| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2024, SUSE LLC |
| * |
| * Authors: Enzo Matsumiya <ematsumiya@suse.de> |
| * |
| * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only). |
| * See compress/ for implementation details of each algorithm. |
| * |
| * References: |
| * MS-SMB2 "3.1.4.4 Compressing the Message" |
| * MS-SMB2 "3.1.5.3 Decompressing the Chained Message" |
| * MS-XCA - for details of the supported algorithms |
| */ |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/uio.h> |
| #include <linux/sort.h> |
| |
| #include "cifsglob.h" |
| #include "../common/smb2pdu.h" |
| #include "cifsproto.h" |
| #include "smb2proto.h" |
| |
| #include "compress/lz77.h" |
| #include "compress.h" |
| |
| /* |
| * The heuristic_*() functions below try to determine data compressibility. |
| * |
| * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing |
| * unused parts. |
| * |
| * Read that file for better and more detailed explanation of the calculations. |
| * |
| * The algorithms are ran in a collected sample of the input (uncompressed) data. |
| * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M. |
| * |
| * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible) |
| * to "need more analysis" (likely uncompressible). |
| */ |
| |
| struct bucket { |
| unsigned int count; |
| }; |
| |
| /** |
| * has_low_entropy() - Compute Shannon entropy of the sampled data. |
| * @bkt: Bytes counts of the sample. |
| * @slen: Size of the sample. |
| * |
| * Return: true if the level (percentage of number of bits that would be required to |
| * compress the data) is below the minimum threshold. |
| * |
| * Note: |
| * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a |
| * possibility of compression, but compressing, or even further analysing, it would waste so much |
| * resources that it's simply not worth it. |
| * |
| * Also Shannon entropy is the last computed heuristic; if we got this far and ended up |
| * with uncertainty, just stay on the safe side and call it uncompressible. |
| */ |
| static bool has_low_entropy(struct bucket *bkt, size_t slen) |
| { |
| const size_t threshold = 65, max_entropy = 8 * ilog2(16); |
| size_t i, p, p2, len, sum = 0; |
| |
| #define pow4(n) (n * n * n * n) |
| len = ilog2(pow4(slen)); |
| |
| for (i = 0; i < 256 && bkt[i].count > 0; i++) { |
| p = bkt[i].count; |
| p2 = ilog2(pow4(p)); |
| sum += p * (len - p2); |
| } |
| |
| sum /= slen; |
| |
| return ((sum * 100 / max_entropy) <= threshold); |
| } |
| |
| #define BYTE_DIST_BAD 0 |
| #define BYTE_DIST_GOOD 1 |
| #define BYTE_DIST_MAYBE 2 |
| /** |
| * calc_byte_distribution() - Compute byte distribution on the sampled data. |
| * @bkt: Byte counts of the sample. |
| * @slen: Size of the sample. |
| * |
| * Return: |
| * BYTE_DIST_BAD: A "hard no" for compression -- a computed uniform distribution of |
| * the bytes (e.g. random or encrypted data). |
| * BYTE_DIST_GOOD: High probability (normal (Gaussian) distribution) of the data being |
| * compressible. |
| * BYTE_DIST_MAYBE: When computed byte distribution resulted in "low > n < high" |
| * grounds. has_low_entropy() should be used for a final decision. |
| */ |
| static int calc_byte_distribution(struct bucket *bkt, size_t slen) |
| { |
| const size_t low = 64, high = 200, threshold = slen * 90 / 100; |
| size_t sum = 0; |
| int i; |
| |
| for (i = 0; i < low; i++) |
| sum += bkt[i].count; |
| |
| if (sum > threshold) |
| return BYTE_DIST_BAD; |
| |
| for (; i < high && bkt[i].count > 0; i++) { |
| sum += bkt[i].count; |
| if (sum > threshold) |
| break; |
| } |
| |
| if (i <= low) |
| return BYTE_DIST_GOOD; |
| |
| if (i >= high) |
| return BYTE_DIST_BAD; |
| |
| return BYTE_DIST_MAYBE; |
| } |
| |
| static bool is_mostly_ascii(const struct bucket *bkt) |
| { |
| size_t count = 0; |
| int i; |
| |
| for (i = 0; i < 256; i++) |
| if (bkt[i].count > 0) |
| /* Too many non-ASCII (0-63) bytes. */ |
| if (++count > 64) |
| return false; |
| |
| return true; |
| } |
| |
| static bool has_repeated_data(const u8 *sample, size_t len) |
| { |
| size_t s = len / 2; |
| |
| return (!memcmp(&sample[0], &sample[s], s)); |
| } |
| |
| static int cmp_bkt(const void *_a, const void *_b) |
| { |
| const struct bucket *a = _a, *b = _b; |
| |
| /* Reverse sort. */ |
| if (a->count > b->count) |
| return -1; |
| |
| return 1; |
| } |
| |
| /* |
| * TODO: |
| * Support other iter types, if required. |
| * Only ITER_XARRAY is supported for now. |
| */ |
| static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample) |
| { |
| struct folio *folios[16], *folio; |
| unsigned int nr, i, j, npages; |
| loff_t start = iter->xarray_start + iter->iov_offset; |
| pgoff_t last, index = start / PAGE_SIZE; |
| size_t len, off, foff; |
| void *p; |
| int s = 0; |
| |
| last = (start + max - 1) / PAGE_SIZE; |
| do { |
| nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios), |
| XA_PRESENT); |
| if (nr == 0) |
| return -EIO; |
| |
| for (i = 0; i < nr; i++) { |
| folio = folios[i]; |
| npages = folio_nr_pages(folio); |
| foff = start - folio_pos(folio); |
| off = foff % PAGE_SIZE; |
| |
| for (j = foff / PAGE_SIZE; j < npages; j++) { |
| size_t len2; |
| |
| len = min_t(size_t, max, PAGE_SIZE - off); |
| len2 = min_t(size_t, len, SZ_2K); |
| |
| p = kmap_local_page(folio_page(folio, j)); |
| memcpy(&sample[s], p, len2); |
| kunmap_local(p); |
| |
| s += len2; |
| |
| if (len2 < SZ_2K || s >= max - SZ_2K) |
| return s; |
| |
| max -= len; |
| if (max <= 0) |
| return s; |
| |
| start += len; |
| off = 0; |
| index++; |
| } |
| } |
| } while (nr == ARRAY_SIZE(folios)); |
| |
| return s; |
| } |
| |
| /** |
| * is_compressible() - Determines if a chunk of data is compressible. |
| * @data: Iterator containing uncompressed data. |
| * |
| * Return: true if @data is compressible, false otherwise. |
| * |
| * Tests shows that this function is quite reliable in predicting data compressibility, |
| * matching close to 1:1 with the behaviour of LZ77 compression success and failures. |
| */ |
| static bool is_compressible(const struct iov_iter *data) |
| { |
| const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M; |
| struct bucket *bkt = NULL; |
| size_t len; |
| u8 *sample; |
| bool ret = false; |
| int i; |
| |
| /* Preventive double check -- already checked in should_compress(). */ |
| len = iov_iter_count(data); |
| if (unlikely(len < read_size)) |
| return ret; |
| |
| if (len - read_size > max) |
| len = max; |
| |
| sample = kvzalloc(len, GFP_KERNEL); |
| if (!sample) { |
| WARN_ON_ONCE(1); |
| |
| return ret; |
| } |
| |
| /* Sample 2K bytes per page of the uncompressed data. */ |
| i = collect_sample(data, len, sample); |
| if (i <= 0) { |
| WARN_ON_ONCE(1); |
| |
| goto out; |
| } |
| |
| len = i; |
| ret = true; |
| |
| if (has_repeated_data(sample, len)) |
| goto out; |
| |
| bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL); |
| if (!bkt) { |
| WARN_ON_ONCE(1); |
| ret = false; |
| |
| goto out; |
| } |
| |
| for (i = 0; i < len; i++) |
| bkt[sample[i]].count++; |
| |
| if (is_mostly_ascii(bkt)) |
| goto out; |
| |
| /* Sort in descending order */ |
| sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL); |
| |
| i = calc_byte_distribution(bkt, len); |
| if (i != BYTE_DIST_MAYBE) { |
| ret = !!i; |
| |
| goto out; |
| } |
| |
| ret = has_low_entropy(bkt, len); |
| out: |
| kvfree(sample); |
| kfree(bkt); |
| |
| return ret; |
| } |
| |
| bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq) |
| { |
| const struct smb2_hdr *shdr = rq->rq_iov->iov_base; |
| |
| if (unlikely(!tcon || !tcon->ses || !tcon->ses->server)) |
| return false; |
| |
| if (!tcon->ses->server->compression.enabled) |
| return false; |
| |
| if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA)) |
| return false; |
| |
| if (shdr->Command == SMB2_WRITE) { |
| const struct smb2_write_req *wreq = rq->rq_iov->iov_base; |
| |
| if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN) |
| return false; |
| |
| return is_compressible(&rq->rq_iter); |
| } |
| |
| return (shdr->Command == SMB2_READ); |
| } |
| |
| int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn) |
| { |
| struct iov_iter iter; |
| u32 slen, dlen; |
| void *src, *dst = NULL; |
| int ret; |
| |
| if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base) |
| return -EINVAL; |
| |
| if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req)) |
| return -EINVAL; |
| |
| slen = iov_iter_count(&rq->rq_iter); |
| src = kvzalloc(slen, GFP_KERNEL); |
| if (!src) { |
| ret = -ENOMEM; |
| goto err_free; |
| } |
| |
| /* Keep the original iter intact. */ |
| iter = rq->rq_iter; |
| |
| if (!copy_from_iter_full(src, slen, &iter)) { |
| ret = -EIO; |
| goto err_free; |
| } |
| |
| /* |
| * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8 |
| * of @slen. |
| */ |
| dlen = slen; |
| dst = kvzalloc(dlen, GFP_KERNEL); |
| if (!dst) { |
| ret = -ENOMEM; |
| goto err_free; |
| } |
| |
| ret = lz77_compress(src, slen, dst, &dlen); |
| if (!ret) { |
| struct smb2_compression_hdr hdr = { 0 }; |
| struct smb_rqst comp_rq = { .rq_nvec = 3, }; |
| struct kvec iov[3]; |
| |
| hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID; |
| hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen); |
| hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77; |
| hdr.Flags = SMB2_COMPRESSION_FLAG_NONE; |
| hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len); |
| |
| iov[0].iov_base = &hdr; |
| iov[0].iov_len = sizeof(hdr); |
| iov[1] = rq->rq_iov[0]; |
| iov[2].iov_base = dst; |
| iov[2].iov_len = dlen; |
| |
| comp_rq.rq_iov = iov; |
| |
| ret = send_fn(server, 1, &comp_rq); |
| } else if (ret == -EMSGSIZE || dlen >= slen) { |
| ret = send_fn(server, 1, rq); |
| } |
| err_free: |
| kvfree(dst); |
| kvfree(src); |
| |
| return ret; |
| } |