| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef BLK_INTERNAL_H |
| #define BLK_INTERNAL_H |
| |
| #include <linux/blk-crypto.h> |
| #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ |
| #include <linux/sched/sysctl.h> |
| #include <linux/timekeeping.h> |
| #include <xen/xen.h> |
| #include "blk-crypto-internal.h" |
| |
| struct elevator_type; |
| |
| /* Max future timer expiry for timeouts */ |
| #define BLK_MAX_TIMEOUT (5 * HZ) |
| |
| extern struct dentry *blk_debugfs_root; |
| |
| struct blk_flush_queue { |
| spinlock_t mq_flush_lock; |
| unsigned int flush_pending_idx:1; |
| unsigned int flush_running_idx:1; |
| blk_status_t rq_status; |
| unsigned long flush_pending_since; |
| struct list_head flush_queue[2]; |
| unsigned long flush_data_in_flight; |
| struct request *flush_rq; |
| }; |
| |
| bool is_flush_rq(struct request *req); |
| |
| struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, |
| gfp_t flags); |
| void blk_free_flush_queue(struct blk_flush_queue *q); |
| |
| void blk_freeze_queue(struct request_queue *q); |
| void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); |
| void blk_queue_start_drain(struct request_queue *q); |
| int __bio_queue_enter(struct request_queue *q, struct bio *bio); |
| void submit_bio_noacct_nocheck(struct bio *bio); |
| |
| static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) |
| { |
| rcu_read_lock(); |
| if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) |
| goto fail; |
| |
| /* |
| * The code that increments the pm_only counter must ensure that the |
| * counter is globally visible before the queue is unfrozen. |
| */ |
| if (blk_queue_pm_only(q) && |
| (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) |
| goto fail_put; |
| |
| rcu_read_unlock(); |
| return true; |
| |
| fail_put: |
| blk_queue_exit(q); |
| fail: |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| static inline int bio_queue_enter(struct bio *bio) |
| { |
| struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
| |
| if (blk_try_enter_queue(q, false)) |
| return 0; |
| return __bio_queue_enter(q, bio); |
| } |
| |
| static inline void blk_wait_io(struct completion *done) |
| { |
| /* Prevent hang_check timer from firing at us during very long I/O */ |
| unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; |
| |
| if (timeout) |
| while (!wait_for_completion_io_timeout(done, timeout)) |
| ; |
| else |
| wait_for_completion_io(done); |
| } |
| |
| #define BIO_INLINE_VECS 4 |
| struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, |
| gfp_t gfp_mask); |
| void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); |
| |
| bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, |
| struct page *page, unsigned len, unsigned offset, |
| bool *same_page); |
| |
| static inline bool biovec_phys_mergeable(struct request_queue *q, |
| struct bio_vec *vec1, struct bio_vec *vec2) |
| { |
| unsigned long mask = queue_segment_boundary(q); |
| phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; |
| phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; |
| |
| /* |
| * Merging adjacent physical pages may not work correctly under KMSAN |
| * if their metadata pages aren't adjacent. Just disable merging. |
| */ |
| if (IS_ENABLED(CONFIG_KMSAN)) |
| return false; |
| |
| if (addr1 + vec1->bv_len != addr2) |
| return false; |
| if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) |
| return false; |
| if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) |
| return false; |
| return true; |
| } |
| |
| static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, |
| struct bio_vec *bprv, unsigned int offset) |
| { |
| return (offset & lim->virt_boundary_mask) || |
| ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); |
| } |
| |
| /* |
| * Check if adding a bio_vec after bprv with offset would create a gap in |
| * the SG list. Most drivers don't care about this, but some do. |
| */ |
| static inline bool bvec_gap_to_prev(const struct queue_limits *lim, |
| struct bio_vec *bprv, unsigned int offset) |
| { |
| if (!lim->virt_boundary_mask) |
| return false; |
| return __bvec_gap_to_prev(lim, bprv, offset); |
| } |
| |
| static inline bool rq_mergeable(struct request *rq) |
| { |
| if (blk_rq_is_passthrough(rq)) |
| return false; |
| |
| if (req_op(rq) == REQ_OP_FLUSH) |
| return false; |
| |
| if (req_op(rq) == REQ_OP_WRITE_ZEROES) |
| return false; |
| |
| if (req_op(rq) == REQ_OP_ZONE_APPEND) |
| return false; |
| |
| if (rq->cmd_flags & REQ_NOMERGE_FLAGS) |
| return false; |
| if (rq->rq_flags & RQF_NOMERGE_FLAGS) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * There are two different ways to handle DISCARD merges: |
| * 1) If max_discard_segments > 1, the driver treats every bio as a range and |
| * send the bios to controller together. The ranges don't need to be |
| * contiguous. |
| * 2) Otherwise, the request will be normal read/write requests. The ranges |
| * need to be contiguous. |
| */ |
| static inline bool blk_discard_mergable(struct request *req) |
| { |
| if (req_op(req) == REQ_OP_DISCARD && |
| queue_max_discard_segments(req->q) > 1) |
| return true; |
| return false; |
| } |
| |
| static inline unsigned int blk_rq_get_max_segments(struct request *rq) |
| { |
| if (req_op(rq) == REQ_OP_DISCARD) |
| return queue_max_discard_segments(rq->q); |
| return queue_max_segments(rq->q); |
| } |
| |
| static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, |
| enum req_op op) |
| { |
| if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) |
| return min(q->limits.max_discard_sectors, |
| UINT_MAX >> SECTOR_SHIFT); |
| |
| if (unlikely(op == REQ_OP_WRITE_ZEROES)) |
| return q->limits.max_write_zeroes_sectors; |
| |
| return q->limits.max_sectors; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| void blk_flush_integrity(void); |
| bool __bio_integrity_endio(struct bio *); |
| void bio_integrity_free(struct bio *bio); |
| static inline bool bio_integrity_endio(struct bio *bio) |
| { |
| if (bio_integrity(bio)) |
| return __bio_integrity_endio(bio); |
| return true; |
| } |
| |
| bool blk_integrity_merge_rq(struct request_queue *, struct request *, |
| struct request *); |
| bool blk_integrity_merge_bio(struct request_queue *, struct request *, |
| struct bio *); |
| |
| static inline bool integrity_req_gap_back_merge(struct request *req, |
| struct bio *next) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(req->bio); |
| struct bio_integrity_payload *bip_next = bio_integrity(next); |
| |
| return bvec_gap_to_prev(&req->q->limits, |
| &bip->bip_vec[bip->bip_vcnt - 1], |
| bip_next->bip_vec[0].bv_offset); |
| } |
| |
| static inline bool integrity_req_gap_front_merge(struct request *req, |
| struct bio *bio) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| struct bio_integrity_payload *bip_next = bio_integrity(req->bio); |
| |
| return bvec_gap_to_prev(&req->q->limits, |
| &bip->bip_vec[bip->bip_vcnt - 1], |
| bip_next->bip_vec[0].bv_offset); |
| } |
| |
| extern const struct attribute_group blk_integrity_attr_group; |
| #else /* CONFIG_BLK_DEV_INTEGRITY */ |
| static inline bool blk_integrity_merge_rq(struct request_queue *rq, |
| struct request *r1, struct request *r2) |
| { |
| return true; |
| } |
| static inline bool blk_integrity_merge_bio(struct request_queue *rq, |
| struct request *r, struct bio *b) |
| { |
| return true; |
| } |
| static inline bool integrity_req_gap_back_merge(struct request *req, |
| struct bio *next) |
| { |
| return false; |
| } |
| static inline bool integrity_req_gap_front_merge(struct request *req, |
| struct bio *bio) |
| { |
| return false; |
| } |
| |
| static inline void blk_flush_integrity(void) |
| { |
| } |
| static inline bool bio_integrity_endio(struct bio *bio) |
| { |
| return true; |
| } |
| static inline void bio_integrity_free(struct bio *bio) |
| { |
| } |
| #endif /* CONFIG_BLK_DEV_INTEGRITY */ |
| |
| unsigned long blk_rq_timeout(unsigned long timeout); |
| void blk_add_timer(struct request *req); |
| |
| bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, |
| unsigned int nr_segs); |
| bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, |
| struct bio *bio, unsigned int nr_segs); |
| |
| /* |
| * Plug flush limits |
| */ |
| #define BLK_MAX_REQUEST_COUNT 32 |
| #define BLK_PLUG_FLUSH_SIZE (128 * 1024) |
| |
| /* |
| * Internal elevator interface |
| */ |
| #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) |
| |
| bool blk_insert_flush(struct request *rq); |
| |
| int elevator_switch(struct request_queue *q, struct elevator_type *new_e); |
| void elevator_disable(struct request_queue *q); |
| void elevator_exit(struct request_queue *q); |
| int elv_register_queue(struct request_queue *q, bool uevent); |
| void elv_unregister_queue(struct request_queue *q); |
| |
| ssize_t part_size_show(struct device *dev, struct device_attribute *attr, |
| char *buf); |
| ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, |
| char *buf); |
| ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, |
| char *buf); |
| ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, |
| char *buf); |
| ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count); |
| ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); |
| ssize_t part_timeout_store(struct device *, struct device_attribute *, |
| const char *, size_t); |
| |
| static inline bool bio_may_exceed_limits(struct bio *bio, |
| const struct queue_limits *lim) |
| { |
| switch (bio_op(bio)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| case REQ_OP_WRITE_ZEROES: |
| return true; /* non-trivial splitting decisions */ |
| default: |
| break; |
| } |
| |
| /* |
| * All drivers must accept single-segments bios that are <= PAGE_SIZE. |
| * This is a quick and dirty check that relies on the fact that |
| * bi_io_vec[0] is always valid if a bio has data. The check might |
| * lead to occasional false negatives when bios are cloned, but compared |
| * to the performance impact of cloned bios themselves the loop below |
| * doesn't matter anyway. |
| */ |
| return lim->chunk_sectors || bio->bi_vcnt != 1 || |
| bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; |
| } |
| |
| struct bio *__bio_split_to_limits(struct bio *bio, |
| const struct queue_limits *lim, |
| unsigned int *nr_segs); |
| int ll_back_merge_fn(struct request *req, struct bio *bio, |
| unsigned int nr_segs); |
| bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, |
| struct request *next); |
| unsigned int blk_recalc_rq_segments(struct request *rq); |
| void blk_rq_set_mixed_merge(struct request *rq); |
| bool blk_rq_merge_ok(struct request *rq, struct bio *bio); |
| enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); |
| |
| int blk_set_default_limits(struct queue_limits *lim); |
| int blk_dev_init(void); |
| |
| /* |
| * Contribute to IO statistics IFF: |
| * |
| * a) it's attached to a gendisk, and |
| * b) the queue had IO stats enabled when this request was started |
| */ |
| static inline bool blk_do_io_stat(struct request *rq) |
| { |
| return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); |
| } |
| |
| void update_io_ticks(struct block_device *part, unsigned long now, bool end); |
| |
| static inline void req_set_nomerge(struct request_queue *q, struct request *req) |
| { |
| req->cmd_flags |= REQ_NOMERGE; |
| if (req == q->last_merge) |
| q->last_merge = NULL; |
| } |
| |
| /* |
| * Internal io_context interface |
| */ |
| struct io_cq *ioc_find_get_icq(struct request_queue *q); |
| struct io_cq *ioc_lookup_icq(struct request_queue *q); |
| #ifdef CONFIG_BLK_ICQ |
| void ioc_clear_queue(struct request_queue *q); |
| #else |
| static inline void ioc_clear_queue(struct request_queue *q) |
| { |
| } |
| #endif /* CONFIG_BLK_ICQ */ |
| |
| #ifdef CONFIG_BLK_DEV_THROTTLING_LOW |
| extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); |
| extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, |
| const char *page, size_t count); |
| extern void blk_throtl_bio_endio(struct bio *bio); |
| extern void blk_throtl_stat_add(struct request *rq, u64 time); |
| #else |
| static inline void blk_throtl_bio_endio(struct bio *bio) { } |
| static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } |
| #endif |
| |
| struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); |
| |
| static inline bool blk_queue_may_bounce(struct request_queue *q) |
| { |
| return IS_ENABLED(CONFIG_BOUNCE) && |
| q->limits.bounce == BLK_BOUNCE_HIGH && |
| max_low_pfn >= max_pfn; |
| } |
| |
| static inline struct bio *blk_queue_bounce(struct bio *bio, |
| struct request_queue *q) |
| { |
| if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) |
| return __blk_queue_bounce(bio, q); |
| return bio; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| void disk_free_zone_bitmaps(struct gendisk *disk); |
| int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, |
| unsigned long arg); |
| int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, |
| unsigned int cmd, unsigned long arg); |
| #else /* CONFIG_BLK_DEV_ZONED */ |
| static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} |
| static inline int blkdev_report_zones_ioctl(struct block_device *bdev, |
| unsigned int cmd, unsigned long arg) |
| { |
| return -ENOTTY; |
| } |
| static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, |
| blk_mode_t mode, unsigned int cmd, unsigned long arg) |
| { |
| return -ENOTTY; |
| } |
| #endif /* CONFIG_BLK_DEV_ZONED */ |
| |
| struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); |
| void bdev_add(struct block_device *bdev, dev_t dev); |
| |
| int blk_alloc_ext_minor(void); |
| void blk_free_ext_minor(unsigned int minor); |
| #define ADDPART_FLAG_NONE 0 |
| #define ADDPART_FLAG_RAID 1 |
| #define ADDPART_FLAG_WHOLEDISK 2 |
| int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, |
| sector_t length); |
| int bdev_del_partition(struct gendisk *disk, int partno); |
| int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, |
| sector_t length); |
| void drop_partition(struct block_device *part); |
| |
| void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); |
| |
| struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, |
| struct lock_class_key *lkclass); |
| |
| int bio_add_hw_page(struct request_queue *q, struct bio *bio, |
| struct page *page, unsigned int len, unsigned int offset, |
| unsigned int max_sectors, bool *same_page); |
| |
| /* |
| * Clean up a page appropriately, where the page may be pinned, may have a |
| * ref taken on it or neither. |
| */ |
| static inline void bio_release_page(struct bio *bio, struct page *page) |
| { |
| if (bio_flagged(bio, BIO_PAGE_PINNED)) |
| unpin_user_page(page); |
| } |
| |
| struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); |
| |
| int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); |
| |
| int disk_alloc_events(struct gendisk *disk); |
| void disk_add_events(struct gendisk *disk); |
| void disk_del_events(struct gendisk *disk); |
| void disk_release_events(struct gendisk *disk); |
| void disk_block_events(struct gendisk *disk); |
| void disk_unblock_events(struct gendisk *disk); |
| void disk_flush_events(struct gendisk *disk, unsigned int mask); |
| extern struct device_attribute dev_attr_events; |
| extern struct device_attribute dev_attr_events_async; |
| extern struct device_attribute dev_attr_events_poll_msecs; |
| |
| extern struct attribute_group blk_trace_attr_group; |
| |
| blk_mode_t file_to_blk_mode(struct file *file); |
| int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, |
| loff_t lstart, loff_t lend); |
| long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); |
| long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); |
| |
| extern const struct address_space_operations def_blk_aops; |
| |
| int disk_register_independent_access_ranges(struct gendisk *disk); |
| void disk_unregister_independent_access_ranges(struct gendisk *disk); |
| |
| #ifdef CONFIG_FAIL_MAKE_REQUEST |
| bool should_fail_request(struct block_device *part, unsigned int bytes); |
| #else /* CONFIG_FAIL_MAKE_REQUEST */ |
| static inline bool should_fail_request(struct block_device *part, |
| unsigned int bytes) |
| { |
| return false; |
| } |
| #endif /* CONFIG_FAIL_MAKE_REQUEST */ |
| |
| /* |
| * Optimized request reference counting. Ideally we'd make timeouts be more |
| * clever, as that's the only reason we need references at all... But until |
| * this happens, this is faster than using refcount_t. Also see: |
| * |
| * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") |
| */ |
| #define req_ref_zero_or_close_to_overflow(req) \ |
| ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) |
| |
| static inline bool req_ref_inc_not_zero(struct request *req) |
| { |
| return atomic_inc_not_zero(&req->ref); |
| } |
| |
| static inline bool req_ref_put_and_test(struct request *req) |
| { |
| WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); |
| return atomic_dec_and_test(&req->ref); |
| } |
| |
| static inline void req_ref_set(struct request *req, int value) |
| { |
| atomic_set(&req->ref, value); |
| } |
| |
| static inline int req_ref_read(struct request *req) |
| { |
| return atomic_read(&req->ref); |
| } |
| |
| static inline u64 blk_time_get_ns(void) |
| { |
| struct blk_plug *plug = current->plug; |
| |
| if (!plug) |
| return ktime_get_ns(); |
| |
| /* |
| * 0 could very well be a valid time, but rather than flag "this is |
| * a valid timestamp" separately, just accept that we'll do an extra |
| * ktime_get_ns() if we just happen to get 0 as the current time. |
| */ |
| if (!plug->cur_ktime) { |
| plug->cur_ktime = ktime_get_ns(); |
| current->flags |= PF_BLOCK_TS; |
| } |
| return plug->cur_ktime; |
| } |
| |
| static inline ktime_t blk_time_get(void) |
| { |
| return ns_to_ktime(blk_time_get_ns()); |
| } |
| |
| /* |
| * From most significant bit: |
| * 1 bit: reserved for other usage, see below |
| * 12 bits: original size of bio |
| * 51 bits: issue time of bio |
| */ |
| #define BIO_ISSUE_RES_BITS 1 |
| #define BIO_ISSUE_SIZE_BITS 12 |
| #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) |
| #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) |
| #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) |
| #define BIO_ISSUE_SIZE_MASK \ |
| (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) |
| #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) |
| |
| /* Reserved bit for blk-throtl */ |
| #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) |
| |
| static inline u64 __bio_issue_time(u64 time) |
| { |
| return time & BIO_ISSUE_TIME_MASK; |
| } |
| |
| static inline u64 bio_issue_time(struct bio_issue *issue) |
| { |
| return __bio_issue_time(issue->value); |
| } |
| |
| static inline sector_t bio_issue_size(struct bio_issue *issue) |
| { |
| return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); |
| } |
| |
| static inline void bio_issue_init(struct bio_issue *issue, |
| sector_t size) |
| { |
| size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; |
| issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | |
| (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | |
| ((u64)size << BIO_ISSUE_SIZE_SHIFT)); |
| } |
| |
| #endif /* BLK_INTERNAL_H */ |