blob: 61e8e43e9c2bbd423445a4bff2ce7f15f6070366 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* File: drivers/input/keyboard/adp5588_keys.c
* Description: keypad driver for ADP5588 and ADP5587
* I2C QWERTY Keypad and IO Expander
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* Copyright (C) 2008-2010 Analog Devices Inc.
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/matrix_keypad.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/timekeeping.h>
#define DEV_ID 0x00 /* Device ID */
#define CFG 0x01 /* Configuration Register1 */
#define INT_STAT 0x02 /* Interrupt Status Register */
#define KEY_LCK_EC_STAT 0x03 /* Key Lock and Event Counter Register */
#define KEY_EVENTA 0x04 /* Key Event Register A */
#define KEY_EVENTB 0x05 /* Key Event Register B */
#define KEY_EVENTC 0x06 /* Key Event Register C */
#define KEY_EVENTD 0x07 /* Key Event Register D */
#define KEY_EVENTE 0x08 /* Key Event Register E */
#define KEY_EVENTF 0x09 /* Key Event Register F */
#define KEY_EVENTG 0x0A /* Key Event Register G */
#define KEY_EVENTH 0x0B /* Key Event Register H */
#define KEY_EVENTI 0x0C /* Key Event Register I */
#define KEY_EVENTJ 0x0D /* Key Event Register J */
#define KP_LCK_TMR 0x0E /* Keypad Lock1 to Lock2 Timer */
#define UNLOCK1 0x0F /* Unlock Key1 */
#define UNLOCK2 0x10 /* Unlock Key2 */
#define GPIO_INT_STAT1 0x11 /* GPIO Interrupt Status */
#define GPIO_INT_STAT2 0x12 /* GPIO Interrupt Status */
#define GPIO_INT_STAT3 0x13 /* GPIO Interrupt Status */
#define GPIO_DAT_STAT1 0x14 /* GPIO Data Status, Read twice to clear */
#define GPIO_DAT_STAT2 0x15 /* GPIO Data Status, Read twice to clear */
#define GPIO_DAT_STAT3 0x16 /* GPIO Data Status, Read twice to clear */
#define GPIO_DAT_OUT1 0x17 /* GPIO DATA OUT */
#define GPIO_DAT_OUT2 0x18 /* GPIO DATA OUT */
#define GPIO_DAT_OUT3 0x19 /* GPIO DATA OUT */
#define GPIO_INT_EN1 0x1A /* GPIO Interrupt Enable */
#define GPIO_INT_EN2 0x1B /* GPIO Interrupt Enable */
#define GPIO_INT_EN3 0x1C /* GPIO Interrupt Enable */
#define KP_GPIO1 0x1D /* Keypad or GPIO Selection */
#define KP_GPIO2 0x1E /* Keypad or GPIO Selection */
#define KP_GPIO3 0x1F /* Keypad or GPIO Selection */
#define GPI_EM1 0x20 /* GPI Event Mode 1 */
#define GPI_EM2 0x21 /* GPI Event Mode 2 */
#define GPI_EM3 0x22 /* GPI Event Mode 3 */
#define GPIO_DIR1 0x23 /* GPIO Data Direction */
#define GPIO_DIR2 0x24 /* GPIO Data Direction */
#define GPIO_DIR3 0x25 /* GPIO Data Direction */
#define GPIO_INT_LVL1 0x26 /* GPIO Edge/Level Detect */
#define GPIO_INT_LVL2 0x27 /* GPIO Edge/Level Detect */
#define GPIO_INT_LVL3 0x28 /* GPIO Edge/Level Detect */
#define DEBOUNCE_DIS1 0x29 /* Debounce Disable */
#define DEBOUNCE_DIS2 0x2A /* Debounce Disable */
#define DEBOUNCE_DIS3 0x2B /* Debounce Disable */
#define GPIO_PULL1 0x2C /* GPIO Pull Disable */
#define GPIO_PULL2 0x2D /* GPIO Pull Disable */
#define GPIO_PULL3 0x2E /* GPIO Pull Disable */
#define CMP_CFG_STAT 0x30 /* Comparator Configuration and Status Register */
#define CMP_CONFG_SENS1 0x31 /* Sensor1 Comparator Configuration Register */
#define CMP_CONFG_SENS2 0x32 /* L2 Light Sensor Reference Level, Output Falling for Sensor 1 */
#define CMP1_LVL2_TRIP 0x33 /* L2 Light Sensor Hysteresis (Active when Output Rising) for Sensor 1 */
#define CMP1_LVL2_HYS 0x34 /* L3 Light Sensor Reference Level, Output Falling For Sensor 1 */
#define CMP1_LVL3_TRIP 0x35 /* L3 Light Sensor Hysteresis (Active when Output Rising) For Sensor 1 */
#define CMP1_LVL3_HYS 0x36 /* Sensor 2 Comparator Configuration Register */
#define CMP2_LVL2_TRIP 0x37 /* L2 Light Sensor Reference Level, Output Falling for Sensor 2 */
#define CMP2_LVL2_HYS 0x38 /* L2 Light Sensor Hysteresis (Active when Output Rising) for Sensor 2 */
#define CMP2_LVL3_TRIP 0x39 /* L3 Light Sensor Reference Level, Output Falling For Sensor 2 */
#define CMP2_LVL3_HYS 0x3A /* L3 Light Sensor Hysteresis (Active when Output Rising) For Sensor 2 */
#define CMP1_ADC_DAT_R1 0x3B /* Comparator 1 ADC data Register1 */
#define CMP1_ADC_DAT_R2 0x3C /* Comparator 1 ADC data Register2 */
#define CMP2_ADC_DAT_R1 0x3D /* Comparator 2 ADC data Register1 */
#define CMP2_ADC_DAT_R2 0x3E /* Comparator 2 ADC data Register2 */
#define ADP5588_DEVICE_ID_MASK 0xF
/* Configuration Register1 */
#define ADP5588_AUTO_INC BIT(7)
#define ADP5588_GPIEM_CFG BIT(6)
#define ADP5588_OVR_FLOW_M BIT(5)
#define ADP5588_INT_CFG BIT(4)
#define ADP5588_OVR_FLOW_IEN BIT(3)
#define ADP5588_K_LCK_IM BIT(2)
#define ADP5588_GPI_IEN BIT(1)
#define ADP5588_KE_IEN BIT(0)
/* Interrupt Status Register */
#define ADP5588_CMP2_INT BIT(5)
#define ADP5588_CMP1_INT BIT(4)
#define ADP5588_OVR_FLOW_INT BIT(3)
#define ADP5588_K_LCK_INT BIT(2)
#define ADP5588_GPI_INT BIT(1)
#define ADP5588_KE_INT BIT(0)
/* Key Lock and Event Counter Register */
#define ADP5588_K_LCK_EN BIT(6)
#define ADP5588_LCK21 0x30
#define ADP5588_KEC GENMASK(3, 0)
#define ADP5588_MAXGPIO 18
#define ADP5588_BANK(offs) ((offs) >> 3)
#define ADP5588_BIT(offs) (1u << ((offs) & 0x7))
/* Put one of these structures in i2c_board_info platform_data */
/*
* 128 so it fits matrix-keymap maximum number of keys when the full
* 10cols * 8rows are used.
*/
#define ADP5588_KEYMAPSIZE 128
#define GPI_PIN_ROW0 97
#define GPI_PIN_ROW1 98
#define GPI_PIN_ROW2 99
#define GPI_PIN_ROW3 100
#define GPI_PIN_ROW4 101
#define GPI_PIN_ROW5 102
#define GPI_PIN_ROW6 103
#define GPI_PIN_ROW7 104
#define GPI_PIN_COL0 105
#define GPI_PIN_COL1 106
#define GPI_PIN_COL2 107
#define GPI_PIN_COL3 108
#define GPI_PIN_COL4 109
#define GPI_PIN_COL5 110
#define GPI_PIN_COL6 111
#define GPI_PIN_COL7 112
#define GPI_PIN_COL8 113
#define GPI_PIN_COL9 114
#define GPI_PIN_ROW_BASE GPI_PIN_ROW0
#define GPI_PIN_ROW_END GPI_PIN_ROW7
#define GPI_PIN_COL_BASE GPI_PIN_COL0
#define GPI_PIN_COL_END GPI_PIN_COL9
#define GPI_PIN_BASE GPI_PIN_ROW_BASE
#define GPI_PIN_END GPI_PIN_COL_END
#define ADP5588_ROWS_MAX (GPI_PIN_ROW7 - GPI_PIN_ROW0 + 1)
#define ADP5588_COLS_MAX (GPI_PIN_COL9 - GPI_PIN_COL0 + 1)
#define ADP5588_GPIMAPSIZE_MAX (GPI_PIN_END - GPI_PIN_BASE + 1)
/* Key Event Register xy */
#define KEY_EV_PRESSED BIT(7)
#define KEY_EV_MASK GENMASK(6, 0)
#define KP_SEL(x) (BIT(x) - 1) /* 2^x-1 */
#define KEYP_MAX_EVENT 10
/*
* Early pre 4.0 Silicon required to delay readout by at least 25ms,
* since the Event Counter Register updated 25ms after the interrupt
* asserted.
*/
#define WA_DELAYED_READOUT_REVID(rev) ((rev) < 4)
#define WA_DELAYED_READOUT_TIME 25
#define ADP5588_INVALID_HWIRQ (~0UL)
struct adp5588_kpad {
struct i2c_client *client;
struct input_dev *input;
ktime_t irq_time;
unsigned long delay;
u32 row_shift;
u32 rows;
u32 cols;
u32 unlock_keys[2];
int nkeys_unlock;
unsigned short keycode[ADP5588_KEYMAPSIZE];
unsigned char gpiomap[ADP5588_MAXGPIO];
struct gpio_chip gc;
struct mutex gpio_lock; /* Protect cached dir, dat_out */
u8 dat_out[3];
u8 dir[3];
u8 int_en[3];
u8 irq_mask[3];
u8 pull_dis[3];
};
static int adp5588_read(struct i2c_client *client, u8 reg)
{
int ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
dev_err(&client->dev, "Read Error\n");
return ret;
}
static int adp5588_write(struct i2c_client *client, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(client, reg, val);
}
static int adp5588_gpio_get_value(struct gpio_chip *chip, unsigned int off)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int val;
mutex_lock(&kpad->gpio_lock);
if (kpad->dir[bank] & bit)
val = kpad->dat_out[bank];
else
val = adp5588_read(kpad->client, GPIO_DAT_STAT1 + bank);
mutex_unlock(&kpad->gpio_lock);
return !!(val & bit);
}
static void adp5588_gpio_set_value(struct gpio_chip *chip,
unsigned int off, int val)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
mutex_lock(&kpad->gpio_lock);
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank, kpad->dat_out[bank]);
mutex_unlock(&kpad->gpio_lock);
}
static int adp5588_gpio_set_config(struct gpio_chip *chip, unsigned int off,
unsigned long config)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
bool pull_disable;
int ret;
switch (pinconf_to_config_param(config)) {
case PIN_CONFIG_BIAS_PULL_UP:
pull_disable = false;
break;
case PIN_CONFIG_BIAS_DISABLE:
pull_disable = true;
break;
default:
return -ENOTSUPP;
}
mutex_lock(&kpad->gpio_lock);
if (pull_disable)
kpad->pull_dis[bank] |= bit;
else
kpad->pull_dis[bank] &= bit;
ret = adp5588_write(kpad->client, GPIO_PULL1 + bank,
kpad->pull_dis[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_gpio_direction_input(struct gpio_chip *chip, unsigned int off)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_gpio_direction_output(struct gpio_chip *chip,
unsigned int off, int val)
{
struct adp5588_kpad *kpad = gpiochip_get_data(chip);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] |= bit;
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank,
kpad->dat_out[bank]);
if (ret)
goto out_unlock;
ret = adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]);
out_unlock:
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_build_gpiomap(struct adp5588_kpad *kpad)
{
bool pin_used[ADP5588_MAXGPIO];
int n_unused = 0;
int i;
memset(pin_used, 0, sizeof(pin_used));
for (i = 0; i < kpad->rows; i++)
pin_used[i] = true;
for (i = 0; i < kpad->cols; i++)
pin_used[i + GPI_PIN_COL_BASE - GPI_PIN_BASE] = true;
for (i = 0; i < ADP5588_MAXGPIO; i++)
if (!pin_used[i])
kpad->gpiomap[n_unused++] = i;
return n_unused;
}
static void adp5588_irq_bus_lock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct adp5588_kpad *kpad = gpiochip_get_data(gc);
mutex_lock(&kpad->gpio_lock);
}
static void adp5588_irq_bus_sync_unlock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct adp5588_kpad *kpad = gpiochip_get_data(gc);
int i;
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
if (kpad->int_en[i] ^ kpad->irq_mask[i]) {
kpad->int_en[i] = kpad->irq_mask[i];
adp5588_write(kpad->client, GPI_EM1 + i, kpad->int_en[i]);
}
}
mutex_unlock(&kpad->gpio_lock);
}
static void adp5588_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct adp5588_kpad *kpad = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long real_irq = kpad->gpiomap[hwirq];
kpad->irq_mask[ADP5588_BANK(real_irq)] &= ~ADP5588_BIT(real_irq);
gpiochip_disable_irq(gc, hwirq);
}
static void adp5588_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct adp5588_kpad *kpad = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
unsigned long real_irq = kpad->gpiomap[hwirq];
gpiochip_enable_irq(gc, hwirq);
kpad->irq_mask[ADP5588_BANK(real_irq)] |= ADP5588_BIT(real_irq);
}
static int adp5588_irq_set_type(struct irq_data *d, unsigned int type)
{
if (!(type & IRQ_TYPE_EDGE_BOTH))
return -EINVAL;
irq_set_handler_locked(d, handle_edge_irq);
return 0;
}
static const struct irq_chip adp5588_irq_chip = {
.name = "adp5588",
.irq_mask = adp5588_irq_mask,
.irq_unmask = adp5588_irq_unmask,
.irq_bus_lock = adp5588_irq_bus_lock,
.irq_bus_sync_unlock = adp5588_irq_bus_sync_unlock,
.irq_set_type = adp5588_irq_set_type,
.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_IMMUTABLE,
GPIOCHIP_IRQ_RESOURCE_HELPERS,
};
static int adp5588_gpio_add(struct adp5588_kpad *kpad)
{
struct device *dev = &kpad->client->dev;
struct gpio_irq_chip *girq;
int i, error;
kpad->gc.ngpio = adp5588_build_gpiomap(kpad);
if (kpad->gc.ngpio == 0) {
dev_info(dev, "No unused gpios left to export\n");
return 0;
}
kpad->gc.parent = &kpad->client->dev;
kpad->gc.direction_input = adp5588_gpio_direction_input;
kpad->gc.direction_output = adp5588_gpio_direction_output;
kpad->gc.get = adp5588_gpio_get_value;
kpad->gc.set = adp5588_gpio_set_value;
kpad->gc.set_config = adp5588_gpio_set_config;
kpad->gc.can_sleep = 1;
kpad->gc.base = -1;
kpad->gc.label = kpad->client->name;
kpad->gc.owner = THIS_MODULE;
girq = &kpad->gc.irq;
gpio_irq_chip_set_chip(girq, &adp5588_irq_chip);
girq->handler = handle_bad_irq;
girq->threaded = true;
mutex_init(&kpad->gpio_lock);
error = devm_gpiochip_add_data(dev, &kpad->gc, kpad);
if (error) {
dev_err(dev, "gpiochip_add failed: %d\n", error);
return error;
}
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
kpad->dat_out[i] = adp5588_read(kpad->client,
GPIO_DAT_OUT1 + i);
kpad->dir[i] = adp5588_read(kpad->client, GPIO_DIR1 + i);
kpad->pull_dis[i] = adp5588_read(kpad->client, GPIO_PULL1 + i);
}
return 0;
}
static unsigned long adp5588_gpiomap_get_hwirq(struct device *dev,
const u8 *map, unsigned int gpio,
unsigned int ngpios)
{
unsigned int hwirq;
for (hwirq = 0; hwirq < ngpios; hwirq++)
if (map[hwirq] == gpio)
return hwirq;
/* should never happen */
dev_warn_ratelimited(dev, "could not find the hwirq for gpio(%u)\n", gpio);
return ADP5588_INVALID_HWIRQ;
}
static void adp5588_gpio_irq_handle(struct adp5588_kpad *kpad, int key_val,
int key_press)
{
unsigned int irq, gpio = key_val - GPI_PIN_BASE, irq_type;
struct i2c_client *client = kpad->client;
struct irq_data *irqd;
unsigned long hwirq;
hwirq = adp5588_gpiomap_get_hwirq(&client->dev, kpad->gpiomap,
gpio, kpad->gc.ngpio);
if (hwirq == ADP5588_INVALID_HWIRQ) {
dev_err(&client->dev, "Could not get hwirq for key(%u)\n", key_val);
return;
}
irq = irq_find_mapping(kpad->gc.irq.domain, hwirq);
if (!irq)
return;
irqd = irq_get_irq_data(irq);
if (!irqd) {
dev_err(&client->dev, "Could not get irq(%u) data\n", irq);
return;
}
irq_type = irqd_get_trigger_type(irqd);
/*
* Default is active low which means key_press is asserted on
* the falling edge.
*/
if ((irq_type & IRQ_TYPE_EDGE_RISING && !key_press) ||
(irq_type & IRQ_TYPE_EDGE_FALLING && key_press))
handle_nested_irq(irq);
}
static void adp5588_report_events(struct adp5588_kpad *kpad, int ev_cnt)
{
int i;
for (i = 0; i < ev_cnt; i++) {
int key = adp5588_read(kpad->client, KEY_EVENTA + i);
int key_val = key & KEY_EV_MASK;
int key_press = key & KEY_EV_PRESSED;
if (key_val >= GPI_PIN_BASE && key_val <= GPI_PIN_END) {
/* gpio line used as IRQ source */
adp5588_gpio_irq_handle(kpad, key_val, key_press);
} else {
int row = (key_val - 1) / ADP5588_COLS_MAX;
int col = (key_val - 1) % ADP5588_COLS_MAX;
int code = MATRIX_SCAN_CODE(row, col, kpad->row_shift);
dev_dbg_ratelimited(&kpad->client->dev,
"report key(%d) r(%d) c(%d) code(%d)\n",
key_val, row, col, kpad->keycode[code]);
input_report_key(kpad->input,
kpad->keycode[code], key_press);
}
}
}
static irqreturn_t adp5588_hard_irq(int irq, void *handle)
{
struct adp5588_kpad *kpad = handle;
kpad->irq_time = ktime_get();
return IRQ_WAKE_THREAD;
}
static irqreturn_t adp5588_thread_irq(int irq, void *handle)
{
struct adp5588_kpad *kpad = handle;
struct i2c_client *client = kpad->client;
ktime_t target_time, now;
unsigned long delay;
int status, ev_cnt;
/*
* Readout needs to wait for at least 25ms after the notification
* for REVID < 4.
*/
if (kpad->delay) {
target_time = ktime_add_ms(kpad->irq_time, kpad->delay);
now = ktime_get();
if (ktime_before(now, target_time)) {
delay = ktime_to_us(ktime_sub(target_time, now));
usleep_range(delay, delay + 1000);
}
}
status = adp5588_read(client, INT_STAT);
if (status & ADP5588_OVR_FLOW_INT) /* Unlikely and should never happen */
dev_err(&client->dev, "Event Overflow Error\n");
if (status & ADP5588_KE_INT) {
ev_cnt = adp5588_read(client, KEY_LCK_EC_STAT) & ADP5588_KEC;
if (ev_cnt) {
adp5588_report_events(kpad, ev_cnt);
input_sync(kpad->input);
}
}
adp5588_write(client, INT_STAT, status); /* Status is W1C */
return IRQ_HANDLED;
}
static int adp5588_setup(struct adp5588_kpad *kpad)
{
struct i2c_client *client = kpad->client;
int i, ret;
ret = adp5588_write(client, KP_GPIO1, KP_SEL(kpad->rows));
if (ret)
return ret;
ret = adp5588_write(client, KP_GPIO2, KP_SEL(kpad->cols) & 0xFF);
if (ret)
return ret;
ret = adp5588_write(client, KP_GPIO3, KP_SEL(kpad->cols) >> 8);
if (ret)
return ret;
for (i = 0; i < kpad->nkeys_unlock; i++) {
ret = adp5588_write(client, UNLOCK1 + i, kpad->unlock_keys[i]);
if (ret)
return ret;
}
if (kpad->nkeys_unlock) {
ret = adp5588_write(client, KEY_LCK_EC_STAT, ADP5588_K_LCK_EN);
if (ret)
return ret;
}
for (i = 0; i < KEYP_MAX_EVENT; i++) {
ret = adp5588_read(client, KEY_EVENTA);
if (ret)
return ret;
}
ret = adp5588_write(client, INT_STAT,
ADP5588_CMP2_INT | ADP5588_CMP1_INT |
ADP5588_OVR_FLOW_INT | ADP5588_K_LCK_INT |
ADP5588_GPI_INT | ADP5588_KE_INT); /* Status is W1C */
if (ret)
return ret;
return adp5588_write(client, CFG, ADP5588_INT_CFG |
ADP5588_OVR_FLOW_IEN | ADP5588_KE_IEN);
}
static int adp5588_fw_parse(struct adp5588_kpad *kpad)
{
struct i2c_client *client = kpad->client;
int ret, i;
ret = matrix_keypad_parse_properties(&client->dev, &kpad->rows,
&kpad->cols);
if (ret)
return ret;
if (kpad->rows > ADP5588_ROWS_MAX || kpad->cols > ADP5588_COLS_MAX) {
dev_err(&client->dev, "Invalid nr of rows(%u) or cols(%u)\n",
kpad->rows, kpad->cols);
return -EINVAL;
}
ret = matrix_keypad_build_keymap(NULL, NULL, kpad->rows, kpad->cols,
kpad->keycode, kpad->input);
if (ret)
return ret;
kpad->row_shift = get_count_order(kpad->cols);
if (device_property_read_bool(&client->dev, "autorepeat"))
__set_bit(EV_REP, kpad->input->evbit);
kpad->nkeys_unlock = device_property_count_u32(&client->dev,
"adi,unlock-keys");
if (kpad->nkeys_unlock <= 0) {
/* so that we don't end up enabling key lock */
kpad->nkeys_unlock = 0;
return 0;
}
if (kpad->nkeys_unlock > ARRAY_SIZE(kpad->unlock_keys)) {
dev_err(&client->dev, "number of unlock keys(%d) > (%zu)\n",
kpad->nkeys_unlock, ARRAY_SIZE(kpad->unlock_keys));
return -EINVAL;
}
ret = device_property_read_u32_array(&client->dev, "adi,unlock-keys",
kpad->unlock_keys,
kpad->nkeys_unlock);
if (ret)
return ret;
for (i = 0; i < kpad->nkeys_unlock; i++) {
/*
* Even though it should be possible (as stated in the datasheet)
* to use GPIs (which are part of the keys event) as unlock keys,
* it was not working at all and was leading to overflow events
* at some point. Hence, for now, let's just allow keys which are
* part of keypad matrix to be used and if a reliable way of
* using GPIs is found, this condition can be removed/lightened.
*/
if (kpad->unlock_keys[i] >= kpad->cols * kpad->rows) {
dev_err(&client->dev, "Invalid unlock key(%d)\n",
kpad->unlock_keys[i]);
return -EINVAL;
}
/*
* Firmware properties keys start from 0 but on the device they
* start from 1.
*/
kpad->unlock_keys[i] += 1;
}
return 0;
}
static int adp5588_probe(struct i2c_client *client)
{
struct adp5588_kpad *kpad;
struct input_dev *input;
struct gpio_desc *gpio;
unsigned int revid;
int ret;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev, "SMBUS Byte Data not Supported\n");
return -EIO;
}
kpad = devm_kzalloc(&client->dev, sizeof(*kpad), GFP_KERNEL);
if (!kpad)
return -ENOMEM;
input = devm_input_allocate_device(&client->dev);
if (!input)
return -ENOMEM;
kpad->client = client;
kpad->input = input;
error = adp5588_fw_parse(kpad);
if (error)
return error;
error = devm_regulator_get_enable(&client->dev, "vcc");
if (error)
return error;
gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
fsleep(30);
gpiod_set_value_cansleep(gpio, 0);
fsleep(60);
}
ret = adp5588_read(client, DEV_ID);
if (ret < 0)
return ret;
revid = ret & ADP5588_DEVICE_ID_MASK;
if (WA_DELAYED_READOUT_REVID(revid))
kpad->delay = msecs_to_jiffies(WA_DELAYED_READOUT_TIME);
input->name = client->name;
input->phys = "adp5588-keys/input0";
input_set_drvdata(input, kpad);
input->id.bustype = BUS_I2C;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = revid;
error = input_register_device(input);
if (error) {
dev_err(&client->dev, "unable to register input device: %d\n",
error);
return error;
}
error = adp5588_setup(kpad);
if (error)
return error;
error = adp5588_gpio_add(kpad);
if (error)
return error;
error = devm_request_threaded_irq(&client->dev, client->irq,
adp5588_hard_irq, adp5588_thread_irq,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
client->dev.driver->name, kpad);
if (error) {
dev_err(&client->dev, "failed to request irq %d: %d\n",
client->irq, error);
return error;
}
dev_info(&client->dev, "Rev.%d keypad, irq %d\n", revid, client->irq);
return 0;
}
static void adp5588_remove(struct i2c_client *client)
{
adp5588_write(client, CFG, 0);
/* all resources will be freed by devm */
}
static int adp5588_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
disable_irq(client->irq);
return 0;
}
static int adp5588_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
enable_irq(client->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(adp5588_dev_pm_ops, adp5588_suspend, adp5588_resume);
static const struct i2c_device_id adp5588_id[] = {
{ "adp5588-keys", 0 },
{ "adp5587-keys", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adp5588_id);
static const struct of_device_id adp5588_of_match[] = {
{ .compatible = "adi,adp5588" },
{ .compatible = "adi,adp5587" },
{}
};
MODULE_DEVICE_TABLE(of, adp5588_of_match);
static struct i2c_driver adp5588_driver = {
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = adp5588_of_match,
.pm = pm_sleep_ptr(&adp5588_dev_pm_ops),
},
.probe = adp5588_probe,
.remove = adp5588_remove,
.id_table = adp5588_id,
};
module_i2c_driver(adp5588_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("ADP5588/87 Keypad driver");