| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC |
| * |
| * Authors: |
| * Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru> |
| * Serge Semin <Sergey.Semin@baikalelectronics.ru> |
| * |
| * Baikal-T1 Process, Voltage, Temperature sensor driver |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/hwmon.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/ktime.h> |
| #include <linux/limits.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/polynomial.h> |
| #include <linux/seqlock.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| |
| #include "bt1-pvt.h" |
| |
| /* |
| * For the sake of the code simplification we created the sensors info table |
| * with the sensor names, activation modes, threshold registers base address |
| * and the thresholds bit fields. |
| */ |
| static const struct pvt_sensor_info pvt_info[] = { |
| PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES), |
| PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES), |
| PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES), |
| PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES), |
| PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES), |
| }; |
| |
| /* |
| * The original translation formulae of the temperature (in degrees of Celsius) |
| * to PVT data and vice-versa are following: |
| * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) + |
| * 1.7204e2, |
| * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) + |
| * 3.1020e-1*(N^1) - 4.838e1, |
| * where T = [-48.380, 147.438]C and N = [0, 1023]. |
| * They must be accordingly altered to be suitable for the integer arithmetics. |
| * The technique is called 'factor redistribution', which just makes sure the |
| * multiplications and divisions are made so to have a result of the operations |
| * within the integer numbers limit. In addition we need to translate the |
| * formulae to accept millidegrees of Celsius. Here what they look like after |
| * the alterations: |
| * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T + |
| * 17204e2) / 1e4, |
| * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D - |
| * 48380, |
| * where T = [-48380, 147438] mC and N = [0, 1023]. |
| */ |
| static const struct polynomial __maybe_unused poly_temp_to_N = { |
| .total_divider = 10000, |
| .terms = { |
| {4, 18322, 10000, 10000}, |
| {3, 2343, 10000, 10}, |
| {2, 87018, 10000, 10}, |
| {1, 39269, 1000, 1}, |
| {0, 1720400, 1, 1} |
| } |
| }; |
| |
| static const struct polynomial poly_N_to_temp = { |
| .total_divider = 1, |
| .terms = { |
| {4, -16743, 1000, 1}, |
| {3, 81542, 1000, 1}, |
| {2, -182010, 1000, 1}, |
| {1, 310200, 1000, 1}, |
| {0, -48380, 1, 1} |
| } |
| }; |
| |
| /* |
| * Similar alterations are performed for the voltage conversion equations. |
| * The original formulae are: |
| * N = 1.8658e3*V - 1.1572e3, |
| * V = (N + 1.1572e3) / 1.8658e3, |
| * where V = [0.620, 1.168] V and N = [0, 1023]. |
| * After the optimization they looks as follows: |
| * N = (18658e-3*V - 11572) / 10, |
| * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658. |
| */ |
| static const struct polynomial __maybe_unused poly_volt_to_N = { |
| .total_divider = 10, |
| .terms = { |
| {1, 18658, 1000, 1}, |
| {0, -11572, 1, 1} |
| } |
| }; |
| |
| static const struct polynomial poly_N_to_volt = { |
| .total_divider = 10, |
| .terms = { |
| {1, 100000, 18658, 1}, |
| {0, 115720000, 1, 18658} |
| } |
| }; |
| |
| static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data) |
| { |
| u32 old; |
| |
| old = readl_relaxed(reg); |
| writel((old & ~mask) | (data & mask), reg); |
| |
| return old & mask; |
| } |
| |
| /* |
| * Baikal-T1 PVT mode can be updated only when the controller is disabled. |
| * So first we disable it, then set the new mode together with the controller |
| * getting back enabled. The same concerns the temperature trim and |
| * measurements timeout. If it is necessary the interface mutex is supposed |
| * to be locked at the time the operations are performed. |
| */ |
| static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode) |
| { |
| u32 old; |
| |
| mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode); |
| |
| old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN, |
| mode | old); |
| } |
| |
| static inline u32 pvt_calc_trim(long temp) |
| { |
| temp = clamp_val(temp, 0, PVT_TRIM_TEMP); |
| |
| return DIV_ROUND_UP(temp, PVT_TRIM_STEP); |
| } |
| |
| static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim) |
| { |
| u32 old; |
| |
| trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim); |
| |
| old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN, |
| trim | old); |
| } |
| |
| static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout) |
| { |
| u32 old; |
| |
| old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| writel(tout, pvt->regs + PVT_TTIMEOUT); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old); |
| } |
| |
| /* |
| * This driver can optionally provide the hwmon alarms for each sensor the PVT |
| * controller supports. The alarms functionality is made compile-time |
| * configurable due to the hardware interface implementation peculiarity |
| * described further in this comment. So in case if alarms are unnecessary in |
| * your system design it's recommended to have them disabled to prevent the PVT |
| * IRQs being periodically raised to get the data cache/alarms status up to |
| * date. |
| * |
| * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor, |
| * but is equipped with a dedicated control wrapper. It exposes the PVT |
| * sub-block registers space via the APB3 bus. In addition the wrapper provides |
| * a common interrupt vector of the sensors conversion completion events and |
| * threshold value alarms. Alas the wrapper interface hasn't been fully thought |
| * through. There is only one sensor can be activated at a time, for which the |
| * thresholds comparator is enabled right after the data conversion is |
| * completed. Due to this if alarms need to be implemented for all available |
| * sensors we can't just set the thresholds and enable the interrupts. We need |
| * to enable the sensors one after another and let the controller to detect |
| * the alarms by itself at each conversion. This also makes pointless to handle |
| * the alarms interrupts, since in occasion they happen synchronously with |
| * data conversion completion. The best driver design would be to have the |
| * completion interrupts enabled only and keep the converted value in the |
| * driver data cache. This solution is implemented if hwmon alarms are enabled |
| * in this driver. In case if the alarms are disabled, the conversion is |
| * performed on demand at the time a sensors input file is read. |
| */ |
| |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| |
| #define pvt_hard_isr NULL |
| |
| static irqreturn_t pvt_soft_isr(int irq, void *data) |
| { |
| const struct pvt_sensor_info *info; |
| struct pvt_hwmon *pvt = data; |
| struct pvt_cache *cache; |
| u32 val, thres_sts, old; |
| |
| /* |
| * DVALID bit will be cleared by reading the data. We need to save the |
| * status before the next conversion happens. Threshold events will be |
| * handled a bit later. |
| */ |
| thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT); |
| |
| /* |
| * Then lets recharge the PVT interface with the next sampling mode. |
| * Lock the interface mutex to serialize trim, timeouts and alarm |
| * thresholds settings. |
| */ |
| cache = &pvt->cache[pvt->sensor]; |
| info = &pvt_info[pvt->sensor]; |
| pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ? |
| PVT_SENSOR_FIRST : (pvt->sensor + 1); |
| |
| /* |
| * For some reason we have to mask the interrupt before changing the |
| * mode, otherwise sometimes the temperature mode doesn't get |
| * activated even though the actual mode in the ctrl register |
| * corresponds to one. Then we read the data. By doing so we also |
| * recharge the data conversion. After this the mode corresponding |
| * to the next sensor in the row is set. Finally we enable the |
| * interrupts back. |
| */ |
| mutex_lock(&pvt->iface_mtx); |
| |
| old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| PVT_INTR_DVALID); |
| |
| val = readl(pvt->regs + PVT_DATA); |
| |
| pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old); |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| /* |
| * We can now update the data cache with data just retrieved from the |
| * sensor. Lock write-seqlock to make sure the reader has a coherent |
| * data. |
| */ |
| write_seqlock(&cache->data_seqlock); |
| |
| cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val); |
| |
| write_sequnlock(&cache->data_seqlock); |
| |
| /* |
| * While PVT core is doing the next mode data conversion, we'll check |
| * whether the alarms were triggered for the current sensor. Note that |
| * according to the documentation only one threshold IRQ status can be |
| * set at a time, that's why if-else statement is utilized. |
| */ |
| if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) { |
| WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo); |
| hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm, |
| info->channel); |
| } else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) { |
| WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi); |
| hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm, |
| info->channel); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
| { |
| return 0644; |
| } |
| |
| static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
| { |
| return 0444; |
| } |
| |
| static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| long *val) |
| { |
| struct pvt_cache *cache = &pvt->cache[type]; |
| unsigned int seq; |
| u32 data; |
| |
| do { |
| seq = read_seqbegin(&cache->data_seqlock); |
| data = cache->data; |
| } while (read_seqretry(&cache->data_seqlock, seq)); |
| |
| if (type == PVT_TEMP) |
| *val = polynomial_calc(&poly_N_to_temp, data); |
| else |
| *val = polynomial_calc(&poly_N_to_volt, data); |
| |
| return 0; |
| } |
| |
| static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long *val) |
| { |
| u32 data; |
| |
| /* No need in serialization, since it is just read from MMIO. */ |
| data = readl(pvt->regs + pvt_info[type].thres_base); |
| |
| if (is_low) |
| data = FIELD_GET(PVT_THRES_LO_MASK, data); |
| else |
| data = FIELD_GET(PVT_THRES_HI_MASK, data); |
| |
| if (type == PVT_TEMP) |
| *val = polynomial_calc(&poly_N_to_temp, data); |
| else |
| *val = polynomial_calc(&poly_N_to_volt, data); |
| |
| return 0; |
| } |
| |
| static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long val) |
| { |
| u32 data, limit, mask; |
| int ret; |
| |
| if (type == PVT_TEMP) { |
| val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX); |
| data = polynomial_calc(&poly_temp_to_N, val); |
| } else { |
| val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX); |
| data = polynomial_calc(&poly_volt_to_N, val); |
| } |
| |
| /* Serialize limit update, since a part of the register is changed. */ |
| ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| if (ret) |
| return ret; |
| |
| /* Make sure the upper and lower ranges don't intersect. */ |
| limit = readl(pvt->regs + pvt_info[type].thres_base); |
| if (is_low) { |
| limit = FIELD_GET(PVT_THRES_HI_MASK, limit); |
| data = clamp_val(data, PVT_DATA_MIN, limit); |
| data = FIELD_PREP(PVT_THRES_LO_MASK, data); |
| mask = PVT_THRES_LO_MASK; |
| } else { |
| limit = FIELD_GET(PVT_THRES_LO_MASK, limit); |
| data = clamp_val(data, limit, PVT_DATA_MAX); |
| data = FIELD_PREP(PVT_THRES_HI_MASK, data); |
| mask = PVT_THRES_HI_MASK; |
| } |
| |
| pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data); |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| return 0; |
| } |
| |
| static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long *val) |
| { |
| if (is_low) |
| *val = !!READ_ONCE(pvt->cache[type].thres_sts_lo); |
| else |
| *val = !!READ_ONCE(pvt->cache[type].thres_sts_hi); |
| |
| return 0; |
| } |
| |
| static const struct hwmon_channel_info * const pvt_channel_info[] = { |
| HWMON_CHANNEL_INFO(chip, |
| HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| HWMON_CHANNEL_INFO(temp, |
| HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| HWMON_T_MIN | HWMON_T_MIN_ALARM | |
| HWMON_T_MAX | HWMON_T_MAX_ALARM | |
| HWMON_T_OFFSET), |
| HWMON_CHANNEL_INFO(in, |
| HWMON_I_INPUT | HWMON_I_LABEL | |
| HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| HWMON_I_INPUT | HWMON_I_LABEL | |
| HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| HWMON_I_INPUT | HWMON_I_LABEL | |
| HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| HWMON_I_INPUT | HWMON_I_LABEL | |
| HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| HWMON_I_MAX | HWMON_I_MAX_ALARM), |
| NULL |
| }; |
| |
| #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| |
| static irqreturn_t pvt_hard_isr(int irq, void *data) |
| { |
| struct pvt_hwmon *pvt = data; |
| struct pvt_cache *cache; |
| u32 val; |
| |
| /* |
| * Mask the DVALID interrupt so after exiting from the handler a |
| * repeated conversion wouldn't happen. |
| */ |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| PVT_INTR_DVALID); |
| |
| /* |
| * Nothing special for alarm-less driver. Just read the data, update |
| * the cache and notify a waiter of this event. |
| */ |
| val = readl(pvt->regs + PVT_DATA); |
| if (!(val & PVT_DATA_VALID)) { |
| dev_err(pvt->dev, "Got IRQ when data isn't valid\n"); |
| return IRQ_HANDLED; |
| } |
| |
| cache = &pvt->cache[pvt->sensor]; |
| |
| WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val)); |
| |
| complete(&cache->conversion); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #define pvt_soft_isr NULL |
| |
| static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
| { |
| return 0; |
| } |
| |
| static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
| { |
| return 0; |
| } |
| |
| static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| long *val) |
| { |
| struct pvt_cache *cache = &pvt->cache[type]; |
| unsigned long timeout; |
| u32 data; |
| int ret; |
| |
| /* |
| * Lock PVT conversion interface until data cache is updated. The |
| * data read procedure is following: set the requested PVT sensor |
| * mode, enable IRQ and conversion, wait until conversion is finished, |
| * then disable conversion and IRQ, and read the cached data. |
| */ |
| ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| if (ret) |
| return ret; |
| |
| pvt->sensor = type; |
| pvt_set_mode(pvt, pvt_info[type].mode); |
| |
| /* |
| * Unmask the DVALID interrupt and enable the sensors conversions. |
| * Do the reverse procedure when conversion is done. |
| */ |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| |
| /* |
| * Wait with timeout since in case if the sensor is suddenly powered |
| * down the request won't be completed and the caller will hang up on |
| * this procedure until the power is back up again. Multiply the |
| * timeout by the factor of two to prevent a false timeout. |
| */ |
| timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout)); |
| ret = wait_for_completion_timeout(&cache->conversion, timeout); |
| |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| PVT_INTR_DVALID); |
| |
| data = READ_ONCE(cache->data); |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| if (!ret) |
| return -ETIMEDOUT; |
| |
| if (type == PVT_TEMP) |
| *val = polynomial_calc(&poly_N_to_temp, data); |
| else |
| *val = polynomial_calc(&poly_N_to_volt, data); |
| |
| return 0; |
| } |
| |
| static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long *val) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long val) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| bool is_low, long *val) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct hwmon_channel_info * const pvt_channel_info[] = { |
| HWMON_CHANNEL_INFO(chip, |
| HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| HWMON_CHANNEL_INFO(temp, |
| HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| HWMON_T_OFFSET), |
| HWMON_CHANNEL_INFO(in, |
| HWMON_I_INPUT | HWMON_I_LABEL, |
| HWMON_I_INPUT | HWMON_I_LABEL, |
| HWMON_I_INPUT | HWMON_I_LABEL, |
| HWMON_I_INPUT | HWMON_I_LABEL), |
| NULL |
| }; |
| |
| #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| |
| static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type, |
| int ch) |
| { |
| switch (type) { |
| case hwmon_temp: |
| if (ch < 0 || ch >= PVT_TEMP_CHS) |
| return false; |
| break; |
| case hwmon_in: |
| if (ch < 0 || ch >= PVT_VOLT_CHS) |
| return false; |
| break; |
| default: |
| break; |
| } |
| |
| /* The rest of the types are independent from the channel number. */ |
| return true; |
| } |
| |
| static umode_t pvt_hwmon_is_visible(const void *data, |
| enum hwmon_sensor_types type, |
| u32 attr, int ch) |
| { |
| if (!pvt_hwmon_channel_is_valid(type, ch)) |
| return 0; |
| |
| switch (type) { |
| case hwmon_chip: |
| switch (attr) { |
| case hwmon_chip_update_interval: |
| return 0644; |
| } |
| break; |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_input: |
| case hwmon_temp_type: |
| case hwmon_temp_label: |
| return 0444; |
| case hwmon_temp_min: |
| case hwmon_temp_max: |
| return pvt_limit_is_visible(ch); |
| case hwmon_temp_min_alarm: |
| case hwmon_temp_max_alarm: |
| return pvt_alarm_is_visible(ch); |
| case hwmon_temp_offset: |
| return 0644; |
| } |
| break; |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_input: |
| case hwmon_in_label: |
| return 0444; |
| case hwmon_in_min: |
| case hwmon_in_max: |
| return pvt_limit_is_visible(PVT_VOLT + ch); |
| case hwmon_in_min_alarm: |
| case hwmon_in_max_alarm: |
| return pvt_alarm_is_visible(PVT_VOLT + ch); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int pvt_read_trim(struct pvt_hwmon *pvt, long *val) |
| { |
| u32 data; |
| |
| data = readl(pvt->regs + PVT_CTRL); |
| *val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP; |
| |
| return 0; |
| } |
| |
| static int pvt_write_trim(struct pvt_hwmon *pvt, long val) |
| { |
| u32 trim; |
| int ret; |
| |
| /* |
| * Serialize trim update, since a part of the register is changed and |
| * the controller is supposed to be disabled during this operation. |
| */ |
| ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| if (ret) |
| return ret; |
| |
| trim = pvt_calc_trim(val); |
| pvt_set_trim(pvt, trim); |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| return 0; |
| } |
| |
| static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val) |
| { |
| int ret; |
| |
| ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| if (ret) |
| return ret; |
| |
| /* Return the result in msec as hwmon sysfs interface requires. */ |
| *val = ktime_to_ms(pvt->timeout); |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| return 0; |
| } |
| |
| static int pvt_write_timeout(struct pvt_hwmon *pvt, long val) |
| { |
| unsigned long rate; |
| ktime_t kt, cache; |
| u32 data; |
| int ret; |
| |
| rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| if (!rate) |
| return -ENODEV; |
| |
| /* |
| * If alarms are enabled, the requested timeout must be divided |
| * between all available sensors to have the requested delay |
| * applicable to each individual sensor. |
| */ |
| cache = kt = ms_to_ktime(val); |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| kt = ktime_divns(kt, PVT_SENSORS_NUM); |
| #endif |
| |
| /* |
| * Subtract a constant lag, which always persists due to the limited |
| * PVT sampling rate. Make sure the timeout is not negative. |
| */ |
| kt = ktime_sub_ns(kt, PVT_TOUT_MIN); |
| if (ktime_to_ns(kt) < 0) |
| kt = ktime_set(0, 0); |
| |
| /* |
| * Finally recalculate the timeout in terms of the reference clock |
| * period. |
| */ |
| data = ktime_divns(kt * rate, NSEC_PER_SEC); |
| |
| /* |
| * Update the measurements delay, but lock the interface first, since |
| * we have to disable PVT in order to have the new delay actually |
| * updated. |
| */ |
| ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| if (ret) |
| return ret; |
| |
| pvt_set_tout(pvt, data); |
| pvt->timeout = cache; |
| |
| mutex_unlock(&pvt->iface_mtx); |
| |
| return 0; |
| } |
| |
| static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
| u32 attr, int ch, long *val) |
| { |
| struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| |
| if (!pvt_hwmon_channel_is_valid(type, ch)) |
| return -EINVAL; |
| |
| switch (type) { |
| case hwmon_chip: |
| switch (attr) { |
| case hwmon_chip_update_interval: |
| return pvt_read_timeout(pvt, val); |
| } |
| break; |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_input: |
| return pvt_read_data(pvt, ch, val); |
| case hwmon_temp_type: |
| *val = 1; |
| return 0; |
| case hwmon_temp_min: |
| return pvt_read_limit(pvt, ch, true, val); |
| case hwmon_temp_max: |
| return pvt_read_limit(pvt, ch, false, val); |
| case hwmon_temp_min_alarm: |
| return pvt_read_alarm(pvt, ch, true, val); |
| case hwmon_temp_max_alarm: |
| return pvt_read_alarm(pvt, ch, false, val); |
| case hwmon_temp_offset: |
| return pvt_read_trim(pvt, val); |
| } |
| break; |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_input: |
| return pvt_read_data(pvt, PVT_VOLT + ch, val); |
| case hwmon_in_min: |
| return pvt_read_limit(pvt, PVT_VOLT + ch, true, val); |
| case hwmon_in_max: |
| return pvt_read_limit(pvt, PVT_VOLT + ch, false, val); |
| case hwmon_in_min_alarm: |
| return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val); |
| case hwmon_in_max_alarm: |
| return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int pvt_hwmon_read_string(struct device *dev, |
| enum hwmon_sensor_types type, |
| u32 attr, int ch, const char **str) |
| { |
| if (!pvt_hwmon_channel_is_valid(type, ch)) |
| return -EINVAL; |
| |
| switch (type) { |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_label: |
| *str = pvt_info[ch].label; |
| return 0; |
| } |
| break; |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_label: |
| *str = pvt_info[PVT_VOLT + ch].label; |
| return 0; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type, |
| u32 attr, int ch, long val) |
| { |
| struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| |
| if (!pvt_hwmon_channel_is_valid(type, ch)) |
| return -EINVAL; |
| |
| switch (type) { |
| case hwmon_chip: |
| switch (attr) { |
| case hwmon_chip_update_interval: |
| return pvt_write_timeout(pvt, val); |
| } |
| break; |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_min: |
| return pvt_write_limit(pvt, ch, true, val); |
| case hwmon_temp_max: |
| return pvt_write_limit(pvt, ch, false, val); |
| case hwmon_temp_offset: |
| return pvt_write_trim(pvt, val); |
| } |
| break; |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_min: |
| return pvt_write_limit(pvt, PVT_VOLT + ch, true, val); |
| case hwmon_in_max: |
| return pvt_write_limit(pvt, PVT_VOLT + ch, false, val); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct hwmon_ops pvt_hwmon_ops = { |
| .is_visible = pvt_hwmon_is_visible, |
| .read = pvt_hwmon_read, |
| .read_string = pvt_hwmon_read_string, |
| .write = pvt_hwmon_write |
| }; |
| |
| static const struct hwmon_chip_info pvt_hwmon_info = { |
| .ops = &pvt_hwmon_ops, |
| .info = pvt_channel_info |
| }; |
| |
| static void pvt_clear_data(void *data) |
| { |
| struct pvt_hwmon *pvt = data; |
| #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| int idx; |
| |
| for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| complete_all(&pvt->cache[idx].conversion); |
| #endif |
| |
| mutex_destroy(&pvt->iface_mtx); |
| } |
| |
| static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct pvt_hwmon *pvt; |
| int ret, idx; |
| |
| pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL); |
| if (!pvt) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = devm_add_action(dev, pvt_clear_data, pvt); |
| if (ret) { |
| dev_err(dev, "Can't add PVT data clear action\n"); |
| return ERR_PTR(ret); |
| } |
| |
| pvt->dev = dev; |
| pvt->sensor = PVT_SENSOR_FIRST; |
| mutex_init(&pvt->iface_mtx); |
| |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| seqlock_init(&pvt->cache[idx].data_seqlock); |
| #else |
| for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| init_completion(&pvt->cache[idx].conversion); |
| #endif |
| |
| return pvt; |
| } |
| |
| static int pvt_request_regs(struct pvt_hwmon *pvt) |
| { |
| struct platform_device *pdev = to_platform_device(pvt->dev); |
| |
| pvt->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(pvt->regs)) |
| return PTR_ERR(pvt->regs); |
| |
| return 0; |
| } |
| |
| static void pvt_disable_clks(void *data) |
| { |
| struct pvt_hwmon *pvt = data; |
| |
| clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks); |
| } |
| |
| static int pvt_request_clks(struct pvt_hwmon *pvt) |
| { |
| int ret; |
| |
| pvt->clks[PVT_CLOCK_APB].id = "pclk"; |
| pvt->clks[PVT_CLOCK_REF].id = "ref"; |
| |
| ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks); |
| if (ret) { |
| dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n"); |
| return ret; |
| } |
| |
| ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks); |
| if (ret) { |
| dev_err(pvt->dev, "Couldn't enable the PVT clocks\n"); |
| return ret; |
| } |
| |
| ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt); |
| if (ret) { |
| dev_err(pvt->dev, "Can't add PVT clocks disable action\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int pvt_check_pwr(struct pvt_hwmon *pvt) |
| { |
| unsigned long tout; |
| int ret = 0; |
| u32 data; |
| |
| /* |
| * Test out the sensor conversion functionality. If it is not done on |
| * time then the domain must have been unpowered and we won't be able |
| * to use the device later in this driver. |
| * Note If the power source is lost during the normal driver work the |
| * data read procedure will either return -ETIMEDOUT (for the |
| * alarm-less driver configuration) or just stop the repeated |
| * conversion. In the later case alas we won't be able to detect the |
| * problem. |
| */ |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| pvt_set_tout(pvt, 0); |
| readl(pvt->regs + PVT_DATA); |
| |
| tout = PVT_TOUT_MIN / NSEC_PER_USEC; |
| usleep_range(tout, 2 * tout); |
| |
| data = readl(pvt->regs + PVT_DATA); |
| if (!(data & PVT_DATA_VALID)) { |
| ret = -ENODEV; |
| dev_err(pvt->dev, "Sensor is powered down\n"); |
| } |
| |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| |
| return ret; |
| } |
| |
| static int pvt_init_iface(struct pvt_hwmon *pvt) |
| { |
| unsigned long rate; |
| u32 trim, temp; |
| |
| rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| if (!rate) { |
| dev_err(pvt->dev, "Invalid reference clock rate\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Make sure all interrupts and controller are disabled so not to |
| * accidentally have ISR executed before the driver data is fully |
| * initialized. Clear the IRQ status as well. |
| */ |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| readl(pvt->regs + PVT_CLR_INTR); |
| readl(pvt->regs + PVT_DATA); |
| |
| /* Setup default sensor mode, timeout and temperature trim. */ |
| pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| pvt_set_tout(pvt, PVT_TOUT_DEF); |
| |
| /* |
| * Preserve the current ref-clock based delay (Ttotal) between the |
| * sensors data samples in the driver data so not to recalculate it |
| * each time on the data requests and timeout reads. It consists of the |
| * delay introduced by the internal ref-clock timer (N / Fclk) and the |
| * constant timeout caused by each conversion latency (Tmin): |
| * Ttotal = N / Fclk + Tmin |
| * If alarms are enabled the sensors are polled one after another and |
| * in order to get the next measurement of a particular sensor the |
| * caller will have to wait for at most until all the others are |
| * polled. In that case the formulae will look a bit different: |
| * Ttotal = 5 * (N / Fclk + Tmin) |
| */ |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0); |
| pvt->timeout = ktime_divns(pvt->timeout, rate); |
| pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN); |
| #else |
| pvt->timeout = ktime_set(PVT_TOUT_DEF, 0); |
| pvt->timeout = ktime_divns(pvt->timeout, rate); |
| pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN); |
| #endif |
| |
| trim = PVT_TRIM_DEF; |
| if (!of_property_read_u32(pvt->dev->of_node, |
| "baikal,pvt-temp-offset-millicelsius", &temp)) |
| trim = pvt_calc_trim(temp); |
| |
| pvt_set_trim(pvt, trim); |
| |
| return 0; |
| } |
| |
| static int pvt_request_irq(struct pvt_hwmon *pvt) |
| { |
| struct platform_device *pdev = to_platform_device(pvt->dev); |
| int ret; |
| |
| pvt->irq = platform_get_irq(pdev, 0); |
| if (pvt->irq < 0) |
| return pvt->irq; |
| |
| ret = devm_request_threaded_irq(pvt->dev, pvt->irq, |
| pvt_hard_isr, pvt_soft_isr, |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| IRQF_SHARED | IRQF_TRIGGER_HIGH | |
| IRQF_ONESHOT, |
| #else |
| IRQF_SHARED | IRQF_TRIGGER_HIGH, |
| #endif |
| "pvt", pvt); |
| if (ret) { |
| dev_err(pvt->dev, "Couldn't request PVT IRQ\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int pvt_create_hwmon(struct pvt_hwmon *pvt) |
| { |
| pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt, |
| &pvt_hwmon_info, NULL); |
| if (IS_ERR(pvt->hwmon)) { |
| dev_err(pvt->dev, "Couldn't create hwmon device\n"); |
| return PTR_ERR(pvt->hwmon); |
| } |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| |
| static void pvt_disable_iface(void *data) |
| { |
| struct pvt_hwmon *pvt = data; |
| |
| mutex_lock(&pvt->iface_mtx); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| PVT_INTR_DVALID); |
| mutex_unlock(&pvt->iface_mtx); |
| } |
| |
| static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| { |
| int ret; |
| |
| ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt); |
| if (ret) { |
| dev_err(pvt->dev, "Can't add PVT disable interface action\n"); |
| return ret; |
| } |
| |
| /* |
| * Enable sensors data conversion and IRQ. We need to lock the |
| * interface mutex since hwmon has just been created and the |
| * corresponding sysfs files are accessible from user-space, |
| * which theoretically may cause races. |
| */ |
| mutex_lock(&pvt->iface_mtx); |
| pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| mutex_unlock(&pvt->iface_mtx); |
| |
| return 0; |
| } |
| |
| #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| |
| static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| { |
| return 0; |
| } |
| |
| #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| |
| static int pvt_probe(struct platform_device *pdev) |
| { |
| struct pvt_hwmon *pvt; |
| int ret; |
| |
| pvt = pvt_create_data(pdev); |
| if (IS_ERR(pvt)) |
| return PTR_ERR(pvt); |
| |
| ret = pvt_request_regs(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_request_clks(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_check_pwr(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_init_iface(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_request_irq(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_create_hwmon(pvt); |
| if (ret) |
| return ret; |
| |
| ret = pvt_enable_iface(pvt); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static const struct of_device_id pvt_of_match[] = { |
| { .compatible = "baikal,bt1-pvt" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, pvt_of_match); |
| |
| static struct platform_driver pvt_driver = { |
| .probe = pvt_probe, |
| .driver = { |
| .name = "bt1-pvt", |
| .of_match_table = pvt_of_match |
| } |
| }; |
| module_platform_driver(pvt_driver); |
| |
| MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>"); |
| MODULE_DESCRIPTION("Baikal-T1 PVT driver"); |
| MODULE_LICENSE("GPL v2"); |