blob: 7c376c4ccdcf9b82a1993251586d6ed70fe6bdb0 [file] [log] [blame]
// SPDX-License-Identifier: MIT
#include <linux/slab.h>
#include <drm/gpu_scheduler.h>
#include <drm/drm_syncobj.h>
#include "nouveau_drv.h"
#include "nouveau_gem.h"
#include "nouveau_mem.h"
#include "nouveau_dma.h"
#include "nouveau_exec.h"
#include "nouveau_abi16.h"
#include "nouveau_sched.h"
/* FIXME
*
* We want to make sure that jobs currently executing can't be deferred by
* other jobs competing for the hardware. Otherwise we might end up with job
* timeouts just because of too many clients submitting too many jobs. We don't
* want jobs to time out because of system load, but because of the job being
* too bulky.
*
* For now allow for up to 16 concurrent jobs in flight until we know how many
* rings the hardware can process in parallel.
*/
#define NOUVEAU_SCHED_HW_SUBMISSIONS 16
#define NOUVEAU_SCHED_JOB_TIMEOUT_MS 10000
int
nouveau_job_init(struct nouveau_job *job,
struct nouveau_job_args *args)
{
struct nouveau_sched_entity *entity = args->sched_entity;
int ret;
job->file_priv = args->file_priv;
job->cli = nouveau_cli(args->file_priv);
job->entity = entity;
job->sync = args->sync;
job->resv_usage = args->resv_usage;
job->ops = args->ops;
job->in_sync.count = args->in_sync.count;
if (job->in_sync.count) {
if (job->sync)
return -EINVAL;
job->in_sync.data = kmemdup(args->in_sync.s,
sizeof(*args->in_sync.s) *
args->in_sync.count,
GFP_KERNEL);
if (!job->in_sync.data)
return -ENOMEM;
}
job->out_sync.count = args->out_sync.count;
if (job->out_sync.count) {
if (job->sync) {
ret = -EINVAL;
goto err_free_in_sync;
}
job->out_sync.data = kmemdup(args->out_sync.s,
sizeof(*args->out_sync.s) *
args->out_sync.count,
GFP_KERNEL);
if (!job->out_sync.data) {
ret = -ENOMEM;
goto err_free_in_sync;
}
job->out_sync.objs = kcalloc(job->out_sync.count,
sizeof(*job->out_sync.objs),
GFP_KERNEL);
if (!job->out_sync.objs) {
ret = -ENOMEM;
goto err_free_out_sync;
}
job->out_sync.chains = kcalloc(job->out_sync.count,
sizeof(*job->out_sync.chains),
GFP_KERNEL);
if (!job->out_sync.chains) {
ret = -ENOMEM;
goto err_free_objs;
}
}
ret = drm_sched_job_init(&job->base, &entity->base, NULL);
if (ret)
goto err_free_chains;
job->state = NOUVEAU_JOB_INITIALIZED;
return 0;
err_free_chains:
kfree(job->out_sync.chains);
err_free_objs:
kfree(job->out_sync.objs);
err_free_out_sync:
kfree(job->out_sync.data);
err_free_in_sync:
kfree(job->in_sync.data);
return ret;
}
void
nouveau_job_free(struct nouveau_job *job)
{
kfree(job->in_sync.data);
kfree(job->out_sync.data);
kfree(job->out_sync.objs);
kfree(job->out_sync.chains);
}
void nouveau_job_fini(struct nouveau_job *job)
{
dma_fence_put(job->done_fence);
drm_sched_job_cleanup(&job->base);
job->ops->free(job);
}
static int
sync_find_fence(struct nouveau_job *job,
struct drm_nouveau_sync *sync,
struct dma_fence **fence)
{
u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK;
u64 point = 0;
int ret;
if (stype != DRM_NOUVEAU_SYNC_SYNCOBJ &&
stype != DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ)
return -EOPNOTSUPP;
if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ)
point = sync->timeline_value;
ret = drm_syncobj_find_fence(job->file_priv,
sync->handle, point,
0 /* flags */, fence);
if (ret)
return ret;
return 0;
}
static int
nouveau_job_add_deps(struct nouveau_job *job)
{
struct dma_fence *in_fence = NULL;
int ret, i;
for (i = 0; i < job->in_sync.count; i++) {
struct drm_nouveau_sync *sync = &job->in_sync.data[i];
ret = sync_find_fence(job, sync, &in_fence);
if (ret) {
NV_PRINTK(warn, job->cli,
"Failed to find syncobj (-> in): handle=%d\n",
sync->handle);
return ret;
}
ret = drm_sched_job_add_dependency(&job->base, in_fence);
if (ret)
return ret;
}
return 0;
}
static void
nouveau_job_fence_attach_cleanup(struct nouveau_job *job)
{
int i;
for (i = 0; i < job->out_sync.count; i++) {
struct drm_syncobj *obj = job->out_sync.objs[i];
struct dma_fence_chain *chain = job->out_sync.chains[i];
if (obj)
drm_syncobj_put(obj);
if (chain)
dma_fence_chain_free(chain);
}
}
static int
nouveau_job_fence_attach_prepare(struct nouveau_job *job)
{
int i, ret;
for (i = 0; i < job->out_sync.count; i++) {
struct drm_nouveau_sync *sync = &job->out_sync.data[i];
struct drm_syncobj **pobj = &job->out_sync.objs[i];
struct dma_fence_chain **pchain = &job->out_sync.chains[i];
u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK;
if (stype != DRM_NOUVEAU_SYNC_SYNCOBJ &&
stype != DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) {
ret = -EINVAL;
goto err_sync_cleanup;
}
*pobj = drm_syncobj_find(job->file_priv, sync->handle);
if (!*pobj) {
NV_PRINTK(warn, job->cli,
"Failed to find syncobj (-> out): handle=%d\n",
sync->handle);
ret = -ENOENT;
goto err_sync_cleanup;
}
if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) {
*pchain = dma_fence_chain_alloc();
if (!*pchain) {
ret = -ENOMEM;
goto err_sync_cleanup;
}
}
}
return 0;
err_sync_cleanup:
nouveau_job_fence_attach_cleanup(job);
return ret;
}
static void
nouveau_job_fence_attach(struct nouveau_job *job)
{
struct dma_fence *fence = job->done_fence;
int i;
for (i = 0; i < job->out_sync.count; i++) {
struct drm_nouveau_sync *sync = &job->out_sync.data[i];
struct drm_syncobj **pobj = &job->out_sync.objs[i];
struct dma_fence_chain **pchain = &job->out_sync.chains[i];
u32 stype = sync->flags & DRM_NOUVEAU_SYNC_TYPE_MASK;
if (stype == DRM_NOUVEAU_SYNC_TIMELINE_SYNCOBJ) {
drm_syncobj_add_point(*pobj, *pchain, fence,
sync->timeline_value);
} else {
drm_syncobj_replace_fence(*pobj, fence);
}
drm_syncobj_put(*pobj);
*pobj = NULL;
*pchain = NULL;
}
}
int
nouveau_job_submit(struct nouveau_job *job)
{
struct nouveau_sched_entity *entity = to_nouveau_sched_entity(job->base.entity);
struct dma_fence *done_fence = NULL;
int ret;
ret = nouveau_job_add_deps(job);
if (ret)
goto err;
ret = nouveau_job_fence_attach_prepare(job);
if (ret)
goto err;
/* Make sure the job appears on the sched_entity's queue in the same
* order as it was submitted.
*/
mutex_lock(&entity->mutex);
/* Guarantee we won't fail after the submit() callback returned
* successfully.
*/
if (job->ops->submit) {
ret = job->ops->submit(job);
if (ret)
goto err_cleanup;
}
drm_sched_job_arm(&job->base);
job->done_fence = dma_fence_get(&job->base.s_fence->finished);
if (job->sync)
done_fence = dma_fence_get(job->done_fence);
/* If a sched job depends on a dma-fence from a job from the same GPU
* scheduler instance, but a different scheduler entity, the GPU
* scheduler does only wait for the particular job to be scheduled,
* rather than for the job to fully complete. This is due to the GPU
* scheduler assuming that there is a scheduler instance per ring.
* However, the current implementation, in order to avoid arbitrary
* amounts of kthreads, has a single scheduler instance while scheduler
* entities represent rings.
*
* As a workaround, set the DRM_SCHED_FENCE_DONT_PIPELINE for all
* out-fences in order to force the scheduler to wait for full job
* completion for dependent jobs from different entities and same
* scheduler instance.
*
* There is some work in progress [1] to address the issues of firmware
* schedulers; once it is in-tree the scheduler topology in Nouveau
* should be re-worked accordingly.
*
* [1] https://lore.kernel.org/dri-devel/20230801205103.627779-1-matthew.brost@intel.com/
*/
set_bit(DRM_SCHED_FENCE_DONT_PIPELINE, &job->done_fence->flags);
if (job->ops->armed_submit)
job->ops->armed_submit(job);
nouveau_job_fence_attach(job);
/* Set job state before pushing the job to the scheduler,
* such that we do not overwrite the job state set in run().
*/
job->state = NOUVEAU_JOB_SUBMIT_SUCCESS;
drm_sched_entity_push_job(&job->base);
mutex_unlock(&entity->mutex);
if (done_fence) {
dma_fence_wait(done_fence, true);
dma_fence_put(done_fence);
}
return 0;
err_cleanup:
mutex_unlock(&entity->mutex);
nouveau_job_fence_attach_cleanup(job);
err:
job->state = NOUVEAU_JOB_SUBMIT_FAILED;
return ret;
}
bool
nouveau_sched_entity_qwork(struct nouveau_sched_entity *entity,
struct work_struct *work)
{
return queue_work(entity->sched_wq, work);
}
static struct dma_fence *
nouveau_job_run(struct nouveau_job *job)
{
struct dma_fence *fence;
fence = job->ops->run(job);
if (IS_ERR(fence))
job->state = NOUVEAU_JOB_RUN_FAILED;
else
job->state = NOUVEAU_JOB_RUN_SUCCESS;
return fence;
}
static struct dma_fence *
nouveau_sched_run_job(struct drm_sched_job *sched_job)
{
struct nouveau_job *job = to_nouveau_job(sched_job);
return nouveau_job_run(job);
}
static enum drm_gpu_sched_stat
nouveau_sched_timedout_job(struct drm_sched_job *sched_job)
{
struct drm_gpu_scheduler *sched = sched_job->sched;
struct nouveau_job *job = to_nouveau_job(sched_job);
enum drm_gpu_sched_stat stat = DRM_GPU_SCHED_STAT_NOMINAL;
drm_sched_stop(sched, sched_job);
if (job->ops->timeout)
stat = job->ops->timeout(job);
else
NV_PRINTK(warn, job->cli, "Generic job timeout.\n");
drm_sched_start(sched, true);
return stat;
}
static void
nouveau_sched_free_job(struct drm_sched_job *sched_job)
{
struct nouveau_job *job = to_nouveau_job(sched_job);
nouveau_job_fini(job);
}
int nouveau_sched_entity_init(struct nouveau_sched_entity *entity,
struct drm_gpu_scheduler *sched,
struct workqueue_struct *sched_wq)
{
mutex_init(&entity->mutex);
spin_lock_init(&entity->job.list.lock);
INIT_LIST_HEAD(&entity->job.list.head);
init_waitqueue_head(&entity->job.wq);
entity->sched_wq = sched_wq;
return drm_sched_entity_init(&entity->base,
DRM_SCHED_PRIORITY_NORMAL,
&sched, 1, NULL);
}
void
nouveau_sched_entity_fini(struct nouveau_sched_entity *entity)
{
drm_sched_entity_destroy(&entity->base);
}
static const struct drm_sched_backend_ops nouveau_sched_ops = {
.run_job = nouveau_sched_run_job,
.timedout_job = nouveau_sched_timedout_job,
.free_job = nouveau_sched_free_job,
};
int nouveau_sched_init(struct nouveau_drm *drm)
{
struct drm_gpu_scheduler *sched = &drm->sched;
long job_hang_limit = msecs_to_jiffies(NOUVEAU_SCHED_JOB_TIMEOUT_MS);
drm->sched_wq = create_singlethread_workqueue("nouveau_sched_wq");
if (!drm->sched_wq)
return -ENOMEM;
return drm_sched_init(sched, &nouveau_sched_ops,
DRM_SCHED_PRIORITY_COUNT,
NOUVEAU_SCHED_HW_SUBMISSIONS, 0, job_hang_limit,
NULL, NULL, "nouveau_sched", drm->dev->dev);
}
void nouveau_sched_fini(struct nouveau_drm *drm)
{
destroy_workqueue(drm->sched_wq);
drm_sched_fini(&drm->sched);
}