blob: ad82ff7d199570fe219fb95669a2488517d7ce7c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2023, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
#include "ice_irq.h"
/**
* ice_init_irq_tracker - initialize interrupt tracker
* @pf: board private structure
* @max_vectors: maximum number of vectors that tracker can hold
* @num_static: number of preallocated interrupts
*/
static void
ice_init_irq_tracker(struct ice_pf *pf, unsigned int max_vectors,
unsigned int num_static)
{
pf->irq_tracker.num_entries = max_vectors;
pf->irq_tracker.num_static = num_static;
xa_init_flags(&pf->irq_tracker.entries, XA_FLAGS_ALLOC);
}
/**
* ice_deinit_irq_tracker - free xarray tracker
* @pf: board private structure
*/
static void ice_deinit_irq_tracker(struct ice_pf *pf)
{
xa_destroy(&pf->irq_tracker.entries);
}
/**
* ice_free_irq_res - free a block of resources
* @pf: board private structure
* @index: starting index previously returned by ice_get_res
*/
static void ice_free_irq_res(struct ice_pf *pf, u16 index)
{
struct ice_irq_entry *entry;
entry = xa_erase(&pf->irq_tracker.entries, index);
kfree(entry);
}
/**
* ice_get_irq_res - get an interrupt resource
* @pf: board private structure
* @dyn_only: force entry to be dynamically allocated
*
* Allocate new irq entry in the free slot of the tracker. Since xarray
* is used, always allocate new entry at the lowest possible index. Set
* proper allocation limit for maximum tracker entries.
*
* Returns allocated irq entry or NULL on failure.
*/
static struct ice_irq_entry *ice_get_irq_res(struct ice_pf *pf, bool dyn_only)
{
struct xa_limit limit = { .max = pf->irq_tracker.num_entries,
.min = 0 };
unsigned int num_static = pf->irq_tracker.num_static;
struct ice_irq_entry *entry;
unsigned int index;
int ret;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
/* skip preallocated entries if the caller says so */
if (dyn_only)
limit.min = num_static;
ret = xa_alloc(&pf->irq_tracker.entries, &index, entry, limit,
GFP_KERNEL);
if (ret) {
kfree(entry);
entry = NULL;
} else {
entry->index = index;
entry->dynamic = index >= num_static;
}
return entry;
}
/**
* ice_reduce_msix_usage - Reduce usage of MSI-X vectors
* @pf: board private structure
* @v_remain: number of remaining MSI-X vectors to be distributed
*
* Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
* pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
* remaining vectors.
*/
static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
{
int v_rdma;
if (!ice_is_rdma_ena(pf)) {
pf->num_lan_msix = v_remain;
return;
}
/* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
pf->num_rdma_msix = 0;
pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
(v_remain - v_rdma < v_rdma)) {
/* Support minimum RDMA and give remaining vectors to LAN MSIX
*/
pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
} else {
/* Split remaining MSIX with RDMA after accounting for AEQ MSIX
*/
pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
ICE_RDMA_NUM_AEQ_MSIX;
pf->num_lan_msix = v_remain - pf->num_rdma_msix;
}
}
/**
* ice_ena_msix_range - Request a range of MSIX vectors from the OS
* @pf: board private structure
*
* Compute the number of MSIX vectors wanted and request from the OS. Adjust
* device usage if there are not enough vectors. Return the number of vectors
* reserved or negative on failure.
*/
static int ice_ena_msix_range(struct ice_pf *pf)
{
int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
struct device *dev = ice_pf_to_dev(pf);
int err;
hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
num_cpus = num_online_cpus();
/* LAN miscellaneous handler */
v_other = ICE_MIN_LAN_OICR_MSIX;
/* Flow Director */
if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
v_other += ICE_FDIR_MSIX;
/* switchdev */
v_other += ICE_ESWITCH_MSIX;
v_wanted = v_other;
/* LAN traffic */
pf->num_lan_msix = num_cpus;
v_wanted += pf->num_lan_msix;
/* RDMA auxiliary driver */
if (ice_is_rdma_ena(pf)) {
pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
v_wanted += pf->num_rdma_msix;
}
if (v_wanted > hw_num_msix) {
int v_remain;
dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
v_wanted, hw_num_msix);
if (hw_num_msix < ICE_MIN_MSIX) {
err = -ERANGE;
goto exit_err;
}
v_remain = hw_num_msix - v_other;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
v_remain = ICE_MIN_LAN_TXRX_MSIX;
}
ice_reduce_msix_usage(pf, v_remain);
v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
pf->num_lan_msix);
if (ice_is_rdma_ena(pf))
dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
pf->num_rdma_msix);
}
/* actually reserve the vectors */
v_actual = pci_alloc_irq_vectors(pf->pdev, ICE_MIN_MSIX, v_wanted,
PCI_IRQ_MSIX);
if (v_actual < 0) {
dev_err(dev, "unable to reserve MSI-X vectors\n");
err = v_actual;
goto exit_err;
}
if (v_actual < v_wanted) {
dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
v_wanted, v_actual);
if (v_actual < ICE_MIN_MSIX) {
/* error if we can't get minimum vectors */
pci_free_irq_vectors(pf->pdev);
err = -ERANGE;
goto exit_err;
} else {
int v_remain = v_actual - v_other;
if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
v_remain = ICE_MIN_LAN_TXRX_MSIX;
ice_reduce_msix_usage(pf, v_remain);
dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
pf->num_lan_msix);
if (ice_is_rdma_ena(pf))
dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
pf->num_rdma_msix);
}
}
return v_actual;
exit_err:
pf->num_rdma_msix = 0;
pf->num_lan_msix = 0;
return err;
}
/**
* ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
* @pf: board private structure
*/
void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
pci_free_irq_vectors(pf->pdev);
ice_deinit_irq_tracker(pf);
}
/**
* ice_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
*/
int ice_init_interrupt_scheme(struct ice_pf *pf)
{
int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
int vectors, max_vectors;
vectors = ice_ena_msix_range(pf);
if (vectors < 0)
return -ENOMEM;
if (pci_msix_can_alloc_dyn(pf->pdev))
max_vectors = total_vectors;
else
max_vectors = vectors;
ice_init_irq_tracker(pf, max_vectors, vectors);
return 0;
}
/**
* ice_alloc_irq - Allocate new interrupt vector
* @pf: board private structure
* @dyn_only: force dynamic allocation of the interrupt
*
* Allocate new interrupt vector for a given owner id.
* return struct msi_map with interrupt details and track
* allocated interrupt appropriately.
*
* This function reserves new irq entry from the irq_tracker.
* if according to the tracker information all interrupts that
* were allocated with ice_pci_alloc_irq_vectors are already used
* and dynamically allocated interrupts are supported then new
* interrupt will be allocated with pci_msix_alloc_irq_at.
*
* Some callers may only support dynamically allocated interrupts.
* This is indicated with dyn_only flag.
*
* On failure, return map with negative .index. The caller
* is expected to check returned map index.
*
*/
struct msi_map ice_alloc_irq(struct ice_pf *pf, bool dyn_only)
{
int sriov_base_vector = pf->sriov_base_vector;
struct msi_map map = { .index = -ENOENT };
struct device *dev = ice_pf_to_dev(pf);
struct ice_irq_entry *entry;
entry = ice_get_irq_res(pf, dyn_only);
if (!entry)
return map;
/* fail if we're about to violate SRIOV vectors space */
if (sriov_base_vector && entry->index >= sriov_base_vector)
goto exit_free_res;
if (pci_msix_can_alloc_dyn(pf->pdev) && entry->dynamic) {
map = pci_msix_alloc_irq_at(pf->pdev, entry->index, NULL);
if (map.index < 0)
goto exit_free_res;
dev_dbg(dev, "allocated new irq at index %d\n", map.index);
} else {
map.index = entry->index;
map.virq = pci_irq_vector(pf->pdev, map.index);
}
return map;
exit_free_res:
dev_err(dev, "Could not allocate irq at idx %d\n", entry->index);
ice_free_irq_res(pf, entry->index);
return map;
}
/**
* ice_free_irq - Free interrupt vector
* @pf: board private structure
* @map: map with interrupt details
*
* Remove allocated interrupt from the interrupt tracker. If interrupt was
* allocated dynamically, free respective interrupt vector.
*/
void ice_free_irq(struct ice_pf *pf, struct msi_map map)
{
struct ice_irq_entry *entry;
entry = xa_load(&pf->irq_tracker.entries, map.index);
if (!entry) {
dev_err(ice_pf_to_dev(pf), "Failed to get MSIX interrupt entry at index %d",
map.index);
return;
}
dev_dbg(ice_pf_to_dev(pf), "Free irq at index %d\n", map.index);
if (entry->dynamic)
pci_msix_free_irq(pf->pdev, map);
ice_free_irq_res(pf, map.index);
}
/**
* ice_get_max_used_msix_vector - Get the max used interrupt vector
* @pf: board private structure
*
* Return index of maximum used interrupt vectors with respect to the
* beginning of the MSIX table. Take into account that some interrupts
* may have been dynamically allocated after MSIX was initially enabled.
*/
int ice_get_max_used_msix_vector(struct ice_pf *pf)
{
unsigned long start, index, max_idx;
void *entry;
/* Treat all preallocated interrupts as used */
start = pf->irq_tracker.num_static;
max_idx = start - 1;
xa_for_each_start(&pf->irq_tracker.entries, index, entry, start) {
if (index > max_idx)
max_idx = index;
}
return max_idx;
}