| /* |
| * Copyright (C) 2014 Red Hat |
| * Copyright (C) 2014 Intel Corp. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Rob Clark <robdclark@gmail.com> |
| * Daniel Vetter <daniel.vetter@ffwll.ch> |
| */ |
| |
| #ifndef DRM_ATOMIC_H_ |
| #define DRM_ATOMIC_H_ |
| |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_util.h> |
| |
| /** |
| * struct drm_crtc_commit - track modeset commits on a CRTC |
| * |
| * This structure is used to track pending modeset changes and atomic commit on |
| * a per-CRTC basis. Since updating the list should never block, this structure |
| * is reference counted to allow waiters to safely wait on an event to complete, |
| * without holding any locks. |
| * |
| * It has 3 different events in total to allow a fine-grained synchronization |
| * between outstanding updates:: |
| * |
| * atomic commit thread hardware |
| * |
| * write new state into hardware ----> ... |
| * signal hw_done |
| * switch to new state on next |
| * ... v/hblank |
| * |
| * wait for buffers to show up ... |
| * |
| * ... send completion irq |
| * irq handler signals flip_done |
| * cleanup old buffers |
| * |
| * signal cleanup_done |
| * |
| * wait for flip_done <---- |
| * clean up atomic state |
| * |
| * The important bit to know is that &cleanup_done is the terminal event, but the |
| * ordering between &flip_done and &hw_done is entirely up to the specific driver |
| * and modeset state change. |
| * |
| * For an implementation of how to use this look at |
| * drm_atomic_helper_setup_commit() from the atomic helper library. |
| * |
| * See also drm_crtc_commit_wait(). |
| */ |
| struct drm_crtc_commit { |
| /** |
| * @crtc: |
| * |
| * DRM CRTC for this commit. |
| */ |
| struct drm_crtc *crtc; |
| |
| /** |
| * @ref: |
| * |
| * Reference count for this structure. Needed to allow blocking on |
| * completions without the risk of the completion disappearing |
| * meanwhile. |
| */ |
| struct kref ref; |
| |
| /** |
| * @flip_done: |
| * |
| * Will be signaled when the hardware has flipped to the new set of |
| * buffers. Signals at the same time as when the drm event for this |
| * commit is sent to userspace, or when an out-fence is singalled. Note |
| * that for most hardware, in most cases this happens after @hw_done is |
| * signalled. |
| * |
| * Completion of this stage is signalled implicitly by calling |
| * drm_crtc_send_vblank_event() on &drm_crtc_state.event. |
| */ |
| struct completion flip_done; |
| |
| /** |
| * @hw_done: |
| * |
| * Will be signalled when all hw register changes for this commit have |
| * been written out. Especially when disabling a pipe this can be much |
| * later than @flip_done, since that can signal already when the |
| * screen goes black, whereas to fully shut down a pipe more register |
| * I/O is required. |
| * |
| * Note that this does not need to include separately reference-counted |
| * resources like backing storage buffer pinning, or runtime pm |
| * management. |
| * |
| * Drivers should call drm_atomic_helper_commit_hw_done() to signal |
| * completion of this stage. |
| */ |
| struct completion hw_done; |
| |
| /** |
| * @cleanup_done: |
| * |
| * Will be signalled after old buffers have been cleaned up by calling |
| * drm_atomic_helper_cleanup_planes(). Since this can only happen after |
| * a vblank wait completed it might be a bit later. This completion is |
| * useful to throttle updates and avoid hardware updates getting ahead |
| * of the buffer cleanup too much. |
| * |
| * Drivers should call drm_atomic_helper_commit_cleanup_done() to signal |
| * completion of this stage. |
| */ |
| struct completion cleanup_done; |
| |
| /** |
| * @commit_entry: |
| * |
| * Entry on the per-CRTC &drm_crtc.commit_list. Protected by |
| * $drm_crtc.commit_lock. |
| */ |
| struct list_head commit_entry; |
| |
| /** |
| * @event: |
| * |
| * &drm_pending_vblank_event pointer to clean up private events. |
| */ |
| struct drm_pending_vblank_event *event; |
| |
| /** |
| * @abort_completion: |
| * |
| * A flag that's set after drm_atomic_helper_setup_commit() takes a |
| * second reference for the completion of $drm_crtc_state.event. It's |
| * used by the free code to remove the second reference if commit fails. |
| */ |
| bool abort_completion; |
| }; |
| |
| struct __drm_planes_state { |
| struct drm_plane *ptr; |
| struct drm_plane_state *state, *old_state, *new_state; |
| }; |
| |
| struct __drm_crtcs_state { |
| struct drm_crtc *ptr; |
| struct drm_crtc_state *state, *old_state, *new_state; |
| |
| /** |
| * @commit: |
| * |
| * A reference to the CRTC commit object that is kept for use by |
| * drm_atomic_helper_wait_for_flip_done() after |
| * drm_atomic_helper_commit_hw_done() is called. This ensures that a |
| * concurrent commit won't free a commit object that is still in use. |
| */ |
| struct drm_crtc_commit *commit; |
| |
| s32 __user *out_fence_ptr; |
| u64 last_vblank_count; |
| }; |
| |
| struct __drm_connnectors_state { |
| struct drm_connector *ptr; |
| struct drm_connector_state *state, *old_state, *new_state; |
| /** |
| * @out_fence_ptr: |
| * |
| * User-provided pointer which the kernel uses to return a sync_file |
| * file descriptor. Used by writeback connectors to signal completion of |
| * the writeback. |
| */ |
| s32 __user *out_fence_ptr; |
| }; |
| |
| struct drm_private_obj; |
| struct drm_private_state; |
| |
| /** |
| * struct drm_private_state_funcs - atomic state functions for private objects |
| * |
| * These hooks are used by atomic helpers to create, swap and destroy states of |
| * private objects. The structure itself is used as a vtable to identify the |
| * associated private object type. Each private object type that needs to be |
| * added to the atomic states is expected to have an implementation of these |
| * hooks and pass a pointer to its drm_private_state_funcs struct to |
| * drm_atomic_get_private_obj_state(). |
| */ |
| struct drm_private_state_funcs { |
| /** |
| * @atomic_duplicate_state: |
| * |
| * Duplicate the current state of the private object and return it. It |
| * is an error to call this before obj->state has been initialized. |
| * |
| * RETURNS: |
| * |
| * Duplicated atomic state or NULL when obj->state is not |
| * initialized or allocation failed. |
| */ |
| struct drm_private_state *(*atomic_duplicate_state)(struct drm_private_obj *obj); |
| |
| /** |
| * @atomic_destroy_state: |
| * |
| * Frees the private object state created with @atomic_duplicate_state. |
| */ |
| void (*atomic_destroy_state)(struct drm_private_obj *obj, |
| struct drm_private_state *state); |
| |
| /** |
| * @atomic_print_state: |
| * |
| * If driver subclasses &struct drm_private_state, it should implement |
| * this optional hook for printing additional driver specific state. |
| * |
| * Do not call this directly, use drm_atomic_private_obj_print_state() |
| * instead. |
| */ |
| void (*atomic_print_state)(struct drm_printer *p, |
| const struct drm_private_state *state); |
| }; |
| |
| /** |
| * struct drm_private_obj - base struct for driver private atomic object |
| * |
| * A driver private object is initialized by calling |
| * drm_atomic_private_obj_init() and cleaned up by calling |
| * drm_atomic_private_obj_fini(). |
| * |
| * Currently only tracks the state update functions and the opaque driver |
| * private state itself, but in the future might also track which |
| * &drm_modeset_lock is required to duplicate and update this object's state. |
| * |
| * All private objects must be initialized before the DRM device they are |
| * attached to is registered to the DRM subsystem (call to drm_dev_register()) |
| * and should stay around until this DRM device is unregistered (call to |
| * drm_dev_unregister()). In other words, private objects lifetime is tied |
| * to the DRM device lifetime. This implies that: |
| * |
| * 1/ all calls to drm_atomic_private_obj_init() must be done before calling |
| * drm_dev_register() |
| * 2/ all calls to drm_atomic_private_obj_fini() must be done after calling |
| * drm_dev_unregister() |
| * |
| * If that private object is used to store a state shared by multiple |
| * CRTCs, proper care must be taken to ensure that non-blocking commits are |
| * properly ordered to avoid a use-after-free issue. |
| * |
| * Indeed, assuming a sequence of two non-blocking &drm_atomic_commit on two |
| * different &drm_crtc using different &drm_plane and &drm_connector, so with no |
| * resources shared, there's no guarantee on which commit is going to happen |
| * first. However, the second &drm_atomic_commit will consider the first |
| * &drm_private_obj its old state, and will be in charge of freeing it whenever |
| * the second &drm_atomic_commit is done. |
| * |
| * If the first &drm_atomic_commit happens after it, it will consider its |
| * &drm_private_obj the new state and will be likely to access it, resulting in |
| * an access to a freed memory region. Drivers should store (and get a reference |
| * to) the &drm_crtc_commit structure in our private state in |
| * &drm_mode_config_helper_funcs.atomic_commit_setup, and then wait for that |
| * commit to complete as the first step of |
| * &drm_mode_config_helper_funcs.atomic_commit_tail, similar to |
| * drm_atomic_helper_wait_for_dependencies(). |
| */ |
| struct drm_private_obj { |
| /** |
| * @head: List entry used to attach a private object to a &drm_device |
| * (queued to &drm_mode_config.privobj_list). |
| */ |
| struct list_head head; |
| |
| /** |
| * @lock: Modeset lock to protect the state object. |
| */ |
| struct drm_modeset_lock lock; |
| |
| /** |
| * @state: Current atomic state for this driver private object. |
| */ |
| struct drm_private_state *state; |
| |
| /** |
| * @funcs: |
| * |
| * Functions to manipulate the state of this driver private object, see |
| * &drm_private_state_funcs. |
| */ |
| const struct drm_private_state_funcs *funcs; |
| }; |
| |
| /** |
| * drm_for_each_privobj() - private object iterator |
| * |
| * @privobj: pointer to the current private object. Updated after each |
| * iteration |
| * @dev: the DRM device we want get private objects from |
| * |
| * Allows one to iterate over all private objects attached to @dev |
| */ |
| #define drm_for_each_privobj(privobj, dev) \ |
| list_for_each_entry(privobj, &(dev)->mode_config.privobj_list, head) |
| |
| /** |
| * struct drm_private_state - base struct for driver private object state |
| * |
| * Currently only contains a backpointer to the overall atomic update, |
| * and the relevant private object but in the future also might hold |
| * synchronization information similar to e.g. &drm_crtc.commit. |
| */ |
| struct drm_private_state { |
| /** |
| * @state: backpointer to global drm_atomic_state |
| */ |
| struct drm_atomic_state *state; |
| |
| /** |
| * @obj: backpointer to the private object |
| */ |
| struct drm_private_obj *obj; |
| }; |
| |
| struct __drm_private_objs_state { |
| struct drm_private_obj *ptr; |
| struct drm_private_state *state, *old_state, *new_state; |
| }; |
| |
| /** |
| * struct drm_atomic_state - Atomic commit structure |
| * |
| * This structure is the kernel counterpart of @drm_mode_atomic and represents |
| * an atomic commit that transitions from an old to a new display state. It |
| * contains all the objects affected by the atomic commit and both the new |
| * state structures and pointers to the old state structures for |
| * these. |
| * |
| * States are added to an atomic update by calling drm_atomic_get_crtc_state(), |
| * drm_atomic_get_plane_state(), drm_atomic_get_connector_state(), or for |
| * private state structures, drm_atomic_get_private_obj_state(). |
| */ |
| struct drm_atomic_state { |
| /** |
| * @ref: |
| * |
| * Count of all references to this update (will not be freed until zero). |
| */ |
| struct kref ref; |
| |
| /** |
| * @dev: Parent DRM Device. |
| */ |
| struct drm_device *dev; |
| |
| /** |
| * @allow_modeset: |
| * |
| * Allow full modeset. This is used by the ATOMIC IOCTL handler to |
| * implement the DRM_MODE_ATOMIC_ALLOW_MODESET flag. Drivers should |
| * never consult this flag, instead looking at the output of |
| * drm_atomic_crtc_needs_modeset(). |
| */ |
| bool allow_modeset : 1; |
| /** |
| * @legacy_cursor_update: |
| * |
| * Hint to enforce legacy cursor IOCTL semantics. |
| * |
| * WARNING: This is thoroughly broken and pretty much impossible to |
| * implement correctly. Drivers must ignore this and should instead |
| * implement &drm_plane_helper_funcs.atomic_async_check and |
| * &drm_plane_helper_funcs.atomic_async_commit hooks. New users of this |
| * flag are not allowed. |
| */ |
| bool legacy_cursor_update : 1; |
| |
| /** |
| * @async_update: hint for asynchronous plane update |
| */ |
| bool async_update : 1; |
| |
| /** |
| * @duplicated: |
| * |
| * Indicates whether or not this atomic state was duplicated using |
| * drm_atomic_helper_duplicate_state(). Drivers and atomic helpers |
| * should use this to fixup normal inconsistencies in duplicated |
| * states. |
| */ |
| bool duplicated : 1; |
| |
| /** |
| * @planes: |
| * |
| * Pointer to array of @drm_plane and @drm_plane_state part of this |
| * update. |
| */ |
| struct __drm_planes_state *planes; |
| |
| /** |
| * @crtcs: |
| * |
| * Pointer to array of @drm_crtc and @drm_crtc_state part of this |
| * update. |
| */ |
| struct __drm_crtcs_state *crtcs; |
| |
| /** |
| * @num_connector: size of the @connectors array |
| */ |
| int num_connector; |
| |
| /** |
| * @connectors: |
| * |
| * Pointer to array of @drm_connector and @drm_connector_state part of |
| * this update. |
| */ |
| struct __drm_connnectors_state *connectors; |
| |
| /** |
| * @num_private_objs: size of the @private_objs array |
| */ |
| int num_private_objs; |
| |
| /** |
| * @private_objs: |
| * |
| * Pointer to array of @drm_private_obj and @drm_private_obj_state part |
| * of this update. |
| */ |
| struct __drm_private_objs_state *private_objs; |
| |
| /** |
| * @acquire_ctx: acquire context for this atomic modeset state update |
| */ |
| struct drm_modeset_acquire_ctx *acquire_ctx; |
| |
| /** |
| * @fake_commit: |
| * |
| * Used for signaling unbound planes/connectors. |
| * When a connector or plane is not bound to any CRTC, it's still important |
| * to preserve linearity to prevent the atomic states from being freed to early. |
| * |
| * This commit (if set) is not bound to any CRTC, but will be completed when |
| * drm_atomic_helper_commit_hw_done() is called. |
| */ |
| struct drm_crtc_commit *fake_commit; |
| |
| /** |
| * @commit_work: |
| * |
| * Work item which can be used by the driver or helpers to execute the |
| * commit without blocking. |
| */ |
| struct work_struct commit_work; |
| }; |
| |
| void __drm_crtc_commit_free(struct kref *kref); |
| |
| /** |
| * drm_crtc_commit_get - acquire a reference to the CRTC commit |
| * @commit: CRTC commit |
| * |
| * Increases the reference of @commit. |
| * |
| * Returns: |
| * The pointer to @commit, with reference increased. |
| */ |
| static inline struct drm_crtc_commit *drm_crtc_commit_get(struct drm_crtc_commit *commit) |
| { |
| kref_get(&commit->ref); |
| return commit; |
| } |
| |
| /** |
| * drm_crtc_commit_put - release a reference to the CRTC commmit |
| * @commit: CRTC commit |
| * |
| * This releases a reference to @commit which is freed after removing the |
| * final reference. No locking required and callable from any context. |
| */ |
| static inline void drm_crtc_commit_put(struct drm_crtc_commit *commit) |
| { |
| kref_put(&commit->ref, __drm_crtc_commit_free); |
| } |
| |
| int drm_crtc_commit_wait(struct drm_crtc_commit *commit); |
| |
| struct drm_atomic_state * __must_check |
| drm_atomic_state_alloc(struct drm_device *dev); |
| void drm_atomic_state_clear(struct drm_atomic_state *state); |
| |
| /** |
| * drm_atomic_state_get - acquire a reference to the atomic state |
| * @state: The atomic state |
| * |
| * Returns a new reference to the @state |
| */ |
| static inline struct drm_atomic_state * |
| drm_atomic_state_get(struct drm_atomic_state *state) |
| { |
| kref_get(&state->ref); |
| return state; |
| } |
| |
| void __drm_atomic_state_free(struct kref *ref); |
| |
| /** |
| * drm_atomic_state_put - release a reference to the atomic state |
| * @state: The atomic state |
| * |
| * This releases a reference to @state which is freed after removing the |
| * final reference. No locking required and callable from any context. |
| */ |
| static inline void drm_atomic_state_put(struct drm_atomic_state *state) |
| { |
| kref_put(&state->ref, __drm_atomic_state_free); |
| } |
| |
| int __must_check |
| drm_atomic_state_init(struct drm_device *dev, struct drm_atomic_state *state); |
| void drm_atomic_state_default_clear(struct drm_atomic_state *state); |
| void drm_atomic_state_default_release(struct drm_atomic_state *state); |
| |
| struct drm_crtc_state * __must_check |
| drm_atomic_get_crtc_state(struct drm_atomic_state *state, |
| struct drm_crtc *crtc); |
| struct drm_plane_state * __must_check |
| drm_atomic_get_plane_state(struct drm_atomic_state *state, |
| struct drm_plane *plane); |
| struct drm_connector_state * __must_check |
| drm_atomic_get_connector_state(struct drm_atomic_state *state, |
| struct drm_connector *connector); |
| |
| void drm_atomic_private_obj_init(struct drm_device *dev, |
| struct drm_private_obj *obj, |
| struct drm_private_state *state, |
| const struct drm_private_state_funcs *funcs); |
| void drm_atomic_private_obj_fini(struct drm_private_obj *obj); |
| |
| struct drm_private_state * __must_check |
| drm_atomic_get_private_obj_state(struct drm_atomic_state *state, |
| struct drm_private_obj *obj); |
| struct drm_private_state * |
| drm_atomic_get_old_private_obj_state(const struct drm_atomic_state *state, |
| struct drm_private_obj *obj); |
| struct drm_private_state * |
| drm_atomic_get_new_private_obj_state(const struct drm_atomic_state *state, |
| struct drm_private_obj *obj); |
| |
| struct drm_connector * |
| drm_atomic_get_old_connector_for_encoder(const struct drm_atomic_state *state, |
| struct drm_encoder *encoder); |
| struct drm_connector * |
| drm_atomic_get_new_connector_for_encoder(const struct drm_atomic_state *state, |
| struct drm_encoder *encoder); |
| |
| struct drm_crtc * |
| drm_atomic_get_old_crtc_for_encoder(struct drm_atomic_state *state, |
| struct drm_encoder *encoder); |
| struct drm_crtc * |
| drm_atomic_get_new_crtc_for_encoder(struct drm_atomic_state *state, |
| struct drm_encoder *encoder); |
| |
| /** |
| * drm_atomic_get_existing_crtc_state - get CRTC state, if it exists |
| * @state: global atomic state object |
| * @crtc: CRTC to grab |
| * |
| * This function returns the CRTC state for the given CRTC, or NULL |
| * if the CRTC is not part of the global atomic state. |
| * |
| * This function is deprecated, @drm_atomic_get_old_crtc_state or |
| * @drm_atomic_get_new_crtc_state should be used instead. |
| */ |
| static inline struct drm_crtc_state * |
| drm_atomic_get_existing_crtc_state(const struct drm_atomic_state *state, |
| struct drm_crtc *crtc) |
| { |
| return state->crtcs[drm_crtc_index(crtc)].state; |
| } |
| |
| /** |
| * drm_atomic_get_old_crtc_state - get old CRTC state, if it exists |
| * @state: global atomic state object |
| * @crtc: CRTC to grab |
| * |
| * This function returns the old CRTC state for the given CRTC, or |
| * NULL if the CRTC is not part of the global atomic state. |
| */ |
| static inline struct drm_crtc_state * |
| drm_atomic_get_old_crtc_state(const struct drm_atomic_state *state, |
| struct drm_crtc *crtc) |
| { |
| return state->crtcs[drm_crtc_index(crtc)].old_state; |
| } |
| /** |
| * drm_atomic_get_new_crtc_state - get new CRTC state, if it exists |
| * @state: global atomic state object |
| * @crtc: CRTC to grab |
| * |
| * This function returns the new CRTC state for the given CRTC, or |
| * NULL if the CRTC is not part of the global atomic state. |
| */ |
| static inline struct drm_crtc_state * |
| drm_atomic_get_new_crtc_state(const struct drm_atomic_state *state, |
| struct drm_crtc *crtc) |
| { |
| return state->crtcs[drm_crtc_index(crtc)].new_state; |
| } |
| |
| /** |
| * drm_atomic_get_existing_plane_state - get plane state, if it exists |
| * @state: global atomic state object |
| * @plane: plane to grab |
| * |
| * This function returns the plane state for the given plane, or NULL |
| * if the plane is not part of the global atomic state. |
| * |
| * This function is deprecated, @drm_atomic_get_old_plane_state or |
| * @drm_atomic_get_new_plane_state should be used instead. |
| */ |
| static inline struct drm_plane_state * |
| drm_atomic_get_existing_plane_state(const struct drm_atomic_state *state, |
| struct drm_plane *plane) |
| { |
| return state->planes[drm_plane_index(plane)].state; |
| } |
| |
| /** |
| * drm_atomic_get_old_plane_state - get plane state, if it exists |
| * @state: global atomic state object |
| * @plane: plane to grab |
| * |
| * This function returns the old plane state for the given plane, or |
| * NULL if the plane is not part of the global atomic state. |
| */ |
| static inline struct drm_plane_state * |
| drm_atomic_get_old_plane_state(const struct drm_atomic_state *state, |
| struct drm_plane *plane) |
| { |
| return state->planes[drm_plane_index(plane)].old_state; |
| } |
| |
| /** |
| * drm_atomic_get_new_plane_state - get plane state, if it exists |
| * @state: global atomic state object |
| * @plane: plane to grab |
| * |
| * This function returns the new plane state for the given plane, or |
| * NULL if the plane is not part of the global atomic state. |
| */ |
| static inline struct drm_plane_state * |
| drm_atomic_get_new_plane_state(const struct drm_atomic_state *state, |
| struct drm_plane *plane) |
| { |
| return state->planes[drm_plane_index(plane)].new_state; |
| } |
| |
| /** |
| * drm_atomic_get_existing_connector_state - get connector state, if it exists |
| * @state: global atomic state object |
| * @connector: connector to grab |
| * |
| * This function returns the connector state for the given connector, |
| * or NULL if the connector is not part of the global atomic state. |
| * |
| * This function is deprecated, @drm_atomic_get_old_connector_state or |
| * @drm_atomic_get_new_connector_state should be used instead. |
| */ |
| static inline struct drm_connector_state * |
| drm_atomic_get_existing_connector_state(const struct drm_atomic_state *state, |
| struct drm_connector *connector) |
| { |
| int index = drm_connector_index(connector); |
| |
| if (index >= state->num_connector) |
| return NULL; |
| |
| return state->connectors[index].state; |
| } |
| |
| /** |
| * drm_atomic_get_old_connector_state - get connector state, if it exists |
| * @state: global atomic state object |
| * @connector: connector to grab |
| * |
| * This function returns the old connector state for the given connector, |
| * or NULL if the connector is not part of the global atomic state. |
| */ |
| static inline struct drm_connector_state * |
| drm_atomic_get_old_connector_state(const struct drm_atomic_state *state, |
| struct drm_connector *connector) |
| { |
| int index = drm_connector_index(connector); |
| |
| if (index >= state->num_connector) |
| return NULL; |
| |
| return state->connectors[index].old_state; |
| } |
| |
| /** |
| * drm_atomic_get_new_connector_state - get connector state, if it exists |
| * @state: global atomic state object |
| * @connector: connector to grab |
| * |
| * This function returns the new connector state for the given connector, |
| * or NULL if the connector is not part of the global atomic state. |
| */ |
| static inline struct drm_connector_state * |
| drm_atomic_get_new_connector_state(const struct drm_atomic_state *state, |
| struct drm_connector *connector) |
| { |
| int index = drm_connector_index(connector); |
| |
| if (index >= state->num_connector) |
| return NULL; |
| |
| return state->connectors[index].new_state; |
| } |
| |
| /** |
| * __drm_atomic_get_current_plane_state - get current plane state |
| * @state: global atomic state object |
| * @plane: plane to grab |
| * |
| * This function returns the plane state for the given plane, either from |
| * @state, or if the plane isn't part of the atomic state update, from @plane. |
| * This is useful in atomic check callbacks, when drivers need to peek at, but |
| * not change, state of other planes, since it avoids threading an error code |
| * back up the call chain. |
| * |
| * WARNING: |
| * |
| * Note that this function is in general unsafe since it doesn't check for the |
| * required locking for access state structures. Drivers must ensure that it is |
| * safe to access the returned state structure through other means. One common |
| * example is when planes are fixed to a single CRTC, and the driver knows that |
| * the CRTC lock is held already. In that case holding the CRTC lock gives a |
| * read-lock on all planes connected to that CRTC. But if planes can be |
| * reassigned things get more tricky. In that case it's better to use |
| * drm_atomic_get_plane_state and wire up full error handling. |
| * |
| * Returns: |
| * |
| * Read-only pointer to the current plane state. |
| */ |
| static inline const struct drm_plane_state * |
| __drm_atomic_get_current_plane_state(const struct drm_atomic_state *state, |
| struct drm_plane *plane) |
| { |
| if (state->planes[drm_plane_index(plane)].state) |
| return state->planes[drm_plane_index(plane)].state; |
| |
| return plane->state; |
| } |
| |
| int __must_check |
| drm_atomic_add_encoder_bridges(struct drm_atomic_state *state, |
| struct drm_encoder *encoder); |
| int __must_check |
| drm_atomic_add_affected_connectors(struct drm_atomic_state *state, |
| struct drm_crtc *crtc); |
| int __must_check |
| drm_atomic_add_affected_planes(struct drm_atomic_state *state, |
| struct drm_crtc *crtc); |
| |
| int __must_check drm_atomic_check_only(struct drm_atomic_state *state); |
| int __must_check drm_atomic_commit(struct drm_atomic_state *state); |
| int __must_check drm_atomic_nonblocking_commit(struct drm_atomic_state *state); |
| |
| void drm_state_dump(struct drm_device *dev, struct drm_printer *p); |
| |
| /** |
| * for_each_oldnew_connector_in_state - iterate over all connectors in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @connector: &struct drm_connector iteration cursor |
| * @old_connector_state: &struct drm_connector_state iteration cursor for the |
| * old state |
| * @new_connector_state: &struct drm_connector_state iteration cursor for the |
| * new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all connectors in an atomic update, tracking both old and |
| * new state. This is useful in places where the state delta needs to be |
| * considered, for example in atomic check functions. |
| */ |
| #define for_each_oldnew_connector_in_state(__state, connector, old_connector_state, new_connector_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_connector; \ |
| (__i)++) \ |
| for_each_if ((__state)->connectors[__i].ptr && \ |
| ((connector) = (__state)->connectors[__i].ptr, \ |
| (void)(connector) /* Only to avoid unused-but-set-variable warning */, \ |
| (old_connector_state) = (__state)->connectors[__i].old_state, \ |
| (new_connector_state) = (__state)->connectors[__i].new_state, 1)) |
| |
| /** |
| * for_each_old_connector_in_state - iterate over all connectors in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @connector: &struct drm_connector iteration cursor |
| * @old_connector_state: &struct drm_connector_state iteration cursor for the |
| * old state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all connectors in an atomic update, tracking only the old |
| * state. This is useful in disable functions, where we need the old state the |
| * hardware is still in. |
| */ |
| #define for_each_old_connector_in_state(__state, connector, old_connector_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_connector; \ |
| (__i)++) \ |
| for_each_if ((__state)->connectors[__i].ptr && \ |
| ((connector) = (__state)->connectors[__i].ptr, \ |
| (void)(connector) /* Only to avoid unused-but-set-variable warning */, \ |
| (old_connector_state) = (__state)->connectors[__i].old_state, 1)) |
| |
| /** |
| * for_each_new_connector_in_state - iterate over all connectors in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @connector: &struct drm_connector iteration cursor |
| * @new_connector_state: &struct drm_connector_state iteration cursor for the |
| * new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all connectors in an atomic update, tracking only the new |
| * state. This is useful in enable functions, where we need the new state the |
| * hardware should be in when the atomic commit operation has completed. |
| */ |
| #define for_each_new_connector_in_state(__state, connector, new_connector_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_connector; \ |
| (__i)++) \ |
| for_each_if ((__state)->connectors[__i].ptr && \ |
| ((connector) = (__state)->connectors[__i].ptr, \ |
| (void)(connector) /* Only to avoid unused-but-set-variable warning */, \ |
| (new_connector_state) = (__state)->connectors[__i].new_state, \ |
| (void)(new_connector_state) /* Only to avoid unused-but-set-variable warning */, 1)) |
| |
| /** |
| * for_each_oldnew_crtc_in_state - iterate over all CRTCs in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @crtc: &struct drm_crtc iteration cursor |
| * @old_crtc_state: &struct drm_crtc_state iteration cursor for the old state |
| * @new_crtc_state: &struct drm_crtc_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all CRTCs in an atomic update, tracking both old and |
| * new state. This is useful in places where the state delta needs to be |
| * considered, for example in atomic check functions. |
| */ |
| #define for_each_oldnew_crtc_in_state(__state, crtc, old_crtc_state, new_crtc_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_crtc; \ |
| (__i)++) \ |
| for_each_if ((__state)->crtcs[__i].ptr && \ |
| ((crtc) = (__state)->crtcs[__i].ptr, \ |
| (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \ |
| (old_crtc_state) = (__state)->crtcs[__i].old_state, \ |
| (void)(old_crtc_state) /* Only to avoid unused-but-set-variable warning */, \ |
| (new_crtc_state) = (__state)->crtcs[__i].new_state, \ |
| (void)(new_crtc_state) /* Only to avoid unused-but-set-variable warning */, 1)) |
| |
| /** |
| * for_each_old_crtc_in_state - iterate over all CRTCs in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @crtc: &struct drm_crtc iteration cursor |
| * @old_crtc_state: &struct drm_crtc_state iteration cursor for the old state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all CRTCs in an atomic update, tracking only the old |
| * state. This is useful in disable functions, where we need the old state the |
| * hardware is still in. |
| */ |
| #define for_each_old_crtc_in_state(__state, crtc, old_crtc_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_crtc; \ |
| (__i)++) \ |
| for_each_if ((__state)->crtcs[__i].ptr && \ |
| ((crtc) = (__state)->crtcs[__i].ptr, \ |
| (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \ |
| (old_crtc_state) = (__state)->crtcs[__i].old_state, 1)) |
| |
| /** |
| * for_each_new_crtc_in_state - iterate over all CRTCs in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @crtc: &struct drm_crtc iteration cursor |
| * @new_crtc_state: &struct drm_crtc_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all CRTCs in an atomic update, tracking only the new |
| * state. This is useful in enable functions, where we need the new state the |
| * hardware should be in when the atomic commit operation has completed. |
| */ |
| #define for_each_new_crtc_in_state(__state, crtc, new_crtc_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_crtc; \ |
| (__i)++) \ |
| for_each_if ((__state)->crtcs[__i].ptr && \ |
| ((crtc) = (__state)->crtcs[__i].ptr, \ |
| (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \ |
| (new_crtc_state) = (__state)->crtcs[__i].new_state, \ |
| (void)(new_crtc_state) /* Only to avoid unused-but-set-variable warning */, 1)) |
| |
| /** |
| * for_each_oldnew_plane_in_state - iterate over all planes in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @plane: &struct drm_plane iteration cursor |
| * @old_plane_state: &struct drm_plane_state iteration cursor for the old state |
| * @new_plane_state: &struct drm_plane_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all planes in an atomic update, tracking both old and |
| * new state. This is useful in places where the state delta needs to be |
| * considered, for example in atomic check functions. |
| */ |
| #define for_each_oldnew_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_total_plane; \ |
| (__i)++) \ |
| for_each_if ((__state)->planes[__i].ptr && \ |
| ((plane) = (__state)->planes[__i].ptr, \ |
| (void)(plane) /* Only to avoid unused-but-set-variable warning */, \ |
| (old_plane_state) = (__state)->planes[__i].old_state,\ |
| (new_plane_state) = (__state)->planes[__i].new_state, 1)) |
| |
| /** |
| * for_each_oldnew_plane_in_state_reverse - iterate over all planes in an atomic |
| * update in reverse order |
| * @__state: &struct drm_atomic_state pointer |
| * @plane: &struct drm_plane iteration cursor |
| * @old_plane_state: &struct drm_plane_state iteration cursor for the old state |
| * @new_plane_state: &struct drm_plane_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all planes in an atomic update in reverse order, |
| * tracking both old and new state. This is useful in places where the |
| * state delta needs to be considered, for example in atomic check functions. |
| */ |
| #define for_each_oldnew_plane_in_state_reverse(__state, plane, old_plane_state, new_plane_state, __i) \ |
| for ((__i) = ((__state)->dev->mode_config.num_total_plane - 1); \ |
| (__i) >= 0; \ |
| (__i)--) \ |
| for_each_if ((__state)->planes[__i].ptr && \ |
| ((plane) = (__state)->planes[__i].ptr, \ |
| (old_plane_state) = (__state)->planes[__i].old_state,\ |
| (new_plane_state) = (__state)->planes[__i].new_state, 1)) |
| |
| /** |
| * for_each_new_plane_in_state_reverse - other than only tracking new state, |
| * it's the same as for_each_oldnew_plane_in_state_reverse |
| * @__state: &struct drm_atomic_state pointer |
| * @plane: &struct drm_plane iteration cursor |
| * @new_plane_state: &struct drm_plane_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| */ |
| #define for_each_new_plane_in_state_reverse(__state, plane, new_plane_state, __i) \ |
| for ((__i) = ((__state)->dev->mode_config.num_total_plane - 1); \ |
| (__i) >= 0; \ |
| (__i)--) \ |
| for_each_if ((__state)->planes[__i].ptr && \ |
| ((plane) = (__state)->planes[__i].ptr, \ |
| (new_plane_state) = (__state)->planes[__i].new_state, 1)) |
| |
| /** |
| * for_each_old_plane_in_state - iterate over all planes in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @plane: &struct drm_plane iteration cursor |
| * @old_plane_state: &struct drm_plane_state iteration cursor for the old state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all planes in an atomic update, tracking only the old |
| * state. This is useful in disable functions, where we need the old state the |
| * hardware is still in. |
| */ |
| #define for_each_old_plane_in_state(__state, plane, old_plane_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_total_plane; \ |
| (__i)++) \ |
| for_each_if ((__state)->planes[__i].ptr && \ |
| ((plane) = (__state)->planes[__i].ptr, \ |
| (old_plane_state) = (__state)->planes[__i].old_state, 1)) |
| /** |
| * for_each_new_plane_in_state - iterate over all planes in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @plane: &struct drm_plane iteration cursor |
| * @new_plane_state: &struct drm_plane_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all planes in an atomic update, tracking only the new |
| * state. This is useful in enable functions, where we need the new state the |
| * hardware should be in when the atomic commit operation has completed. |
| */ |
| #define for_each_new_plane_in_state(__state, plane, new_plane_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->dev->mode_config.num_total_plane; \ |
| (__i)++) \ |
| for_each_if ((__state)->planes[__i].ptr && \ |
| ((plane) = (__state)->planes[__i].ptr, \ |
| (void)(plane) /* Only to avoid unused-but-set-variable warning */, \ |
| (new_plane_state) = (__state)->planes[__i].new_state, \ |
| (void)(new_plane_state) /* Only to avoid unused-but-set-variable warning */, 1)) |
| |
| /** |
| * for_each_oldnew_private_obj_in_state - iterate over all private objects in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @obj: &struct drm_private_obj iteration cursor |
| * @old_obj_state: &struct drm_private_state iteration cursor for the old state |
| * @new_obj_state: &struct drm_private_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all private objects in an atomic update, tracking both |
| * old and new state. This is useful in places where the state delta needs |
| * to be considered, for example in atomic check functions. |
| */ |
| #define for_each_oldnew_private_obj_in_state(__state, obj, old_obj_state, new_obj_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_private_objs && \ |
| ((obj) = (__state)->private_objs[__i].ptr, \ |
| (old_obj_state) = (__state)->private_objs[__i].old_state, \ |
| (new_obj_state) = (__state)->private_objs[__i].new_state, 1); \ |
| (__i)++) |
| |
| /** |
| * for_each_old_private_obj_in_state - iterate over all private objects in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @obj: &struct drm_private_obj iteration cursor |
| * @old_obj_state: &struct drm_private_state iteration cursor for the old state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all private objects in an atomic update, tracking only |
| * the old state. This is useful in disable functions, where we need the old |
| * state the hardware is still in. |
| */ |
| #define for_each_old_private_obj_in_state(__state, obj, old_obj_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_private_objs && \ |
| ((obj) = (__state)->private_objs[__i].ptr, \ |
| (old_obj_state) = (__state)->private_objs[__i].old_state, 1); \ |
| (__i)++) |
| |
| /** |
| * for_each_new_private_obj_in_state - iterate over all private objects in an atomic update |
| * @__state: &struct drm_atomic_state pointer |
| * @obj: &struct drm_private_obj iteration cursor |
| * @new_obj_state: &struct drm_private_state iteration cursor for the new state |
| * @__i: int iteration cursor, for macro-internal use |
| * |
| * This iterates over all private objects in an atomic update, tracking only |
| * the new state. This is useful in enable functions, where we need the new state the |
| * hardware should be in when the atomic commit operation has completed. |
| */ |
| #define for_each_new_private_obj_in_state(__state, obj, new_obj_state, __i) \ |
| for ((__i) = 0; \ |
| (__i) < (__state)->num_private_objs && \ |
| ((obj) = (__state)->private_objs[__i].ptr, \ |
| (void)(obj) /* Only to avoid unused-but-set-variable warning */, \ |
| (new_obj_state) = (__state)->private_objs[__i].new_state, 1); \ |
| (__i)++) |
| |
| /** |
| * drm_atomic_crtc_needs_modeset - compute combined modeset need |
| * @state: &drm_crtc_state for the CRTC |
| * |
| * To give drivers flexibility &struct drm_crtc_state has 3 booleans to track |
| * whether the state CRTC changed enough to need a full modeset cycle: |
| * mode_changed, active_changed and connectors_changed. This helper simply |
| * combines these three to compute the overall need for a modeset for @state. |
| * |
| * The atomic helper code sets these booleans, but drivers can and should |
| * change them appropriately to accurately represent whether a modeset is |
| * really needed. In general, drivers should avoid full modesets whenever |
| * possible. |
| * |
| * For example if the CRTC mode has changed, and the hardware is able to enact |
| * the requested mode change without going through a full modeset, the driver |
| * should clear mode_changed in its &drm_mode_config_funcs.atomic_check |
| * implementation. |
| */ |
| static inline bool |
| drm_atomic_crtc_needs_modeset(const struct drm_crtc_state *state) |
| { |
| return state->mode_changed || state->active_changed || |
| state->connectors_changed; |
| } |
| |
| /** |
| * drm_atomic_crtc_effectively_active - compute whether CRTC is actually active |
| * @state: &drm_crtc_state for the CRTC |
| * |
| * When in self refresh mode, the crtc_state->active value will be false, since |
| * the CRTC is off. However in some cases we're interested in whether the CRTC |
| * is active, or effectively active (ie: it's connected to an active display). |
| * In these cases, use this function instead of just checking active. |
| */ |
| static inline bool |
| drm_atomic_crtc_effectively_active(const struct drm_crtc_state *state) |
| { |
| return state->active || state->self_refresh_active; |
| } |
| |
| /** |
| * struct drm_bus_cfg - bus configuration |
| * |
| * This structure stores the configuration of a physical bus between two |
| * components in an output pipeline, usually between two bridges, an encoder |
| * and a bridge, or a bridge and a connector. |
| * |
| * The bus configuration is stored in &drm_bridge_state separately for the |
| * input and output buses, as seen from the point of view of each bridge. The |
| * bus configuration of a bridge output is usually identical to the |
| * configuration of the next bridge's input, but may differ if the signals are |
| * modified between the two bridges, for instance by an inverter on the board. |
| * The input and output configurations of a bridge may differ if the bridge |
| * modifies the signals internally, for instance by performing format |
| * conversion, or modifying signals polarities. |
| */ |
| struct drm_bus_cfg { |
| /** |
| * @format: format used on this bus (one of the MEDIA_BUS_FMT_* format) |
| * |
| * This field should not be directly modified by drivers |
| * (drm_atomic_bridge_chain_select_bus_fmts() takes care of the bus |
| * format negotiation). |
| */ |
| u32 format; |
| |
| /** |
| * @flags: DRM_BUS_* flags used on this bus |
| */ |
| u32 flags; |
| }; |
| |
| /** |
| * struct drm_bridge_state - Atomic bridge state object |
| */ |
| struct drm_bridge_state { |
| /** |
| * @base: inherit from &drm_private_state |
| */ |
| struct drm_private_state base; |
| |
| /** |
| * @bridge: the bridge this state refers to |
| */ |
| struct drm_bridge *bridge; |
| |
| /** |
| * @input_bus_cfg: input bus configuration |
| */ |
| struct drm_bus_cfg input_bus_cfg; |
| |
| /** |
| * @output_bus_cfg: output bus configuration |
| */ |
| struct drm_bus_cfg output_bus_cfg; |
| }; |
| |
| static inline struct drm_bridge_state * |
| drm_priv_to_bridge_state(struct drm_private_state *priv) |
| { |
| return container_of(priv, struct drm_bridge_state, base); |
| } |
| |
| struct drm_bridge_state * |
| drm_atomic_get_bridge_state(struct drm_atomic_state *state, |
| struct drm_bridge *bridge); |
| struct drm_bridge_state * |
| drm_atomic_get_old_bridge_state(const struct drm_atomic_state *state, |
| struct drm_bridge *bridge); |
| struct drm_bridge_state * |
| drm_atomic_get_new_bridge_state(const struct drm_atomic_state *state, |
| struct drm_bridge *bridge); |
| |
| #endif /* DRM_ATOMIC_H_ */ |