segment(xdr, &seglength)) |
| return -EIO; |
| *length += seglength; |
| } |
| |
| return 0; |
| } |
| |
| /* In RPC-over-RDMA Version One replies, a Read list is never |
| * expected. This decoder is a stub that returns an error if |
| * a Read list is present. |
| */ |
| static int decode_read_list(struct xdr_stream *xdr) |
| { |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| if (unlikely(*p != xdr_zero)) |
| return -EIO; |
| return 0; |
| } |
| |
| /* Supports only one Write chunk in the Write list |
| */ |
| static int decode_write_list(struct xdr_stream *xdr, u32 *length) |
| { |
| u32 chunklen; |
| bool first; |
| __be32 *p; |
| |
| *length = 0; |
| first = true; |
| do { |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| if (*p == xdr_zero) |
| break; |
| if (!first) |
| return -EIO; |
| |
| if (decode_write_chunk(xdr, &chunklen)) |
| return -EIO; |
| *length += chunklen; |
| first = false; |
| } while (true); |
| return 0; |
| } |
| |
| static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) |
| { |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| *length = 0; |
| if (*p != xdr_zero) |
| if (decode_write_chunk(xdr, length)) |
| return -EIO; |
| return 0; |
| } |
| |
| static int |
| rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| u32 writelist, replychunk, rpclen; |
| char *base; |
| |
| /* Decode the chunk lists */ |
| if (decode_read_list(xdr)) |
| return -EIO; |
| if (decode_write_list(xdr, &writelist)) |
| return -EIO; |
| if (decode_reply_chunk(xdr, &replychunk)) |
| return -EIO; |
| |
| /* RDMA_MSG sanity checks */ |
| if (unlikely(replychunk)) |
| return -EIO; |
| |
| /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ |
| base = (char *)xdr_inline_decode(xdr, 0); |
| rpclen = xdr_stream_remaining(xdr); |
| r_xprt->rx_stats.fixup_copy_count += |
| rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); |
| |
| r_xprt->rx_stats.total_rdma_reply += writelist; |
| return rpclen + xdr_align_size(writelist); |
| } |
| |
| static noinline int |
| rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| u32 writelist, replychunk; |
| |
| /* Decode the chunk lists */ |
| if (decode_read_list(xdr)) |
| return -EIO; |
| if (decode_write_list(xdr, &writelist)) |
| return -EIO; |
| if (decode_reply_chunk(xdr, &replychunk)) |
| return -EIO; |
| |
| /* RDMA_NOMSG sanity checks */ |
| if (unlikely(writelist)) |
| return -EIO; |
| if (unlikely(!replychunk)) |
| return -EIO; |
| |
| /* Reply chunk buffer already is the reply vector */ |
| r_xprt->rx_stats.total_rdma_reply += replychunk; |
| return replychunk; |
| } |
| |
| static noinline int |
| rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_stream *xdr = &rep->rr_stream; |
| __be32 *p; |
| |
| p = xdr_inline_decode(xdr, sizeof(*p)); |
| if (unlikely(!p)) |
| return -EIO; |
| |
| switch (*p) { |
| case err_vers: |
| p = xdr_inline_decode(xdr, 2 * sizeof(*p)); |
| if (!p) |
| break; |
| dprintk("RPC: %s: server reports " |
| "version error (%u-%u), xid %08x\n", __func__, |
| be32_to_cpup(p), be32_to_cpu(*(p + 1)), |
| be32_to_cpu(rep->rr_xid)); |
| break; |
| case err_chunk: |
| dprintk("RPC: %s: server reports " |
| "header decoding error, xid %08x\n", __func__, |
| be32_to_cpu(rep->rr_xid)); |
| break; |
| default: |
| dprintk("RPC: %s: server reports " |
| "unrecognized error %d, xid %08x\n", __func__, |
| be32_to_cpup(p), be32_to_cpu(rep->rr_xid)); |
| } |
| |
| r_xprt->rx_stats.bad_reply_count++; |
| return -EREMOTEIO; |
| } |
| |
| /* Perform XID lookup, reconstruction of the RPC reply, and |
| * RPC completion while holding the transport lock to ensure |
| * the rep, rqst, and rq_task pointers remain stable. |
| */ |
| void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rpc_rqst *rqst = rep->rr_rqst; |
| int status; |
| |
| switch (rep->rr_proc) { |
| case rdma_msg: |
| status = rpcrdma_decode_msg(r_xprt, rep, rqst); |
| break; |
| case rdma_nomsg: |
| status = rpcrdma_decode_nomsg(r_xprt, rep); |
| break; |
| case rdma_error: |
| status = rpcrdma_decode_error(r_xprt, rep, rqst); |
| break; |
| default: |
| status = -EIO; |
| } |
| if (status < 0) |
| goto out_badheader; |
| |
| out: |
| spin_lock(&xprt->queue_lock); |
| xprt_complete_rqst(rqst->rq_task, status); |
| xprt_unpin_rqst(rqst); |
| spin_unlock(&xprt->queue_lock); |
| return; |
| |
| /* If the incoming reply terminated a pending RPC, the next |
| * RPC call will post a replacement receive buffer as it is |
| * being marshaled. |
| */ |
| out_badheader: |
| trace_xprtrdma_reply_hdr(rep); |
| r_xprt->rx_stats.bad_reply_count++; |
| goto out; |
| } |
| |
| static void rpcrdma_reply_done(struct kref *kref) |
| { |
| struct rpcrdma_req *req = |
| container_of(kref, struct rpcrdma_req, rl_kref); |
| |
| rpcrdma_complete_rqst(req->rl_reply); |
| } |
| |
| /** |
| * rpcrdma_reply_handler - Process received RPC/RDMA messages |
| * @rep: Incoming rpcrdma_rep object to process |
| * |
| * Errors must result in the RPC task either being awakened, or |
| * allowed to timeout, to discover the errors at that time. |
| */ |
| void rpcrdma_reply_handler(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_req *req; |
| struct rpc_rqst *rqst; |
| u32 credits; |
| __be32 *p; |
| |
| /* Any data means we had a useful conversation, so |
| * then we don't need to delay the next reconnect. |
| */ |
| if (xprt->reestablish_timeout) |
| xprt->reestablish_timeout = 0; |
| |
| /* Fixed transport header fields */ |
| xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, |
| rep->rr_hdrbuf.head[0].iov_base, NULL); |
| p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); |
| if (unlikely(!p)) |
| goto out_shortreply; |
| rep->rr_xid = *p++; |
| rep->rr_vers = *p++; |
| credits = be32_to_cpu(*p++); |
| rep->rr_proc = *p++; |
| |
| if (rep->rr_vers != rpcrdma_version) |
| goto out_badversion; |
| |
| if (rpcrdma_is_bcall(r_xprt, rep)) |
| return; |
| |
| /* Match incoming rpcrdma_rep to an rpcrdma_req to |
| * get context for handling any incoming chunks. |
| */ |
| spin_lock(&xprt->queue_lock); |
| rqst = xprt_lookup_rqst(xprt, rep->rr_xid); |
| if (!rqst) |
| goto out_norqst; |
| xprt_pin_rqst(rqst); |
| spin_unlock(&xprt->queue_lock); |
| |
| if (credits == 0) |
| credits = 1; /* don't deadlock */ |
| else if (credits > buf->rb_max_requests) |
| credits = buf->rb_max_requests; |
| if (buf->rb_credits != credits) |
| rpcrdma_update_cwnd(r_xprt, credits); |
| rpcrdma_post_recvs(r_xprt, false); |
| |
| req = rpcr_to_rdmar(rqst); |
| if (req->rl_reply) { |
| trace_xprtrdma_leaked_rep(rqst, req->rl_reply); |
| rpcrdma_recv_buffer_put(req->rl_reply); |
| } |
| req->rl_reply = rep; |
| rep->rr_rqst = rqst; |
| |
| trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); |
| |
| if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) |
| frwr_reminv(rep, &req->rl_registered); |
| if (!list_empty(&req->rl_registered)) |
| frwr_unmap_async(r_xprt, req); |
| /* LocalInv completion will complete the RPC */ |
| else |
| kref_put(&req->rl_kref, rpcrdma_reply_done); |
| return; |
| |
| out_badversion: |
| trace_xprtrdma_reply_vers(rep); |
| goto out; |
| |
| out_norqst: |
| spin_unlock(&xprt->queue_lock); |
| trace_xprtrdma_reply_rqst(rep); |
| goto out; |
| |
| out_shortreply: |
| trace_xprtrdma_reply_short(rep); |
| |
| out: |
| rpcrdma_recv_buffer_put(rep); |
| } |