| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * fam15h_power.c - AMD Family 15h processor power monitoring |
| * |
| * Copyright (c) 2011-2016 Advanced Micro Devices, Inc. |
| * Author: Andreas Herrmann <herrmann.der.user@googlemail.com> |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/bitops.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/time.h> |
| #include <linux/sched.h> |
| #include <linux/topology.h> |
| #include <asm/processor.h> |
| #include <asm/msr.h> |
| |
| MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor"); |
| MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| /* D18F3 */ |
| #define REG_NORTHBRIDGE_CAP 0xe8 |
| |
| /* D18F4 */ |
| #define REG_PROCESSOR_TDP 0x1b8 |
| |
| /* D18F5 */ |
| #define REG_TDP_RUNNING_AVERAGE 0xe0 |
| #define REG_TDP_LIMIT3 0xe8 |
| |
| #define FAM15H_MIN_NUM_ATTRS 2 |
| #define FAM15H_NUM_GROUPS 2 |
| #define MAX_CUS 8 |
| |
| /* set maximum interval as 1 second */ |
| #define MAX_INTERVAL 1000 |
| |
| #define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4 |
| |
| struct fam15h_power_data { |
| struct pci_dev *pdev; |
| unsigned int tdp_to_watts; |
| unsigned int base_tdp; |
| unsigned int processor_pwr_watts; |
| unsigned int cpu_pwr_sample_ratio; |
| const struct attribute_group *groups[FAM15H_NUM_GROUPS]; |
| struct attribute_group group; |
| /* maximum accumulated power of a compute unit */ |
| u64 max_cu_acc_power; |
| /* accumulated power of the compute units */ |
| u64 cu_acc_power[MAX_CUS]; |
| /* performance timestamp counter */ |
| u64 cpu_sw_pwr_ptsc[MAX_CUS]; |
| /* online/offline status of current compute unit */ |
| int cu_on[MAX_CUS]; |
| unsigned long power_period; |
| }; |
| |
| static bool is_carrizo_or_later(void) |
| { |
| return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60; |
| } |
| |
| static ssize_t power1_input_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 val, tdp_limit, running_avg_range; |
| s32 running_avg_capture; |
| u64 curr_pwr_watts; |
| struct fam15h_power_data *data = dev_get_drvdata(dev); |
| struct pci_dev *f4 = data->pdev; |
| |
| pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), |
| REG_TDP_RUNNING_AVERAGE, &val); |
| |
| /* |
| * On Carrizo and later platforms, TdpRunAvgAccCap bit field |
| * is extended to 4:31 from 4:25. |
| */ |
| if (is_carrizo_or_later()) { |
| running_avg_capture = val >> 4; |
| running_avg_capture = sign_extend32(running_avg_capture, 27); |
| } else { |
| running_avg_capture = (val >> 4) & 0x3fffff; |
| running_avg_capture = sign_extend32(running_avg_capture, 21); |
| } |
| |
| running_avg_range = (val & 0xf) + 1; |
| |
| pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), |
| REG_TDP_LIMIT3, &val); |
| |
| /* |
| * On Carrizo and later platforms, ApmTdpLimit bit field |
| * is extended to 16:31 from 16:28. |
| */ |
| if (is_carrizo_or_later()) |
| tdp_limit = val >> 16; |
| else |
| tdp_limit = (val >> 16) & 0x1fff; |
| |
| curr_pwr_watts = ((u64)(tdp_limit + |
| data->base_tdp)) << running_avg_range; |
| curr_pwr_watts -= running_avg_capture; |
| curr_pwr_watts *= data->tdp_to_watts; |
| |
| /* |
| * Convert to microWatt |
| * |
| * power is in Watt provided as fixed point integer with |
| * scaling factor 1/(2^16). For conversion we use |
| * (10^6)/(2^16) = 15625/(2^10) |
| */ |
| curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range); |
| return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts); |
| } |
| static DEVICE_ATTR_RO(power1_input); |
| |
| static ssize_t power1_crit_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fam15h_power_data *data = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%u\n", data->processor_pwr_watts); |
| } |
| static DEVICE_ATTR_RO(power1_crit); |
| |
| static void do_read_registers_on_cu(void *_data) |
| { |
| struct fam15h_power_data *data = _data; |
| int cu; |
| |
| /* |
| * With the new x86 topology modelling, cpu core id actually |
| * is compute unit id. |
| */ |
| cu = topology_core_id(smp_processor_id()); |
| |
| rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]); |
| rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]); |
| |
| data->cu_on[cu] = 1; |
| } |
| |
| /* |
| * This function is only able to be called when CPUID |
| * Fn8000_0007:EDX[12] is set. |
| */ |
| static int read_registers(struct fam15h_power_data *data) |
| { |
| int core, this_core; |
| cpumask_var_t mask; |
| int ret, cpu; |
| |
| ret = zalloc_cpumask_var(&mask, GFP_KERNEL); |
| if (!ret) |
| return -ENOMEM; |
| |
| memset(data->cu_on, 0, sizeof(int) * MAX_CUS); |
| |
| cpus_read_lock(); |
| |
| /* |
| * Choose the first online core of each compute unit, and then |
| * read their MSR value of power and ptsc in a single IPI, |
| * because the MSR value of CPU core represent the compute |
| * unit's. |
| */ |
| core = -1; |
| |
| for_each_online_cpu(cpu) { |
| this_core = topology_core_id(cpu); |
| |
| if (this_core == core) |
| continue; |
| |
| core = this_core; |
| |
| /* get any CPU on this compute unit */ |
| cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask); |
| } |
| |
| on_each_cpu_mask(mask, do_read_registers_on_cu, data, true); |
| |
| cpus_read_unlock(); |
| free_cpumask_var(mask); |
| |
| return 0; |
| } |
| |
| static ssize_t power1_average_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fam15h_power_data *data = dev_get_drvdata(dev); |
| u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS], |
| jdelta[MAX_CUS]; |
| u64 tdelta, avg_acc; |
| int cu, cu_num, ret; |
| signed long leftover; |
| |
| /* |
| * With the new x86 topology modelling, x86_max_cores is the |
| * compute unit number. |
| */ |
| cu_num = topology_num_cores_per_package(); |
| |
| ret = read_registers(data); |
| if (ret) |
| return 0; |
| |
| for (cu = 0; cu < cu_num; cu++) { |
| prev_cu_acc_power[cu] = data->cu_acc_power[cu]; |
| prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu]; |
| } |
| |
| leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period)); |
| if (leftover) |
| return 0; |
| |
| ret = read_registers(data); |
| if (ret) |
| return 0; |
| |
| for (cu = 0, avg_acc = 0; cu < cu_num; cu++) { |
| /* check if current compute unit is online */ |
| if (data->cu_on[cu] == 0) |
| continue; |
| |
| if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) { |
| jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu]; |
| jdelta[cu] -= prev_cu_acc_power[cu]; |
| } else { |
| jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu]; |
| } |
| tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu]; |
| jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000; |
| do_div(jdelta[cu], tdelta); |
| |
| /* the unit is microWatt */ |
| avg_acc += jdelta[cu]; |
| } |
| |
| return sprintf(buf, "%llu\n", (unsigned long long)avg_acc); |
| } |
| static DEVICE_ATTR_RO(power1_average); |
| |
| static ssize_t power1_average_interval_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct fam15h_power_data *data = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%lu\n", data->power_period); |
| } |
| |
| static ssize_t power1_average_interval_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct fam15h_power_data *data = dev_get_drvdata(dev); |
| unsigned long temp; |
| int ret; |
| |
| ret = kstrtoul(buf, 10, &temp); |
| if (ret) |
| return ret; |
| |
| if (temp > MAX_INTERVAL) |
| return -EINVAL; |
| |
| /* the interval value should be greater than 0 */ |
| if (temp <= 0) |
| return -EINVAL; |
| |
| data->power_period = temp; |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(power1_average_interval); |
| |
| static int fam15h_power_init_attrs(struct pci_dev *pdev, |
| struct fam15h_power_data *data) |
| { |
| int n = FAM15H_MIN_NUM_ATTRS; |
| struct attribute **fam15h_power_attrs; |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| if (c->x86 == 0x15 && |
| (c->x86_model <= 0xf || |
| (c->x86_model >= 0x60 && c->x86_model <= 0x7f))) |
| n += 1; |
| |
| /* check if processor supports accumulated power */ |
| if (boot_cpu_has(X86_FEATURE_ACC_POWER)) |
| n += 2; |
| |
| fam15h_power_attrs = devm_kcalloc(&pdev->dev, n, |
| sizeof(*fam15h_power_attrs), |
| GFP_KERNEL); |
| |
| if (!fam15h_power_attrs) |
| return -ENOMEM; |
| |
| n = 0; |
| fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr; |
| if (c->x86 == 0x15 && |
| (c->x86_model <= 0xf || |
| (c->x86_model >= 0x60 && c->x86_model <= 0x7f))) |
| fam15h_power_attrs[n++] = &dev_attr_power1_input.attr; |
| |
| if (boot_cpu_has(X86_FEATURE_ACC_POWER)) { |
| fam15h_power_attrs[n++] = &dev_attr_power1_average.attr; |
| fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr; |
| } |
| |
| data->group.attrs = fam15h_power_attrs; |
| |
| return 0; |
| } |
| |
| static bool should_load_on_this_node(struct pci_dev *f4) |
| { |
| u32 val; |
| |
| pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3), |
| REG_NORTHBRIDGE_CAP, &val); |
| if ((val & BIT(29)) && ((val >> 30) & 3)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Newer BKDG versions have an updated recommendation on how to properly |
| * initialize the running average range (was: 0xE, now: 0x9). This avoids |
| * counter saturations resulting in bogus power readings. |
| * We correct this value ourselves to cope with older BIOSes. |
| */ |
| static const struct pci_device_id affected_device[] = { |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) }, |
| { 0 } |
| }; |
| |
| static void tweak_runavg_range(struct pci_dev *pdev) |
| { |
| u32 val; |
| |
| /* |
| * let this quirk apply only to the current version of the |
| * northbridge, since future versions may change the behavior |
| */ |
| if (!pci_match_id(affected_device, pdev)) |
| return; |
| |
| pci_bus_read_config_dword(pdev->bus, |
| PCI_DEVFN(PCI_SLOT(pdev->devfn), 5), |
| REG_TDP_RUNNING_AVERAGE, &val); |
| if ((val & 0xf) != 0xe) |
| return; |
| |
| val &= ~0xf; |
| val |= 0x9; |
| pci_bus_write_config_dword(pdev->bus, |
| PCI_DEVFN(PCI_SLOT(pdev->devfn), 5), |
| REG_TDP_RUNNING_AVERAGE, val); |
| } |
| |
| #ifdef CONFIG_PM |
| static int fam15h_power_resume(struct pci_dev *pdev) |
| { |
| tweak_runavg_range(pdev); |
| return 0; |
| } |
| #else |
| #define fam15h_power_resume NULL |
| #endif |
| |
| static int fam15h_power_init_data(struct pci_dev *f4, |
| struct fam15h_power_data *data) |
| { |
| u32 val; |
| u64 tmp; |
| int ret; |
| |
| pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val); |
| data->base_tdp = val >> 16; |
| tmp = val & 0xffff; |
| |
| pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), |
| REG_TDP_LIMIT3, &val); |
| |
| data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f); |
| tmp *= data->tdp_to_watts; |
| |
| /* result not allowed to be >= 256W */ |
| if ((tmp >> 16) >= 256) |
| dev_warn(&f4->dev, |
| "Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n", |
| (unsigned int) (tmp >> 16)); |
| |
| /* convert to microWatt */ |
| data->processor_pwr_watts = (tmp * 15625) >> 10; |
| |
| ret = fam15h_power_init_attrs(f4, data); |
| if (ret) |
| return ret; |
| |
| |
| /* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */ |
| if (!boot_cpu_has(X86_FEATURE_ACC_POWER)) |
| return 0; |
| |
| /* |
| * determine the ratio of the compute unit power accumulator |
| * sample period to the PTSC counter period by executing CPUID |
| * Fn8000_0007:ECX |
| */ |
| data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007); |
| |
| if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) { |
| pr_err("Failed to read max compute unit power accumulator MSR\n"); |
| return -ENODEV; |
| } |
| |
| data->max_cu_acc_power = tmp; |
| |
| /* |
| * Milliseconds are a reasonable interval for the measurement. |
| * But it shouldn't set too long here, because several seconds |
| * would cause the read function to hang. So set default |
| * interval as 10 ms. |
| */ |
| data->power_period = 10; |
| |
| return read_registers(data); |
| } |
| |
| static int fam15h_power_probe(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| struct fam15h_power_data *data; |
| struct device *dev = &pdev->dev; |
| struct device *hwmon_dev; |
| int ret; |
| |
| /* |
| * though we ignore every other northbridge, we still have to |
| * do the tweaking on _each_ node in MCM processors as the counters |
| * are working hand-in-hand |
| */ |
| tweak_runavg_range(pdev); |
| |
| if (!should_load_on_this_node(pdev)) |
| return -ENODEV; |
| |
| data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| ret = fam15h_power_init_data(pdev, data); |
| if (ret) |
| return ret; |
| |
| data->pdev = pdev; |
| |
| data->groups[0] = &data->group; |
| |
| hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power", |
| data, |
| &data->groups[0]); |
| return PTR_ERR_OR_ZERO(hwmon_dev); |
| } |
| |
| static const struct pci_device_id fam15h_power_id_table[] = { |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) }, |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) }, |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) }, |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) }, |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) }, |
| { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(pci, fam15h_power_id_table); |
| |
| static struct pci_driver fam15h_power_driver = { |
| .name = "fam15h_power", |
| .id_table = fam15h_power_id_table, |
| .probe = fam15h_power_probe, |
| .resume = fam15h_power_resume, |
| }; |
| |
| module_pci_driver(fam15h_power_driver); |