blob: ac19d685e4a5a0b3f065e07190a129d280bc751e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers.c
*
* Copyright (c) 1999 The Puffin Group
* Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
* Copyright (c) 2001-2023 Helge Deller <deller@gmx.de>
* Copyright (c) 2001,2002 Ryan Bradetich
* Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org>
*
* The file handles registering devices and drivers, then matching them.
* It's the closest we get to a dating agency.
*
* If you're thinking about modifying this file, here are some gotchas to
* bear in mind:
* - 715/Mirage device paths have a dummy device between Lasi and its children
* - The EISA adapter may show up as a sibling or child of Wax
* - Dino has an optionally functional serial port. If firmware enables it,
* it shows up as a child of Dino. If firmware disables it, the buswalk
* finds it and it shows up as a child of Cujo
* - Dino has both parisc and pci devices as children
* - parisc devices are discovered in a random order, including children
* before parents in some cases.
*/
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/dma-map-ops.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/pdc.h>
#include <asm/parisc-device.h>
#include <asm/ropes.h>
/* See comments in include/asm-parisc/pci.h */
const struct dma_map_ops *hppa_dma_ops __ro_after_init;
EXPORT_SYMBOL(hppa_dma_ops);
static struct device root = {
.init_name = "parisc",
};
static inline int check_dev(struct device *dev)
{
if (dev->bus == &parisc_bus_type) {
struct parisc_device *pdev;
pdev = to_parisc_device(dev);
return pdev->id.hw_type != HPHW_FAULTY;
}
return 1;
}
static struct device *
parse_tree_node(struct device *parent, int index, struct hardware_path *modpath);
struct recurse_struct {
void * obj;
int (*fn)(struct device *, void *);
};
static int descend_children(struct device * dev, void * data)
{
struct recurse_struct * recurse_data = (struct recurse_struct *)data;
if (recurse_data->fn(dev, recurse_data->obj))
return 1;
else
return device_for_each_child(dev, recurse_data, descend_children);
}
/**
* for_each_padev - Iterate over all devices in the tree
* @fn: Function to call for each device.
* @data: Data to pass to the called function.
*
* This performs a depth-first traversal of the tree, calling the
* function passed for each node. It calls the function for parents
* before children.
*/
static int for_each_padev(int (*fn)(struct device *, void *), void * data)
{
struct recurse_struct recurse_data = {
.obj = data,
.fn = fn,
};
return device_for_each_child(&root, &recurse_data, descend_children);
}
/**
* match_device - Report whether this driver can handle this device
* @driver: the PA-RISC driver to try
* @dev: the PA-RISC device to try
*/
static int match_device(struct parisc_driver *driver, struct parisc_device *dev)
{
const struct parisc_device_id *ids;
for (ids = driver->id_table; ids->sversion; ids++) {
if ((ids->sversion != SVERSION_ANY_ID) &&
(ids->sversion != dev->id.sversion))
continue;
if ((ids->hw_type != HWTYPE_ANY_ID) &&
(ids->hw_type != dev->id.hw_type))
continue;
if ((ids->hversion != HVERSION_ANY_ID) &&
(ids->hversion != dev->id.hversion))
continue;
return 1;
}
return 0;
}
static int parisc_driver_probe(struct device *dev)
{
int rc;
struct parisc_device *pa_dev = to_parisc_device(dev);
struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
rc = pa_drv->probe(pa_dev);
if (!rc)
pa_dev->driver = pa_drv;
return rc;
}
static void __exit parisc_driver_remove(struct device *dev)
{
struct parisc_device *pa_dev = to_parisc_device(dev);
struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
if (pa_drv->remove)
pa_drv->remove(pa_dev);
}
/**
* register_parisc_driver - Register this driver if it can handle a device
* @driver: the PA-RISC driver to try
*/
int register_parisc_driver(struct parisc_driver *driver)
{
/* FIXME: we need this because apparently the sti
* driver can be registered twice */
if (driver->drv.name) {
pr_warn("BUG: skipping previously registered driver %s\n",
driver->name);
return 1;
}
if (!driver->probe) {
pr_warn("BUG: driver %s has no probe routine\n", driver->name);
return 1;
}
driver->drv.bus = &parisc_bus_type;
/* We install our own probe and remove routines */
WARN_ON(driver->drv.probe != NULL);
WARN_ON(driver->drv.remove != NULL);
driver->drv.name = driver->name;
return driver_register(&driver->drv);
}
EXPORT_SYMBOL(register_parisc_driver);
struct match_count {
struct parisc_driver * driver;
int count;
};
static int match_and_count(struct device * dev, void * data)
{
struct match_count * m = data;
struct parisc_device * pdev = to_parisc_device(dev);
if (check_dev(dev)) {
if (match_device(m->driver, pdev))
m->count++;
}
return 0;
}
/**
* count_parisc_driver - count # of devices this driver would match
* @driver: the PA-RISC driver to try
*
* Use by IOMMU support to "guess" the right size IOPdir.
* Formula is something like memsize/(num_iommu * entry_size).
*/
int __init count_parisc_driver(struct parisc_driver *driver)
{
struct match_count m = {
.driver = driver,
.count = 0,
};
for_each_padev(match_and_count, &m);
return m.count;
}
/**
* unregister_parisc_driver - Unregister this driver from the list of drivers
* @driver: the PA-RISC driver to unregister
*/
int unregister_parisc_driver(struct parisc_driver *driver)
{
driver_unregister(&driver->drv);
return 0;
}
EXPORT_SYMBOL(unregister_parisc_driver);
struct find_data {
unsigned long hpa;
struct parisc_device * dev;
};
static int find_device(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
struct find_data * d = (struct find_data*)data;
if (check_dev(dev)) {
if (pdev->hpa.start == d->hpa) {
d->dev = pdev;
return 1;
}
}
return 0;
}
static struct parisc_device *find_device_by_addr(unsigned long hpa)
{
struct find_data d = {
.hpa = hpa,
};
int ret;
ret = for_each_padev(find_device, &d);
return ret ? d.dev : NULL;
}
static int __init is_IKE_device(struct device *dev, void *data)
{
struct parisc_device *pdev = to_parisc_device(dev);
if (!check_dev(dev))
return 0;
if (pdev->id.hw_type != HPHW_BCPORT)
return 0;
if (IS_IKE(pdev) ||
(pdev->id.hversion == REO_MERCED_PORT) ||
(pdev->id.hversion == REOG_MERCED_PORT)) {
return 1;
}
return 0;
}
int __init machine_has_merced_bus(void)
{
int ret;
ret = for_each_padev(is_IKE_device, NULL);
return ret ? 1 : 0;
}
/**
* find_pa_parent_type - Find a parent of a specific type
* @padev: The device to start searching from
* @type: The device type to search for.
*
* Walks up the device tree looking for a device of the specified type.
* If it finds it, it returns it. If not, it returns NULL.
*/
const struct parisc_device *
find_pa_parent_type(const struct parisc_device *padev, int type)
{
const struct device *dev = &padev->dev;
while (dev != &root) {
struct parisc_device *candidate = to_parisc_device(dev);
if (candidate->id.hw_type == type)
return candidate;
dev = dev->parent;
}
return NULL;
}
/*
* get_node_path fills in @path with the firmware path to the device.
* Note that if @node is a parisc device, we don't fill in the 'mod' field.
* This is because both callers pass the parent and fill in the mod
* themselves. If @node is a PCI device, we do fill it in, even though this
* is inconsistent.
*/
static void get_node_path(struct device *dev, struct hardware_path *path)
{
int i = 5;
memset(&path->bc, -1, 6);
if (dev_is_pci(dev)) {
unsigned int devfn = to_pci_dev(dev)->devfn;
path->mod = PCI_FUNC(devfn);
path->bc[i--] = PCI_SLOT(devfn);
dev = dev->parent;
}
while (dev != &root) {
if (dev_is_pci(dev)) {
unsigned int devfn = to_pci_dev(dev)->devfn;
path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5);
} else if (dev->bus == &parisc_bus_type) {
path->bc[i--] = to_parisc_device(dev)->hw_path;
}
dev = dev->parent;
}
}
static char *print_hwpath(struct hardware_path *path, char *output)
{
int i;
for (i = 0; i < 6; i++) {
if (path->bc[i] == -1)
continue;
output += sprintf(output, "%u/", (unsigned char) path->bc[i]);
}
output += sprintf(output, "%u", (unsigned char) path->mod);
return output;
}
/**
* print_pa_hwpath - Returns hardware path for PA devices
* @dev: The device to return the path for
* @output: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the output array with a human-readable path
* to a PA device. This string is compatible with that used by PDC, and
* may be printed on the outside of the box.
*/
char *print_pa_hwpath(struct parisc_device *dev, char *output)
{
struct hardware_path path;
get_node_path(dev->dev.parent, &path);
path.mod = dev->hw_path;
return print_hwpath(&path, output);
}
EXPORT_SYMBOL(print_pa_hwpath);
#if defined(CONFIG_PCI) || defined(CONFIG_ISA)
/**
* get_pci_node_path - Determines the hardware path for a PCI device
* @pdev: The device to return the path for
* @path: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the hardware_path structure with the route to
* the specified PCI device. This structure is suitable for passing to
* PDC calls.
*/
void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path)
{
get_node_path(&pdev->dev, path);
}
EXPORT_SYMBOL(get_pci_node_path);
/**
* print_pci_hwpath - Returns hardware path for PCI devices
* @dev: The device to return the path for
* @output: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the output array with a human-readable path
* to a PCI device. This string is compatible with that used by PDC, and
* may be printed on the outside of the box.
*/
char *print_pci_hwpath(struct pci_dev *dev, char *output)
{
struct hardware_path path;
get_pci_node_path(dev, &path);
return print_hwpath(&path, output);
}
EXPORT_SYMBOL(print_pci_hwpath);
#endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */
static void setup_bus_id(struct parisc_device *padev)
{
struct hardware_path path;
char name[28];
char *output = name;
int i;
get_node_path(padev->dev.parent, &path);
for (i = 0; i < 6; i++) {
if (path.bc[i] == -1)
continue;
output += sprintf(output, "%u:", (unsigned char) path.bc[i]);
}
sprintf(output, "%u", (unsigned char) padev->hw_path);
dev_set_name(&padev->dev, name);
}
static struct parisc_device * __init create_tree_node(char id,
struct device *parent)
{
struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
dev->hw_path = id;
dev->id.hw_type = HPHW_FAULTY;
dev->dev.parent = parent;
setup_bus_id(dev);
dev->dev.bus = &parisc_bus_type;
dev->dma_mask = 0xffffffffUL; /* PARISC devices are 32-bit */
/* make the generic dma mask a pointer to the parisc one */
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.coherent_dma_mask = dev->dma_mask;
if (device_register(&dev->dev)) {
kfree(dev);
return NULL;
}
return dev;
}
struct match_id_data {
char id;
struct parisc_device * dev;
};
static int match_by_id(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
struct match_id_data * d = data;
if (pdev->hw_path == d->id) {
d->dev = pdev;
return 1;
}
return 0;
}
/**
* alloc_tree_node - returns a device entry in the iotree
* @parent: the parent node in the tree
* @id: the element of the module path for this entry
*
* Checks all the children of @parent for a matching @id. If none
* found, it allocates a new device and returns it.
*/
static struct parisc_device * __init alloc_tree_node(
struct device *parent, char id)
{
struct match_id_data d = {
.id = id,
};
if (device_for_each_child(parent, &d, match_by_id))
return d.dev;
else
return create_tree_node(id, parent);
}
static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
{
int i;
struct device *parent = &root;
for (i = 0; i < 6; i++) {
if (modpath->bc[i] == -1)
continue;
parent = &alloc_tree_node(parent, modpath->bc[i])->dev;
}
return alloc_tree_node(parent, modpath->mod);
}
struct parisc_device * __init
alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
{
int status;
unsigned long bytecnt;
u8 iodc_data[32];
struct parisc_device *dev;
const char *name;
/* Check to make sure this device has not already been added - Ryan */
if (find_device_by_addr(hpa) != NULL)
return NULL;
status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32);
if (status != PDC_OK)
return NULL;
dev = create_parisc_device(mod_path);
if (dev->id.hw_type != HPHW_FAULTY) {
pr_err("Two devices have hardware path [%s]. IODC data for second device: %7phN\n"
"Rearranging GSC cards sometimes helps\n",
parisc_pathname(dev), iodc_data);
return NULL;
}
dev->id.hw_type = iodc_data[3] & 0x1f;
dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4);
dev->id.hversion_rev = iodc_data[1] & 0x0f;
dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) |
(iodc_data[5] << 8) | iodc_data[6];
dev->hpa.start = hpa;
/* This is awkward. The STI spec says that gfx devices may occupy
* 32MB or 64MB. Unfortunately, we don't know how to tell whether
* it's the former or the latter. Assumptions either way can hurt us.
*/
if (hpa == 0xf4000000 || hpa == 0xf8000000) {
dev->hpa.end = hpa + 0x03ffffff;
} else if (hpa == 0xf6000000 || hpa == 0xfa000000) {
dev->hpa.end = hpa + 0x01ffffff;
} else {
dev->hpa.end = hpa + 0xfff;
}
dev->hpa.flags = IORESOURCE_MEM;
dev->hpa.name = dev->name;
name = parisc_hardware_description(&dev->id) ? : "unknown";
snprintf(dev->name, sizeof(dev->name), "%s [%s]",
name, parisc_pathname(dev));
/* Silently fail things like mouse ports which are subsumed within
* the keyboard controller
*/
if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa))
pr_warn("Unable to claim HPA %lx for device %s\n", hpa, name);
return dev;
}
static int parisc_generic_match(struct device *dev, struct device_driver *drv)
{
return match_device(to_parisc_driver(drv), to_parisc_device(dev));
}
static ssize_t make_modalias(const struct device *dev, char *buf)
{
const struct parisc_device *padev = to_parisc_device(dev);
const struct parisc_device_id *id = &padev->id;
return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n",
(u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev,
(u32)id->sversion);
}
static int parisc_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct parisc_device *padev;
char modalias[40];
if (!dev)
return -ENODEV;
padev = to_parisc_device(dev);
if (!padev)
return -ENODEV;
if (add_uevent_var(env, "PARISC_NAME=%s", padev->name))
return -ENOMEM;
make_modalias(dev, modalias);
if (add_uevent_var(env, "MODALIAS=%s", modalias))
return -ENOMEM;
return 0;
}
#define pa_dev_attr(name, field, format_string) \
static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct parisc_device *padev = to_parisc_device(dev); \
return sprintf(buf, format_string, padev->field); \
} \
static DEVICE_ATTR_RO(name);
#define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format)
pa_dev_attr(irq, irq, "%u\n");
pa_dev_attr_id(hw_type, "0x%02x\n");
pa_dev_attr(rev, id.hversion_rev, "0x%x\n");
pa_dev_attr_id(hversion, "0x%03x\n");
pa_dev_attr_id(sversion, "0x%05x\n");
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return make_modalias(dev, buf);
}
static DEVICE_ATTR_RO(modalias);
static struct attribute *parisc_device_attrs[] = {
&dev_attr_irq.attr,
&dev_attr_hw_type.attr,
&dev_attr_rev.attr,
&dev_attr_hversion.attr,
&dev_attr_sversion.attr,
&dev_attr_modalias.attr,
NULL,
};
ATTRIBUTE_GROUPS(parisc_device);
const struct bus_type parisc_bus_type = {
.name = "parisc",
.match = parisc_generic_match,
.uevent = parisc_uevent,
.dev_groups = parisc_device_groups,
.probe = parisc_driver_probe,
.remove = __exit_p(parisc_driver_remove),
};
/**
* register_parisc_device - Locate a driver to manage this device.
* @dev: The parisc device.
*
* Search the driver list for a driver that is willing to manage
* this device.
*/
int __init register_parisc_device(struct parisc_device *dev)
{
if (!dev)
return 0;
if (dev->driver)
return 1;
return 0;
}
/**
* match_pci_device - Matches a pci device against a given hardware path
* entry.
* @dev: the generic device (known to be contained by a pci_dev).
* @index: the current BC index
* @modpath: the hardware path.
* @return: true if the device matches the hardware path.
*/
static int match_pci_device(struct device *dev, int index,
struct hardware_path *modpath)
{
struct pci_dev *pdev = to_pci_dev(dev);
int id;
if (index == 5) {
/* we are at the end of the path, and on the actual device */
unsigned int devfn = pdev->devfn;
return ((modpath->bc[5] == PCI_SLOT(devfn)) &&
(modpath->mod == PCI_FUNC(devfn)));
}
/* index might be out of bounds for bc[] */
if (index >= 6)
return 0;
id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
return (modpath->bc[index] == id);
}
/**
* match_parisc_device - Matches a parisc device against a given hardware
* path entry.
* @dev: the generic device (known to be contained by a parisc_device).
* @index: the current BC index
* @modpath: the hardware path.
* @return: true if the device matches the hardware path.
*/
static int match_parisc_device(struct device *dev, int index,
struct hardware_path *modpath)
{
struct parisc_device *curr = to_parisc_device(dev);
char id = (index == 6) ? modpath->mod : modpath->bc[index];
return (curr->hw_path == id);
}
struct parse_tree_data {
int index;
struct hardware_path * modpath;
struct device * dev;
};
static int check_parent(struct device * dev, void * data)
{
struct parse_tree_data * d = data;
if (check_dev(dev)) {
if (dev->bus == &parisc_bus_type) {
if (match_parisc_device(dev, d->index, d->modpath))
d->dev = dev;
} else if (dev_is_pci(dev)) {
if (match_pci_device(dev, d->index, d->modpath))
d->dev = dev;
} else if (dev->bus == NULL) {
/* we are on a bus bridge */
struct device *new = parse_tree_node(dev, d->index, d->modpath);
if (new)
d->dev = new;
}
}
return d->dev != NULL;
}
/**
* parse_tree_node - returns a device entry in the iotree
* @parent: the parent node in the tree
* @index: the current BC index
* @modpath: the hardware_path struct to match a device against
* @return: The corresponding device if found, NULL otherwise.
*
* Checks all the children of @parent for a matching @id. If none
* found, it returns NULL.
*/
static struct device *
parse_tree_node(struct device *parent, int index, struct hardware_path *modpath)
{
struct parse_tree_data d = {
.index = index,
.modpath = modpath,
};
struct recurse_struct recurse_data = {
.obj = &d,
.fn = check_parent,
};
if (device_for_each_child(parent, &recurse_data, descend_children))
{ /* nothing */ }
return d.dev;
}
/**
* hwpath_to_device - Finds the generic device corresponding to a given hardware path.
* @modpath: the hardware path.
* @return: The target device, NULL if not found.
*/
struct device *hwpath_to_device(struct hardware_path *modpath)
{
int i;
struct device *parent = &root;
for (i = 0; i < 6; i++) {
if (modpath->bc[i] == -1)
continue;
parent = parse_tree_node(parent, i, modpath);
if (!parent)
return NULL;
}
if (dev_is_pci(parent)) /* pci devices already parse MOD */
return parent;
else
return parse_tree_node(parent, 6, modpath);
}
EXPORT_SYMBOL(hwpath_to_device);
/**
* device_to_hwpath - Populates the hwpath corresponding to the given device.
* @dev: the target device
* @path: pointer to a previously allocated hwpath struct to be filled in
*/
void device_to_hwpath(struct device *dev, struct hardware_path *path)
{
struct parisc_device *padev;
if (dev->bus == &parisc_bus_type) {
padev = to_parisc_device(dev);
get_node_path(dev->parent, path);
path->mod = padev->hw_path;
} else if (dev_is_pci(dev)) {
get_node_path(dev, path);
}
}
EXPORT_SYMBOL(device_to_hwpath);
#define BC_PORT_MASK 0x8
#define BC_LOWER_PORT 0x8
#define BUS_CONVERTER(dev) \
((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT))
#define IS_LOWER_PORT(dev) \
((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \
& BC_PORT_MASK) == BC_LOWER_PORT)
#define MAX_NATIVE_DEVICES 64
#define NATIVE_DEVICE_OFFSET 0x1000
#define FLEX_MASK F_EXTEND(0xfffc0000)
#define IO_IO_LOW offsetof(struct bc_module, io_io_low)
#define IO_IO_HIGH offsetof(struct bc_module, io_io_high)
#define READ_IO_IO_LOW(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW)
#define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH)
static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
struct device *parent);
static void __init walk_lower_bus(struct parisc_device *dev)
{
unsigned long io_io_low, io_io_high;
if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev))
return;
if (dev->id.hw_type == HPHW_IOA) {
io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16);
io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET;
} else {
io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK;
io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK;
}
walk_native_bus(io_io_low, io_io_high, &dev->dev);
}
/**
* walk_native_bus -- Probe a bus for devices
* @io_io_low: Base address of this bus.
* @io_io_high: Last address of this bus.
* @parent: The parent bus device.
*
* A native bus (eg Runway or GSC) may have up to 64 devices on it,
* spaced at intervals of 0x1000 bytes. PDC may not inform us of these
* devices, so we have to probe for them. Unfortunately, we may find
* devices which are not physically connected (such as extra serial &
* keyboard ports). This problem is not yet solved.
*/
static void __init walk_native_bus(unsigned long io_io_low,
unsigned long io_io_high, struct device *parent)
{
int i, devices_found = 0;
unsigned long hpa = io_io_low;
struct hardware_path path;
get_node_path(parent, &path);
do {
for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) {
struct parisc_device *dev;
/* Was the device already added by Firmware? */
dev = find_device_by_addr(hpa);
if (!dev) {
path.mod = i;
dev = alloc_pa_dev(hpa, &path);
if (!dev)
continue;
register_parisc_device(dev);
devices_found++;
}
walk_lower_bus(dev);
}
} while(!devices_found && hpa < io_io_high);
}
#define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000)
/**
* walk_central_bus - Find devices attached to the central bus
*
* PDC doesn't tell us about all devices in the system. This routine
* finds devices connected to the central bus.
*/
void __init walk_central_bus(void)
{
walk_native_bus(CENTRAL_BUS_ADDR,
CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
&root);
}
static __init void print_parisc_device(struct parisc_device *dev)
{
static int count __initdata;
pr_info("%d. %s at %pap { type:%d, hv:%#x, sv:%#x, rev:%#x }",
++count, dev->name, &(dev->hpa.start), dev->id.hw_type,
dev->id.hversion, dev->id.sversion, dev->id.hversion_rev);
if (dev->num_addrs) {
int k;
pr_cont(", additional addresses: ");
for (k = 0; k < dev->num_addrs; k++)
pr_cont("0x%lx ", dev->addr[k]);
}
pr_cont("\n");
}
/**
* init_parisc_bus - Some preparation to be done before inventory
*/
void __init init_parisc_bus(void)
{
if (bus_register(&parisc_bus_type))
panic("Could not register PA-RISC bus type\n");
if (device_register(&root))
panic("Could not register PA-RISC root device\n");
get_device(&root);
}
static __init void qemu_header(void)
{
int num;
unsigned long *p;
pr_info("--- cut here ---\n");
pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n");
pr_cont("/* generated with Linux kernel */\n");
pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n");
pr_info("#define PARISC_MODEL \"%s\"\n\n",
boot_cpu_data.pdc.sys_model_name);
#define p ((unsigned long *)&boot_cpu_data.pdc.model)
pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, "
"0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9]);
#undef p
pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n",
boot_cpu_data.pdc.versions);
pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n",
boot_cpu_data.pdc.cpuid);
pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n",
boot_cpu_data.pdc.capabilities);
pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n",
#ifdef CONFIG_64BIT
(unsigned long)(PAGE0->mem_pdc_hi) << 32 |
#endif
(unsigned long)PAGE0->mem_pdc);
pr_info("#define PARISC_PDC_CACHE_INFO");
p = (unsigned long *) &cache_info;
for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) {
if (((num % 5) == 0)) {
pr_cont(" \\\n");
pr_info("\t");
}
pr_cont("%s0x%04lx",
num?", ":"", *p++);
}
pr_cont("\n\n");
}
static __init int qemu_print_hpa(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long hpa = dev->hpa.start;
pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa);
pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa);
pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa);
return 0;
}
static __init void qemu_footer(void)
{
pr_info("\n\n#define PARISC_DEVICE_LIST \\\n");
for_each_padev(qemu_print_hpa, NULL);
pr_cont("\t{ 0, }\n");
pr_info("--- cut here ---\n");
}
/* print iodc data of the various hpa modules for qemu inclusion */
static __init int qemu_print_iodc_data(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long count;
unsigned long hpa = dev->hpa.start;
int status;
struct pdc_iodc iodc_data;
int mod_index;
struct pdc_system_map_mod_info pdc_mod_info;
struct pdc_module_path mod_path;
status = pdc_iodc_read(&count, hpa, 0,
&iodc_data, sizeof(iodc_data));
if (status != PDC_OK) {
pr_info("No IODC data for hpa 0x%08lx\n", hpa);
return 0;
}
pr_info("\n");
/* Prevent hung task messages when printing on serial console */
cond_resched();
pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n",
hpa, parisc_hardware_description(&dev->id));
mod_index = 0;
do {
status = pdc_system_map_find_mods(&pdc_mod_info,
&mod_path, mod_index++);
} while (status == PDC_OK && pdc_mod_info.mod_addr != hpa);
pr_info("static struct pdc_system_map_mod_info"
" mod_info_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%x,\n", \
(unsigned int)pdc_mod_info.member)
DO(mod_addr);
DO(mod_pgs);
DO(add_addrs);
pr_cont("};\n");
#undef DO
pr_info("static struct pdc_module_path "
"mod_path_hpa_%08lx = {\n", hpa);
pr_cont("\t.path = { ");
pr_cont(".flags = 0x%x, ", mod_path.path.flags);
pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ",
(unsigned char)mod_path.path.bc[0],
(unsigned char)mod_path.path.bc[1],
(unsigned char)mod_path.path.bc[2],
(unsigned char)mod_path.path.bc[3],
(unsigned char)mod_path.path.bc[4],
(unsigned char)mod_path.path.bc[5]);
pr_cont(".mod = 0x%x ", mod_path.path.mod);
pr_cont(" },\n");
pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n",
mod_path.layers[0], mod_path.layers[1], mod_path.layers[2],
mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]);
pr_cont("};\n");
pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%04lx,\n", \
(unsigned long)iodc_data.member)
DO(hversion_model);
DO(hversion);
DO(spa);
DO(type);
DO(sversion_rev);
DO(sversion_model);
DO(sversion_opt);
DO(rev);
DO(dep);
DO(features);
DO(checksum);
DO(length);
#undef DO
pr_cont("\t/* pad: 0x%04x, 0x%04x */\n",
iodc_data.pad[0], iodc_data.pad[1]);
pr_cont("};\n");
pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs);
pr_info("#define HPA_%08lx_add_addr ", hpa);
count = 0;
if (dev->num_addrs == 0)
pr_cont("0");
while (count < dev->num_addrs) {
pr_cont("0x%08lx, ", dev->addr[count]);
count++;
}
pr_cont("\n\n");
return 0;
}
static __init int print_one_device(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
if (check_dev(dev))
print_parisc_device(pdev);
return 0;
}
/**
* print_parisc_devices - Print out a list of devices found in this system
*/
void __init print_parisc_devices(void)
{
for_each_padev(print_one_device, NULL);
#define PARISC_QEMU_MACHINE_HEADER 0
if (PARISC_QEMU_MACHINE_HEADER) {
qemu_header();
for_each_padev(qemu_print_iodc_data, NULL);
qemu_footer();
}
}