blob: 40cb4ba0789cede45902c29f21cfd5da824d4ed9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
#include "ice_vf_mbx.h"
/**
* ice_aq_send_msg_to_vf
* @hw: pointer to the hardware structure
* @vfid: VF ID to send msg
* @v_opcode: opcodes for VF-PF communication
* @v_retval: return error code
* @msg: pointer to the msg buffer
* @msglen: msg length
* @cd: pointer to command details
*
* Send message to VF driver (0x0802) using mailbox
* queue and asynchronously sending message via
* ice_sq_send_cmd() function
*/
int
ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval,
u8 *msg, u16 msglen, struct ice_sq_cd *cd)
{
struct ice_aqc_pf_vf_msg *cmd;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf);
cmd = &desc.params.virt;
cmd->id = cpu_to_le32(vfid);
desc.cookie_high = cpu_to_le32(v_opcode);
desc.cookie_low = cpu_to_le32(v_retval);
if (msglen)
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd);
}
static const u32 ice_legacy_aq_to_vc_speed[] = {
VIRTCHNL_LINK_SPEED_100MB, /* BIT(0) */
VIRTCHNL_LINK_SPEED_100MB,
VIRTCHNL_LINK_SPEED_1GB,
VIRTCHNL_LINK_SPEED_1GB,
VIRTCHNL_LINK_SPEED_1GB,
VIRTCHNL_LINK_SPEED_10GB,
VIRTCHNL_LINK_SPEED_20GB,
VIRTCHNL_LINK_SPEED_25GB,
VIRTCHNL_LINK_SPEED_40GB,
VIRTCHNL_LINK_SPEED_40GB,
VIRTCHNL_LINK_SPEED_40GB,
};
/**
* ice_conv_link_speed_to_virtchnl
* @adv_link_support: determines the format of the returned link speed
* @link_speed: variable containing the link_speed to be converted
*
* Convert link speed supported by HW to link speed supported by virtchnl.
* If adv_link_support is true, then return link speed in Mbps. Else return
* link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller
* needs to cast back to an enum virtchnl_link_speed in the case where
* adv_link_support is false, but when adv_link_support is true the caller can
* expect the speed in Mbps.
*/
u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed)
{
/* convert a BIT() value into an array index */
u32 index = fls(link_speed) - 1;
if (adv_link_support)
return ice_get_link_speed(index);
else if (index < ARRAY_SIZE(ice_legacy_aq_to_vc_speed))
/* Virtchnl speeds are not defined for every speed supported in
* the hardware. To maintain compatibility with older AVF
* drivers, while reporting the speed the new speed values are
* resolved to the closest known virtchnl speeds
*/
return ice_legacy_aq_to_vc_speed[index];
return VIRTCHNL_LINK_SPEED_UNKNOWN;
}
/* The mailbox overflow detection algorithm helps to check if there
* is a possibility of a malicious VF transmitting too many MBX messages to the
* PF.
* 1. The mailbox snapshot structure, ice_mbx_snapshot, is initialized during
* driver initialization in ice_init_hw() using ice_mbx_init_snapshot().
* The struct ice_mbx_snapshot helps to track and traverse a static window of
* messages within the mailbox queue while looking for a malicious VF.
*
* 2. When the caller starts processing its mailbox queue in response to an
* interrupt, the structure ice_mbx_snapshot is expected to be cleared before
* the algorithm can be run for the first time for that interrupt. This
* requires calling ice_mbx_reset_snapshot() as well as calling
* ice_mbx_reset_vf_info() for each VF tracking structure.
*
* 3. For every message read by the caller from the MBX Queue, the caller must
* call the detection algorithm's entry function ice_mbx_vf_state_handler().
* Before every call to ice_mbx_vf_state_handler() the struct ice_mbx_data is
* filled as it is required to be passed to the algorithm.
*
* 4. Every time a message is read from the MBX queue, a tracking structure
* for the VF must be passed to the state handler. The boolean output
* report_malvf from ice_mbx_vf_state_handler() serves as an indicator to the
* caller whether it must report this VF as malicious or not.
*
* 5. When a VF is identified to be malicious, the caller can send a message
* to the system administrator.
*
* 6. The PF is responsible for maintaining the struct ice_mbx_vf_info
* structure for each VF. The PF should clear the VF tracking structure if the
* VF is reset. When a VF is shut down and brought back up, we will then
* assume that the new VF is not malicious and may report it again if we
* detect it again.
*
* 7. The function ice_mbx_reset_snapshot() is called to reset the information
* in ice_mbx_snapshot for every new mailbox interrupt handled.
*/
#define ICE_RQ_DATA_MASK(rq_data) ((rq_data) & PF_MBX_ARQH_ARQH_M)
/* Using the highest value for an unsigned 16-bit value 0xFFFF to indicate that
* the max messages check must be ignored in the algorithm
*/
#define ICE_IGNORE_MAX_MSG_CNT 0xFFFF
/**
* ice_mbx_reset_snapshot - Reset mailbox snapshot structure
* @snap: pointer to the mailbox snapshot
*/
static void ice_mbx_reset_snapshot(struct ice_mbx_snapshot *snap)
{
struct ice_mbx_vf_info *vf_info;
/* Clear mbx_buf in the mailbox snaphot structure and setting the
* mailbox snapshot state to a new capture.
*/
memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
/* Reset message counts for all VFs to zero */
list_for_each_entry(vf_info, &snap->mbx_vf, list_entry)
vf_info->msg_count = 0;
}
/**
* ice_mbx_traverse - Pass through mailbox snapshot
* @hw: pointer to the HW struct
* @new_state: new algorithm state
*
* Traversing the mailbox static snapshot without checking
* for malicious VFs.
*/
static void
ice_mbx_traverse(struct ice_hw *hw,
enum ice_mbx_snapshot_state *new_state)
{
struct ice_mbx_snap_buffer_data *snap_buf;
u32 num_iterations;
snap_buf = &hw->mbx_snapshot.mbx_buf;
/* As mailbox buffer is circular, applying a mask
* on the incremented iteration count.
*/
num_iterations = ICE_RQ_DATA_MASK(++snap_buf->num_iterations);
/* Checking either of the below conditions to exit snapshot traversal:
* Condition-1: If the number of iterations in the mailbox is equal to
* the mailbox head which would indicate that we have reached the end
* of the static snapshot.
* Condition-2: If the maximum messages serviced in the mailbox for a
* given interrupt is the highest possible value then there is no need
* to check if the number of messages processed is equal to it. If not
* check if the number of messages processed is greater than or equal
* to the maximum number of mailbox entries serviced in current work item.
*/
if (num_iterations == snap_buf->head ||
(snap_buf->max_num_msgs_mbx < ICE_IGNORE_MAX_MSG_CNT &&
++snap_buf->num_msg_proc >= snap_buf->max_num_msgs_mbx))
*new_state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
}
/**
* ice_mbx_detect_malvf - Detect malicious VF in snapshot
* @hw: pointer to the HW struct
* @vf_info: mailbox tracking structure for a VF
* @new_state: new algorithm state
* @is_malvf: boolean output to indicate if VF is malicious
*
* This function tracks the number of asynchronous messages
* sent per VF and marks the VF as malicious if it exceeds
* the permissible number of messages to send.
*/
static int
ice_mbx_detect_malvf(struct ice_hw *hw, struct ice_mbx_vf_info *vf_info,
enum ice_mbx_snapshot_state *new_state,
bool *is_malvf)
{
/* increment the message count for this VF */
vf_info->msg_count++;
if (vf_info->msg_count >= ICE_ASYNC_VF_MSG_THRESHOLD)
*is_malvf = true;
/* continue to iterate through the mailbox snapshot */
ice_mbx_traverse(hw, new_state);
return 0;
}
/**
* ice_mbx_vf_state_handler - Handle states of the overflow algorithm
* @hw: pointer to the HW struct
* @mbx_data: pointer to structure containing mailbox data
* @vf_info: mailbox tracking structure for the VF in question
* @report_malvf: boolean output to indicate whether VF should be reported
*
* The function serves as an entry point for the malicious VF
* detection algorithm by handling the different states and state
* transitions of the algorithm:
* New snapshot: This state is entered when creating a new static
* snapshot. The data from any previous mailbox snapshot is
* cleared and a new capture of the mailbox head and tail is
* logged. This will be the new static snapshot to detect
* asynchronous messages sent by VFs. On capturing the snapshot
* and depending on whether the number of pending messages in that
* snapshot exceed the watermark value, the state machine enters
* traverse or detect states.
* Traverse: If pending message count is below watermark then iterate
* through the snapshot without any action on VF.
* Detect: If pending message count exceeds watermark traverse
* the static snapshot and look for a malicious VF.
*/
int
ice_mbx_vf_state_handler(struct ice_hw *hw, struct ice_mbx_data *mbx_data,
struct ice_mbx_vf_info *vf_info, bool *report_malvf)
{
struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
struct ice_mbx_snap_buffer_data *snap_buf;
struct ice_ctl_q_info *cq = &hw->mailboxq;
enum ice_mbx_snapshot_state new_state;
bool is_malvf = false;
int status = 0;
if (!report_malvf || !mbx_data || !vf_info)
return -EINVAL;
*report_malvf = false;
/* When entering the mailbox state machine assume that the VF
* is not malicious until detected.
*/
/* Checking if max messages allowed to be processed while servicing current
* interrupt is not less than the defined AVF message threshold.
*/
if (mbx_data->max_num_msgs_mbx <= ICE_ASYNC_VF_MSG_THRESHOLD)
return -EINVAL;
/* The watermark value should not be lesser than the threshold limit
* set for the number of asynchronous messages a VF can send to mailbox
* nor should it be greater than the maximum number of messages in the
* mailbox serviced in current interrupt.
*/
if (mbx_data->async_watermark_val < ICE_ASYNC_VF_MSG_THRESHOLD ||
mbx_data->async_watermark_val > mbx_data->max_num_msgs_mbx)
return -EINVAL;
new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
snap_buf = &snap->mbx_buf;
switch (snap_buf->state) {
case ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT:
/* Clear any previously held data in mailbox snapshot structure. */
ice_mbx_reset_snapshot(snap);
/* Collect the pending ARQ count, number of messages processed and
* the maximum number of messages allowed to be processed from the
* Mailbox for current interrupt.
*/
snap_buf->num_pending_arq = mbx_data->num_pending_arq;
snap_buf->num_msg_proc = mbx_data->num_msg_proc;
snap_buf->max_num_msgs_mbx = mbx_data->max_num_msgs_mbx;
/* Capture a new static snapshot of the mailbox by logging the
* head and tail of snapshot and set num_iterations to the tail
* value to mark the start of the iteration through the snapshot.
*/
snap_buf->head = ICE_RQ_DATA_MASK(cq->rq.next_to_clean +
mbx_data->num_pending_arq);
snap_buf->tail = ICE_RQ_DATA_MASK(cq->rq.next_to_clean - 1);
snap_buf->num_iterations = snap_buf->tail;
/* Pending ARQ messages returned by ice_clean_rq_elem
* is the difference between the head and tail of the
* mailbox queue. Comparing this value against the watermark
* helps to check if we potentially have malicious VFs.
*/
if (snap_buf->num_pending_arq >=
mbx_data->async_watermark_val) {
new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
status = ice_mbx_detect_malvf(hw, vf_info, &new_state, &is_malvf);
} else {
new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
ice_mbx_traverse(hw, &new_state);
}
break;
case ICE_MAL_VF_DETECT_STATE_TRAVERSE:
new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
ice_mbx_traverse(hw, &new_state);
break;
case ICE_MAL_VF_DETECT_STATE_DETECT:
new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
status = ice_mbx_detect_malvf(hw, vf_info, &new_state, &is_malvf);
break;
default:
new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
status = -EIO;
}
snap_buf->state = new_state;
/* Only report VFs as malicious the first time we detect it */
if (is_malvf && !vf_info->malicious) {
vf_info->malicious = 1;
*report_malvf = true;
}
return status;
}
/**
* ice_mbx_clear_malvf - Clear VF mailbox info
* @vf_info: the mailbox tracking structure for a VF
*
* In case of a VF reset, this function shall be called to clear the VF's
* current mailbox tracking state.
*/
void ice_mbx_clear_malvf(struct ice_mbx_vf_info *vf_info)
{
vf_info->malicious = 0;
vf_info->msg_count = 0;
}
/**
* ice_mbx_init_vf_info - Initialize a new VF mailbox tracking info
* @hw: pointer to the hardware structure
* @vf_info: the mailbox tracking info structure for a VF
*
* Initialize a VF mailbox tracking info structure and insert it into the
* snapshot list.
*
* If you remove the VF, you must also delete the associated VF info structure
* from the linked list.
*/
void ice_mbx_init_vf_info(struct ice_hw *hw, struct ice_mbx_vf_info *vf_info)
{
struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
ice_mbx_clear_malvf(vf_info);
list_add(&vf_info->list_entry, &snap->mbx_vf);
}
/**
* ice_mbx_init_snapshot - Initialize mailbox snapshot data
* @hw: pointer to the hardware structure
*
* Clear the mailbox snapshot structure and initialize the VF mailbox list.
*/
void ice_mbx_init_snapshot(struct ice_hw *hw)
{
struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
INIT_LIST_HEAD(&snap->mbx_vf);
ice_mbx_reset_snapshot(snap);
}