blob: 06d0bd7fb45999740bd5c3462b17db2a555916c8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <signal.h>
#include <inttypes.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/zalloc.h>
#include <api/fs/fs.h>
#include <byteswap.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <perf/cpumap.h>
#include "map_symbol.h"
#include "branch.h"
#include "debug.h"
#include "env.h"
#include "evlist.h"
#include "evsel.h"
#include "memswap.h"
#include "map.h"
#include "symbol.h"
#include "session.h"
#include "tool.h"
#include "perf_regs.h"
#include "asm/bug.h"
#include "auxtrace.h"
#include "thread.h"
#include "thread-stack.h"
#include "sample-raw.h"
#include "stat.h"
#include "tsc.h"
#include "ui/progress.h"
#include "util.h"
#include "arch/common.h"
#include "units.h"
#include <internal/lib.h>
#ifdef HAVE_ZSTD_SUPPORT
static int perf_session__process_compressed_event(struct perf_session *session,
union perf_event *event, u64 file_offset,
const char *file_path)
{
void *src;
size_t decomp_size, src_size;
u64 decomp_last_rem = 0;
size_t mmap_len, decomp_len = session->header.env.comp_mmap_len;
struct decomp *decomp, *decomp_last = session->active_decomp->decomp_last;
if (decomp_last) {
decomp_last_rem = decomp_last->size - decomp_last->head;
decomp_len += decomp_last_rem;
}
mmap_len = sizeof(struct decomp) + decomp_len;
decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (decomp == MAP_FAILED) {
pr_err("Couldn't allocate memory for decompression\n");
return -1;
}
decomp->file_pos = file_offset;
decomp->file_path = file_path;
decomp->mmap_len = mmap_len;
decomp->head = 0;
if (decomp_last_rem) {
memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem);
decomp->size = decomp_last_rem;
}
src = (void *)event + sizeof(struct perf_record_compressed);
src_size = event->pack.header.size - sizeof(struct perf_record_compressed);
decomp_size = zstd_decompress_stream(session->active_decomp->zstd_decomp, src, src_size,
&(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem);
if (!decomp_size) {
munmap(decomp, mmap_len);
pr_err("Couldn't decompress data\n");
return -1;
}
decomp->size += decomp_size;
if (session->active_decomp->decomp == NULL)
session->active_decomp->decomp = decomp;
else
session->active_decomp->decomp_last->next = decomp;
session->active_decomp->decomp_last = decomp;
pr_debug("decomp (B): %zd to %zd\n", src_size, decomp_size);
return 0;
}
#else /* !HAVE_ZSTD_SUPPORT */
#define perf_session__process_compressed_event perf_session__process_compressed_event_stub
#endif
static int perf_session__deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool,
u64 file_offset,
const char *file_path);
static int perf_session__open(struct perf_session *session, int repipe_fd)
{
struct perf_data *data = session->data;
if (perf_session__read_header(session, repipe_fd) < 0) {
pr_err("incompatible file format (rerun with -v to learn more)\n");
return -1;
}
if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) {
/* Auxiliary events may reference exited threads, hold onto dead ones. */
symbol_conf.keep_exited_threads = true;
}
if (perf_data__is_pipe(data))
return 0;
if (perf_header__has_feat(&session->header, HEADER_STAT))
return 0;
if (!evlist__valid_sample_type(session->evlist)) {
pr_err("non matching sample_type\n");
return -1;
}
if (!evlist__valid_sample_id_all(session->evlist)) {
pr_err("non matching sample_id_all\n");
return -1;
}
if (!evlist__valid_read_format(session->evlist)) {
pr_err("non matching read_format\n");
return -1;
}
return 0;
}
void perf_session__set_id_hdr_size(struct perf_session *session)
{
u16 id_hdr_size = evlist__id_hdr_size(session->evlist);
machines__set_id_hdr_size(&session->machines, id_hdr_size);
}
int perf_session__create_kernel_maps(struct perf_session *session)
{
int ret = machine__create_kernel_maps(&session->machines.host);
if (ret >= 0)
ret = machines__create_guest_kernel_maps(&session->machines);
return ret;
}
static void perf_session__destroy_kernel_maps(struct perf_session *session)
{
machines__destroy_kernel_maps(&session->machines);
}
static bool perf_session__has_comm_exec(struct perf_session *session)
{
struct evsel *evsel;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.comm_exec)
return true;
}
return false;
}
static void perf_session__set_comm_exec(struct perf_session *session)
{
bool comm_exec = perf_session__has_comm_exec(session);
machines__set_comm_exec(&session->machines, comm_exec);
}
static int ordered_events__deliver_event(struct ordered_events *oe,
struct ordered_event *event)
{
struct perf_session *session = container_of(oe, struct perf_session,
ordered_events);
return perf_session__deliver_event(session, event->event,
session->tool, event->file_offset,
event->file_path);
}
struct perf_session *__perf_session__new(struct perf_data *data,
bool repipe, int repipe_fd,
struct perf_tool *tool)
{
int ret = -ENOMEM;
struct perf_session *session = zalloc(sizeof(*session));
if (!session)
goto out;
session->repipe = repipe;
session->tool = tool;
session->decomp_data.zstd_decomp = &session->zstd_data;
session->active_decomp = &session->decomp_data;
INIT_LIST_HEAD(&session->auxtrace_index);
machines__init(&session->machines);
ordered_events__init(&session->ordered_events,
ordered_events__deliver_event, NULL);
perf_env__init(&session->header.env);
if (data) {
ret = perf_data__open(data);
if (ret < 0)
goto out_delete;
session->data = data;
if (perf_data__is_read(data)) {
ret = perf_session__open(session, repipe_fd);
if (ret < 0)
goto out_delete;
/*
* set session attributes that are present in perf.data
* but not in pipe-mode.
*/
if (!data->is_pipe) {
perf_session__set_id_hdr_size(session);
perf_session__set_comm_exec(session);
}
evlist__init_trace_event_sample_raw(session->evlist);
/* Open the directory data. */
if (data->is_dir) {
ret = perf_data__open_dir(data);
if (ret)
goto out_delete;
}
if (!symbol_conf.kallsyms_name &&
!symbol_conf.vmlinux_name)
symbol_conf.kallsyms_name = perf_data__kallsyms_name(data);
}
} else {
session->machines.host.env = &perf_env;
}
session->machines.host.single_address_space =
perf_env__single_address_space(session->machines.host.env);
if (!data || perf_data__is_write(data)) {
/*
* In O_RDONLY mode this will be performed when reading the
* kernel MMAP event, in perf_event__process_mmap().
*/
if (perf_session__create_kernel_maps(session) < 0)
pr_warning("Cannot read kernel map\n");
}
/*
* In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is
* processed, so evlist__sample_id_all is not meaningful here.
*/
if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps &&
tool->ordered_events && !evlist__sample_id_all(session->evlist)) {
dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
tool->ordered_events = false;
}
return session;
out_delete:
perf_session__delete(session);
out:
return ERR_PTR(ret);
}
static void perf_decomp__release_events(struct decomp *next)
{
struct decomp *decomp;
size_t mmap_len;
do {
decomp = next;
if (decomp == NULL)
break;
next = decomp->next;
mmap_len = decomp->mmap_len;
munmap(decomp, mmap_len);
} while (1);
}
void perf_session__delete(struct perf_session *session)
{
if (session == NULL)
return;
auxtrace__free(session);
auxtrace_index__free(&session->auxtrace_index);
perf_session__destroy_kernel_maps(session);
perf_decomp__release_events(session->decomp_data.decomp);
perf_env__exit(&session->header.env);
machines__exit(&session->machines);
if (session->data) {
if (perf_data__is_read(session->data))
evlist__delete(session->evlist);
perf_data__close(session->data);
}
#ifdef HAVE_LIBTRACEEVENT
trace_event__cleanup(&session->tevent);
#endif
free(session);
}
static int process_event_synth_tracing_data_stub(struct perf_session *session
__maybe_unused,
union perf_event *event
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct evlist **pevlist
__maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct evlist **pevlist
__maybe_unused)
{
if (dump_trace)
perf_event__fprintf_event_update(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct evsel *evsel __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct ordered_events *oe __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static int skipn(int fd, off_t n)
{
char buf[4096];
ssize_t ret;
while (n > 0) {
ret = read(fd, buf, min(n, (off_t)sizeof(buf)));
if (ret <= 0)
return ret;
n -= ret;
}
return 0;
}
static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused,
union perf_event *event)
{
dump_printf(": unhandled!\n");
if (perf_data__is_pipe(session->data))
skipn(perf_data__fd(session->data), event->auxtrace.size);
return event->auxtrace.size;
}
static int process_event_op2_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_thread_map_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_thread_map(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_cpu_map_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_cpu_map(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static
int process_event_stat_config_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused)
{
if (dump_trace)
perf_event__fprintf_stat_config(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_stat_stub(struct perf_session *perf_session __maybe_unused,
union perf_event *event)
{
if (dump_trace)
perf_event__fprintf_stat(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused,
union perf_event *event)
{
if (dump_trace)
perf_event__fprintf_stat_round(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int process_event_time_conv_stub(struct perf_session *perf_session __maybe_unused,
union perf_event *event)
{
if (dump_trace)
perf_event__fprintf_time_conv(event, stdout);
dump_printf(": unhandled!\n");
return 0;
}
static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused,
union perf_event *event __maybe_unused,
u64 file_offset __maybe_unused,
const char *file_path __maybe_unused)
{
dump_printf(": unhandled!\n");
return 0;
}
void perf_tool__fill_defaults(struct perf_tool *tool)
{
if (tool->sample == NULL)
tool->sample = process_event_sample_stub;
if (tool->mmap == NULL)
tool->mmap = process_event_stub;
if (tool->mmap2 == NULL)
tool->mmap2 = process_event_stub;
if (tool->comm == NULL)
tool->comm = process_event_stub;
if (tool->namespaces == NULL)
tool->namespaces = process_event_stub;
if (tool->cgroup == NULL)
tool->cgroup = process_event_stub;
if (tool->fork == NULL)
tool->fork = process_event_stub;
if (tool->exit == NULL)
tool->exit = process_event_stub;
if (tool->lost == NULL)
tool->lost = perf_event__process_lost;
if (tool->lost_samples == NULL)
tool->lost_samples = perf_event__process_lost_samples;
if (tool->aux == NULL)
tool->aux = perf_event__process_aux;
if (tool->itrace_start == NULL)
tool->itrace_start = perf_event__process_itrace_start;
if (tool->context_switch == NULL)
tool->context_switch = perf_event__process_switch;
if (tool->ksymbol == NULL)
tool->ksymbol = perf_event__process_ksymbol;
if (tool->bpf == NULL)
tool->bpf = perf_event__process_bpf;
if (tool->text_poke == NULL)
tool->text_poke = perf_event__process_text_poke;
if (tool->aux_output_hw_id == NULL)
tool->aux_output_hw_id = perf_event__process_aux_output_hw_id;
if (tool->read == NULL)
tool->read = process_event_sample_stub;
if (tool->throttle == NULL)
tool->throttle = process_event_stub;
if (tool->unthrottle == NULL)
tool->unthrottle = process_event_stub;
if (tool->attr == NULL)
tool->attr = process_event_synth_attr_stub;
if (tool->event_update == NULL)
tool->event_update = process_event_synth_event_update_stub;
if (tool->tracing_data == NULL)
tool->tracing_data = process_event_synth_tracing_data_stub;
if (tool->build_id == NULL)
tool->build_id = process_event_op2_stub;
if (tool->finished_round == NULL) {
if (tool->ordered_events)
tool->finished_round = perf_event__process_finished_round;
else
tool->finished_round = process_finished_round_stub;
}
if (tool->id_index == NULL)
tool->id_index = process_event_op2_stub;
if (tool->auxtrace_info == NULL)
tool->auxtrace_info = process_event_op2_stub;
if (tool->auxtrace == NULL)
tool->auxtrace = process_event_auxtrace_stub;
if (tool->auxtrace_error == NULL)
tool->auxtrace_error = process_event_op2_stub;
if (tool->thread_map == NULL)
tool->thread_map = process_event_thread_map_stub;
if (tool->cpu_map == NULL)
tool->cpu_map = process_event_cpu_map_stub;
if (tool->stat_config == NULL)
tool->stat_config = process_event_stat_config_stub;
if (tool->stat == NULL)
tool->stat = process_stat_stub;
if (tool->stat_round == NULL)
tool->stat_round = process_stat_round_stub;
if (tool->time_conv == NULL)
tool->time_conv = process_event_time_conv_stub;
if (tool->feature == NULL)
tool->feature = process_event_op2_stub;
if (tool->compressed == NULL)
tool->compressed = perf_session__process_compressed_event;
if (tool->finished_init == NULL)
tool->finished_init = process_event_op2_stub;
}
static void swap_sample_id_all(union perf_event *event, void *data)
{
void *end = (void *) event + event->header.size;
int size = end - data;
BUG_ON(size % sizeof(u64));
mem_bswap_64(data, size);
}
static void perf_event__all64_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
struct perf_event_header *hdr = &event->header;
mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
}
static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
{
event->comm.pid = bswap_32(event->comm.pid);
event->comm.tid = bswap_32(event->comm.tid);
if (sample_id_all) {
void *data = &event->comm.comm;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap.pid = bswap_32(event->mmap.pid);
event->mmap.tid = bswap_32(event->mmap.tid);
event->mmap.start = bswap_64(event->mmap.start);
event->mmap.len = bswap_64(event->mmap.len);
event->mmap.pgoff = bswap_64(event->mmap.pgoff);
if (sample_id_all) {
void *data = &event->mmap.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__mmap2_swap(union perf_event *event,
bool sample_id_all)
{
event->mmap2.pid = bswap_32(event->mmap2.pid);
event->mmap2.tid = bswap_32(event->mmap2.tid);
event->mmap2.start = bswap_64(event->mmap2.start);
event->mmap2.len = bswap_64(event->mmap2.len);
event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
if (!(event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID)) {
event->mmap2.maj = bswap_32(event->mmap2.maj);
event->mmap2.min = bswap_32(event->mmap2.min);
event->mmap2.ino = bswap_64(event->mmap2.ino);
event->mmap2.ino_generation = bswap_64(event->mmap2.ino_generation);
}
if (sample_id_all) {
void *data = &event->mmap2.filename;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
{
event->fork.pid = bswap_32(event->fork.pid);
event->fork.tid = bswap_32(event->fork.tid);
event->fork.ppid = bswap_32(event->fork.ppid);
event->fork.ptid = bswap_32(event->fork.ptid);
event->fork.time = bswap_64(event->fork.time);
if (sample_id_all)
swap_sample_id_all(event, &event->fork + 1);
}
static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
{
event->read.pid = bswap_32(event->read.pid);
event->read.tid = bswap_32(event->read.tid);
event->read.value = bswap_64(event->read.value);
event->read.time_enabled = bswap_64(event->read.time_enabled);
event->read.time_running = bswap_64(event->read.time_running);
event->read.id = bswap_64(event->read.id);
if (sample_id_all)
swap_sample_id_all(event, &event->read + 1);
}
static void perf_event__aux_swap(union perf_event *event, bool sample_id_all)
{
event->aux.aux_offset = bswap_64(event->aux.aux_offset);
event->aux.aux_size = bswap_64(event->aux.aux_size);
event->aux.flags = bswap_64(event->aux.flags);
if (sample_id_all)
swap_sample_id_all(event, &event->aux + 1);
}
static void perf_event__itrace_start_swap(union perf_event *event,
bool sample_id_all)
{
event->itrace_start.pid = bswap_32(event->itrace_start.pid);
event->itrace_start.tid = bswap_32(event->itrace_start.tid);
if (sample_id_all)
swap_sample_id_all(event, &event->itrace_start + 1);
}
static void perf_event__switch_swap(union perf_event *event, bool sample_id_all)
{
if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) {
event->context_switch.next_prev_pid =
bswap_32(event->context_switch.next_prev_pid);
event->context_switch.next_prev_tid =
bswap_32(event->context_switch.next_prev_tid);
}
if (sample_id_all)
swap_sample_id_all(event, &event->context_switch + 1);
}
static void perf_event__text_poke_swap(union perf_event *event, bool sample_id_all)
{
event->text_poke.addr = bswap_64(event->text_poke.addr);
event->text_poke.old_len = bswap_16(event->text_poke.old_len);
event->text_poke.new_len = bswap_16(event->text_poke.new_len);
if (sample_id_all) {
size_t len = sizeof(event->text_poke.old_len) +
sizeof(event->text_poke.new_len) +
event->text_poke.old_len +
event->text_poke.new_len;
void *data = &event->text_poke.old_len;
data += PERF_ALIGN(len, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static void perf_event__throttle_swap(union perf_event *event,
bool sample_id_all)
{
event->throttle.time = bswap_64(event->throttle.time);
event->throttle.id = bswap_64(event->throttle.id);
event->throttle.stream_id = bswap_64(event->throttle.stream_id);
if (sample_id_all)
swap_sample_id_all(event, &event->throttle + 1);
}
static void perf_event__namespaces_swap(union perf_event *event,
bool sample_id_all)
{
u64 i;
event->namespaces.pid = bswap_32(event->namespaces.pid);
event->namespaces.tid = bswap_32(event->namespaces.tid);
event->namespaces.nr_namespaces = bswap_64(event->namespaces.nr_namespaces);
for (i = 0; i < event->namespaces.nr_namespaces; i++) {
struct perf_ns_link_info *ns = &event->namespaces.link_info[i];
ns->dev = bswap_64(ns->dev);
ns->ino = bswap_64(ns->ino);
}
if (sample_id_all)
swap_sample_id_all(event, &event->namespaces.link_info[i]);
}
static void perf_event__cgroup_swap(union perf_event *event, bool sample_id_all)
{
event->cgroup.id = bswap_64(event->cgroup.id);
if (sample_id_all) {
void *data = &event->cgroup.path;
data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
swap_sample_id_all(event, data);
}
}
static u8 revbyte(u8 b)
{
int rev = (b >> 4) | ((b & 0xf) << 4);
rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
return (u8) rev;
}
/*
* XXX this is hack in attempt to carry flags bitfield
* through endian village. ABI says:
*
* Bit-fields are allocated from right to left (least to most significant)
* on little-endian implementations and from left to right (most to least
* significant) on big-endian implementations.
*
* The above seems to be byte specific, so we need to reverse each
* byte of the bitfield. 'Internet' also says this might be implementation
* specific and we probably need proper fix and carry perf_event_attr
* bitfield flags in separate data file FEAT_ section. Thought this seems
* to work for now.
*/
static void swap_bitfield(u8 *p, unsigned len)
{
unsigned i;
for (i = 0; i < len; i++) {
*p = revbyte(*p);
p++;
}
}
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
attr->type = bswap_32(attr->type);
attr->size = bswap_32(attr->size);
#define bswap_safe(f, n) \
(attr->size > (offsetof(struct perf_event_attr, f) + \
sizeof(attr->f) * (n)))
#define bswap_field(f, sz) \
do { \
if (bswap_safe(f, 0)) \
attr->f = bswap_##sz(attr->f); \
} while(0)
#define bswap_field_16(f) bswap_field(f, 16)
#define bswap_field_32(f) bswap_field(f, 32)
#define bswap_field_64(f) bswap_field(f, 64)
bswap_field_64(config);
bswap_field_64(sample_period);
bswap_field_64(sample_type);
bswap_field_64(read_format);
bswap_field_32(wakeup_events);
bswap_field_32(bp_type);
bswap_field_64(bp_addr);
bswap_field_64(bp_len);
bswap_field_64(branch_sample_type);
bswap_field_64(sample_regs_user);
bswap_field_32(sample_stack_user);
bswap_field_32(aux_watermark);
bswap_field_16(sample_max_stack);
bswap_field_32(aux_sample_size);
/*
* After read_format are bitfields. Check read_format because
* we are unable to use offsetof on bitfield.
*/
if (bswap_safe(read_format, 1))
swap_bitfield((u8 *) (&attr->read_format + 1),
sizeof(u64));
#undef bswap_field_64
#undef bswap_field_32
#undef bswap_field
#undef bswap_safe
}
static void perf_event__hdr_attr_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
size_t size;
perf_event__attr_swap(&event->attr.attr);
size = event->header.size;
size -= perf_record_header_attr_id(event) - (void *)event;
mem_bswap_64(perf_record_header_attr_id(event), size);
}
static void perf_event__event_update_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->event_update.type = bswap_64(event->event_update.type);
event->event_update.id = bswap_64(event->event_update.id);
}
static void perf_event__event_type_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->event_type.event_type.event_id =
bswap_64(event->event_type.event_type.event_id);
}
static void perf_event__tracing_data_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->tracing_data.size = bswap_32(event->tracing_data.size);
}
static void perf_event__auxtrace_info_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
size_t size;
event->auxtrace_info.type = bswap_32(event->auxtrace_info.type);
size = event->header.size;
size -= (void *)&event->auxtrace_info.priv - (void *)event;
mem_bswap_64(event->auxtrace_info.priv, size);
}
static void perf_event__auxtrace_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->auxtrace.size = bswap_64(event->auxtrace.size);
event->auxtrace.offset = bswap_64(event->auxtrace.offset);
event->auxtrace.reference = bswap_64(event->auxtrace.reference);
event->auxtrace.idx = bswap_32(event->auxtrace.idx);
event->auxtrace.tid = bswap_32(event->auxtrace.tid);
event->auxtrace.cpu = bswap_32(event->auxtrace.cpu);
}
static void perf_event__auxtrace_error_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->auxtrace_error.type = bswap_32(event->auxtrace_error.type);
event->auxtrace_error.code = bswap_32(event->auxtrace_error.code);
event->auxtrace_error.cpu = bswap_32(event->auxtrace_error.cpu);
event->auxtrace_error.pid = bswap_32(event->auxtrace_error.pid);
event->auxtrace_error.tid = bswap_32(event->auxtrace_error.tid);
event->auxtrace_error.fmt = bswap_32(event->auxtrace_error.fmt);
event->auxtrace_error.ip = bswap_64(event->auxtrace_error.ip);
if (event->auxtrace_error.fmt)
event->auxtrace_error.time = bswap_64(event->auxtrace_error.time);
if (event->auxtrace_error.fmt >= 2) {
event->auxtrace_error.machine_pid = bswap_32(event->auxtrace_error.machine_pid);
event->auxtrace_error.vcpu = bswap_32(event->auxtrace_error.vcpu);
}
}
static void perf_event__thread_map_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
unsigned i;
event->thread_map.nr = bswap_64(event->thread_map.nr);
for (i = 0; i < event->thread_map.nr; i++)
event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid);
}
static void perf_event__cpu_map_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
struct perf_record_cpu_map_data *data = &event->cpu_map.data;
data->type = bswap_16(data->type);
switch (data->type) {
case PERF_CPU_MAP__CPUS:
data->cpus_data.nr = bswap_16(data->cpus_data.nr);
for (unsigned i = 0; i < data->cpus_data.nr; i++)
data->cpus_data.cpu[i] = bswap_16(data->cpus_data.cpu[i]);
break;
case PERF_CPU_MAP__MASK:
data->mask32_data.long_size = bswap_16(data->mask32_data.long_size);
switch (data->mask32_data.long_size) {
case 4:
data->mask32_data.nr = bswap_16(data->mask32_data.nr);
for (unsigned i = 0; i < data->mask32_data.nr; i++)
data->mask32_data.mask[i] = bswap_32(data->mask32_data.mask[i]);
break;
case 8:
data->mask64_data.nr = bswap_16(data->mask64_data.nr);
for (unsigned i = 0; i < data->mask64_data.nr; i++)
data->mask64_data.mask[i] = bswap_64(data->mask64_data.mask[i]);
break;
default:
pr_err("cpu_map swap: unsupported long size\n");
}
break;
case PERF_CPU_MAP__RANGE_CPUS:
data->range_cpu_data.start_cpu = bswap_16(data->range_cpu_data.start_cpu);
data->range_cpu_data.end_cpu = bswap_16(data->range_cpu_data.end_cpu);
break;
default:
break;
}
}
static void perf_event__stat_config_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
u64 size;
size = bswap_64(event->stat_config.nr) * sizeof(event->stat_config.data[0]);
size += 1; /* nr item itself */
mem_bswap_64(&event->stat_config.nr, size);
}
static void perf_event__stat_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->stat.id = bswap_64(event->stat.id);
event->stat.thread = bswap_32(event->stat.thread);
event->stat.cpu = bswap_32(event->stat.cpu);
event->stat.val = bswap_64(event->stat.val);
event->stat.ena = bswap_64(event->stat.ena);
event->stat.run = bswap_64(event->stat.run);
}
static void perf_event__stat_round_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->stat_round.type = bswap_64(event->stat_round.type);
event->stat_round.time = bswap_64(event->stat_round.time);
}
static void perf_event__time_conv_swap(union perf_event *event,
bool sample_id_all __maybe_unused)
{
event->time_conv.time_shift = bswap_64(event->time_conv.time_shift);
event->time_conv.time_mult = bswap_64(event->time_conv.time_mult);
event->time_conv.time_zero = bswap_64(event->time_conv.time_zero);
if (event_contains(event->time_conv, time_cycles)) {
event->time_conv.time_cycles = bswap_64(event->time_conv.time_cycles);
event->time_conv.time_mask = bswap_64(event->time_conv.time_mask);
}
}
typedef void (*perf_event__swap_op)(union perf_event *event,
bool sample_id_all);
static perf_event__swap_op perf_event__swap_ops[] = {
[PERF_RECORD_MMAP] = perf_event__mmap_swap,
[PERF_RECORD_MMAP2] = perf_event__mmap2_swap,
[PERF_RECORD_COMM] = perf_event__comm_swap,
[PERF_RECORD_FORK] = perf_event__task_swap,
[PERF_RECORD_EXIT] = perf_event__task_swap,
[PERF_RECORD_LOST] = perf_event__all64_swap,
[PERF_RECORD_READ] = perf_event__read_swap,
[PERF_RECORD_THROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap,
[PERF_RECORD_SAMPLE] = perf_event__all64_swap,
[PERF_RECORD_AUX] = perf_event__aux_swap,
[PERF_RECORD_ITRACE_START] = perf_event__itrace_start_swap,
[PERF_RECORD_LOST_SAMPLES] = perf_event__all64_swap,
[PERF_RECORD_SWITCH] = perf_event__switch_swap,
[PERF_RECORD_SWITCH_CPU_WIDE] = perf_event__switch_swap,
[PERF_RECORD_NAMESPACES] = perf_event__namespaces_swap,
[PERF_RECORD_CGROUP] = perf_event__cgroup_swap,
[PERF_RECORD_TEXT_POKE] = perf_event__text_poke_swap,
[PERF_RECORD_AUX_OUTPUT_HW_ID] = perf_event__all64_swap,
[PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap,
[PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap,
[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
[PERF_RECORD_HEADER_BUILD_ID] = NULL,
[PERF_RECORD_ID_INDEX] = perf_event__all64_swap,
[PERF_RECORD_AUXTRACE_INFO] = perf_event__auxtrace_info_swap,
[PERF_RECORD_AUXTRACE] = perf_event__auxtrace_swap,
[PERF_RECORD_AUXTRACE_ERROR] = perf_event__auxtrace_error_swap,
[PERF_RECORD_THREAD_MAP] = perf_event__thread_map_swap,
[PERF_RECORD_CPU_MAP] = perf_event__cpu_map_swap,
[PERF_RECORD_STAT_CONFIG] = perf_event__stat_config_swap,
[PERF_RECORD_STAT] = perf_event__stat_swap,
[PERF_RECORD_STAT_ROUND] = perf_event__stat_round_swap,
[PERF_RECORD_EVENT_UPDATE] = perf_event__event_update_swap,
[PERF_RECORD_TIME_CONV] = perf_event__time_conv_swap,
[PERF_RECORD_HEADER_MAX] = NULL,
};
/*
* When perf record finishes a pass on every buffers, it records this pseudo
* event.
* We record the max timestamp t found in the pass n.
* Assuming these timestamps are monotonic across cpus, we know that if
* a buffer still has events with timestamps below t, they will be all
* available and then read in the pass n + 1.
* Hence when we start to read the pass n + 2, we can safely flush every
* events with timestamps below t.
*
* ============ PASS n =================
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 1 | 2
* 2 | 3
* - | 4 <--- max recorded
*
* ============ PASS n + 1 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 3 | 5
* 4 | 6
* 5 | 7 <---- max recorded
*
* Flush every events below timestamp 4
*
* ============ PASS n + 2 ==============
* CPU 0 | CPU 1
* |
* cnt1 timestamps | cnt2 timestamps
* 6 | 8
* 7 | 9
* - | 10
*
* Flush every events below timestamp 7
* etc...
*/
int perf_event__process_finished_round(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct ordered_events *oe)
{
if (dump_trace)
fprintf(stdout, "\n");
return ordered_events__flush(oe, OE_FLUSH__ROUND);
}
int perf_session__queue_event(struct perf_session *s, union perf_event *event,
u64 timestamp, u64 file_offset, const char *file_path)
{
return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset, file_path);
}
static void callchain__lbr_callstack_printf(struct perf_sample *sample)
{
struct ip_callchain *callchain = sample->callchain;
struct branch_stack *lbr_stack = sample->branch_stack;
struct branch_entry *entries = perf_sample__branch_entries(sample);
u64 kernel_callchain_nr = callchain->nr;
unsigned int i;
for (i = 0; i < kernel_callchain_nr; i++) {
if (callchain->ips[i] == PERF_CONTEXT_USER)
break;
}
if ((i != kernel_callchain_nr) && lbr_stack->nr) {
u64 total_nr;
/*
* LBR callstack can only get user call chain,
* i is kernel call chain number,
* 1 is PERF_CONTEXT_USER.
*
* The user call chain is stored in LBR registers.
* LBR are pair registers. The caller is stored
* in "from" register, while the callee is stored
* in "to" register.
* For example, there is a call stack
* "A"->"B"->"C"->"D".
* The LBR registers will be recorded like
* "C"->"D", "B"->"C", "A"->"B".
* So only the first "to" register and all "from"
* registers are needed to construct the whole stack.
*/
total_nr = i + 1 + lbr_stack->nr + 1;
kernel_callchain_nr = i + 1;
printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr);
for (i = 0; i < kernel_callchain_nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
i, callchain->ips[i]);
printf("..... %2d: %016" PRIx64 "\n",
(int)(kernel_callchain_nr), entries[0].to);
for (i = 0; i < lbr_stack->nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
(int)(i + kernel_callchain_nr + 1), entries[i].from);
}
}
static void callchain__printf(struct evsel *evsel,
struct perf_sample *sample)
{
unsigned int i;
struct ip_callchain *callchain = sample->callchain;
if (evsel__has_branch_callstack(evsel))
callchain__lbr_callstack_printf(sample);
printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr);
for (i = 0; i < callchain->nr; i++)
printf("..... %2d: %016" PRIx64 "\n",
i, callchain->ips[i]);
}
static void branch_stack__printf(struct perf_sample *sample,
struct evsel *evsel)
{
struct branch_entry *entries = perf_sample__branch_entries(sample);
bool callstack = evsel__has_branch_callstack(evsel);
u64 *branch_stack_cntr = sample->branch_stack_cntr;
struct perf_env *env = evsel__env(evsel);
uint64_t i;
if (!callstack) {
printf("%s: nr:%" PRIu64 "\n", "... branch stack", sample->branch_stack->nr);
} else {
/* the reason of adding 1 to nr is because after expanding
* branch stack it generates nr + 1 callstack records. e.g.,
* B()->C()
* A()->B()
* the final callstack should be:
* C()
* B()
* A()
*/
printf("%s: nr:%" PRIu64 "\n", "... branch callstack", sample->branch_stack->nr+1);
}
for (i = 0; i < sample->branch_stack->nr; i++) {
struct branch_entry *e = &entries[i];
if (!callstack) {
printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x %s %s\n",
i, e->from, e->to,
(unsigned short)e->flags.cycles,
e->flags.mispred ? "M" : " ",
e->flags.predicted ? "P" : " ",
e->flags.abort ? "A" : " ",
e->flags.in_tx ? "T" : " ",
(unsigned)e->flags.reserved,
get_branch_type(e),
e->flags.spec ? branch_spec_desc(e->flags.spec) : "");
} else {
if (i == 0) {
printf("..... %2"PRIu64": %016" PRIx64 "\n"
"..... %2"PRIu64": %016" PRIx64 "\n",
i, e->to, i+1, e->from);
} else {
printf("..... %2"PRIu64": %016" PRIx64 "\n", i+1, e->from);
}
}
}
if (branch_stack_cntr) {
printf("... branch stack counters: nr:%" PRIu64 " (counter width: %u max counter nr:%u)\n",
sample->branch_stack->nr, env->br_cntr_width, env->br_cntr_nr);
for (i = 0; i < sample->branch_stack->nr; i++)
printf("..... %2"PRIu64": %016" PRIx64 "\n", i, branch_stack_cntr[i]);
}
}
static void regs_dump__printf(u64 mask, u64 *regs, const char *arch)
{
unsigned rid, i = 0;
for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
u64 val = regs[i++];
printf(".... %-5s 0x%016" PRIx64 "\n",
perf_reg_name(rid, arch), val);
}
}
static const char *regs_abi[] = {
[PERF_SAMPLE_REGS_ABI_NONE] = "none",
[PERF_SAMPLE_REGS_ABI_32] = "32-bit",
[PERF_SAMPLE_REGS_ABI_64] = "64-bit",
};
static inline const char *regs_dump_abi(struct regs_dump *d)
{
if (d->abi > PERF_SAMPLE_REGS_ABI_64)
return "unknown";
return regs_abi[d->abi];
}
static void regs__printf(const char *type, struct regs_dump *regs, const char *arch)
{
u64 mask = regs->mask;
printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n",
type,
mask,
regs_dump_abi(regs));
regs_dump__printf(mask, regs->regs, arch);
}
static void regs_user__printf(struct perf_sample *sample, const char *arch)
{
struct regs_dump *user_regs = &sample->user_regs;
if (user_regs->regs)
regs__printf("user", user_regs, arch);
}
static void regs_intr__printf(struct perf_sample *sample, const char *arch)
{
struct regs_dump *intr_regs = &sample->intr_regs;
if (intr_regs->regs)
regs__printf("intr", intr_regs, arch);
}
static void stack_user__printf(struct stack_dump *dump)
{
printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
dump->size, dump->offset);
}
static void evlist__print_tstamp(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
{
u64 sample_type = __evlist__combined_sample_type(evlist);
if (event->header.type != PERF_RECORD_SAMPLE &&
!evlist__sample_id_all(evlist)) {
fputs("-1 -1 ", stdout);
return;
}
if ((sample_type & PERF_SAMPLE_CPU))
printf("%u ", sample->cpu);
if (sample_type & PERF_SAMPLE_TIME)
printf("%" PRIu64 " ", sample->time);
}
static void sample_read__printf(struct perf_sample *sample, u64 read_format)
{
printf("... sample_read:\n");
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
printf("...... time enabled %016" PRIx64 "\n",
sample->read.time_enabled);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
printf("...... time running %016" PRIx64 "\n",
sample->read.time_running);
if (read_format & PERF_FORMAT_GROUP) {
struct sample_read_value *value = sample->read.group.values;
printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
sample_read_group__for_each(value, sample->read.group.nr, read_format) {
printf("..... id %016" PRIx64
", value %016" PRIx64,
value->id, value->value);
if (read_format & PERF_FORMAT_LOST)
printf(", lost %" PRIu64, value->lost);
printf("\n");
}
} else {
printf("..... id %016" PRIx64 ", value %016" PRIx64,
sample->read.one.id, sample->read.one.value);
if (read_format & PERF_FORMAT_LOST)
printf(", lost %" PRIu64, sample->read.one.lost);
printf("\n");
}
}
static void dump_event(struct evlist *evlist, union perf_event *event,
u64 file_offset, struct perf_sample *sample,
const char *file_path)
{
if (!dump_trace)
return;
printf("\n%#" PRIx64 "@%s [%#x]: event: %d\n",
file_offset, file_path, event->header.size, event->header.type);
trace_event(event);
if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw)
evlist->trace_event_sample_raw(evlist, event, sample);
if (sample)
evlist__print_tstamp(evlist, event, sample);
printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
event->header.size, perf_event__name(event->header.type));
}
char *get_page_size_name(u64 size, char *str)
{
if (!size || !unit_number__scnprintf(str, PAGE_SIZE_NAME_LEN, size))
snprintf(str, PAGE_SIZE_NAME_LEN, "%s", "N/A");
return str;
}
static void dump_sample(struct evsel *evsel, union perf_event *event,
struct perf_sample *sample, const char *arch)
{
u64 sample_type;
char str[PAGE_SIZE_NAME_LEN];
if (!dump_trace)
return;
printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
event->header.misc, sample->pid, sample->tid, sample->ip,
sample->period, sample->addr);
sample_type = evsel->core.attr.sample_type;
if (evsel__has_callchain(evsel))
callchain__printf(evsel, sample);
if (evsel__has_br_stack(evsel))
branch_stack__printf(sample, evsel);
if (sample_type & PERF_SAMPLE_REGS_USER)
regs_user__printf(sample, arch);
if (sample_type & PERF_SAMPLE_REGS_INTR)
regs_intr__printf(sample, arch);
if (sample_type & PERF_SAMPLE_STACK_USER)
stack_user__printf(&sample->user_stack);
if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
printf("... weight: %" PRIu64 "", sample->weight);
if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
printf(",0x%"PRIx16"", sample->ins_lat);
printf(",0x%"PRIx16"", sample->p_stage_cyc);
}
printf("\n");
}
if (sample_type & PERF_SAMPLE_DATA_SRC)
printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
if (sample_type & PERF_SAMPLE_PHYS_ADDR)
printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr);
if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
printf(" .. data page size: %s\n", get_page_size_name(sample->data_page_size, str));
if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
printf(" .. code page size: %s\n", get_page_size_name(sample->code_page_size, str));
if (sample_type & PERF_SAMPLE_TRANSACTION)
printf("... transaction: %" PRIx64 "\n", sample->transaction);
if (sample_type & PERF_SAMPLE_READ)
sample_read__printf(sample, evsel->core.attr.read_format);
}
static void dump_read(struct evsel *evsel, union perf_event *event)
{
struct perf_record_read *read_event = &event->read;
u64 read_format;
if (!dump_trace)
return;
printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid,
evsel__name(evsel), event->read.value);
if (!evsel)
return;
read_format = evsel->core.attr.read_format;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
printf("... time running : %" PRI_lu64 "\n", read_event->time_running);
if (read_format & PERF_FORMAT_ID)
printf("... id : %" PRI_lu64 "\n", read_event->id);
if (read_format & PERF_FORMAT_LOST)
printf("... lost : %" PRI_lu64 "\n", read_event->lost);
}
static struct machine *machines__find_for_cpumode(struct machines *machines,
union perf_event *event,
struct perf_sample *sample)
{
if (perf_guest &&
((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
(sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) {
u32 pid;
if (sample->machine_pid)
pid = sample->machine_pid;
else if (event->header.type == PERF_RECORD_MMAP
|| event->header.type == PERF_RECORD_MMAP2)
pid = event->mmap.pid;
else
pid = sample->pid;
/*
* Guest code machine is created as needed and does not use
* DEFAULT_GUEST_KERNEL_ID.
*/
if (symbol_conf.guest_code)
return machines__findnew(machines, pid);
return machines__find_guest(machines, pid);
}
return &machines->host;
}
static int deliver_sample_value(struct evlist *evlist,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct sample_read_value *v,
struct machine *machine)
{
struct perf_sample_id *sid = evlist__id2sid(evlist, v->id);
struct evsel *evsel;
if (sid) {
sample->id = v->id;
sample->period = v->value - sid->period;
sid->period = v->value;
}
if (!sid || sid->evsel == NULL) {
++evlist->stats.nr_unknown_id;
return 0;
}
/*
* There's no reason to deliver sample
* for zero period, bail out.
*/
if (!sample->period)
return 0;
evsel = container_of(sid->evsel, struct evsel, core);
return tool->sample(tool, event, sample, evsel, machine);
}
static int deliver_sample_group(struct evlist *evlist,
struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct machine *machine,
u64 read_format)
{
int ret = -EINVAL;
struct sample_read_value *v = sample->read.group.values;
sample_read_group__for_each(v, sample->read.group.nr, read_format) {
ret = deliver_sample_value(evlist, tool, event, sample, v,
machine);
if (ret)
break;
}
return ret;
}
static int evlist__deliver_sample(struct evlist *evlist, struct perf_tool *tool,
union perf_event *event, struct perf_sample *sample,
struct evsel *evsel, struct machine *machine)
{
/* We know evsel != NULL. */
u64 sample_type = evsel->core.attr.sample_type;
u64 read_format = evsel->core.attr.read_format;
/* Standard sample delivery. */
if (!(sample_type & PERF_SAMPLE_READ))
return tool->sample(tool, event, sample, evsel, machine);
/* For PERF_SAMPLE_READ we have either single or group mode. */
if (read_format & PERF_FORMAT_GROUP)
return deliver_sample_group(evlist, tool, event, sample,
machine, read_format);
else
return deliver_sample_value(evlist, tool, event, sample,
&sample->read.one, machine);
}
static int machines__deliver_event(struct machines *machines,
struct evlist *evlist,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool, u64 file_offset,
const char *file_path)
{
struct evsel *evsel;
struct machine *machine;
dump_event(evlist, event, file_offset, sample, file_path);
evsel = evlist__id2evsel(evlist, sample->id);
machine = machines__find_for_cpumode(machines, event, sample);
switch (event->header.type) {
case PERF_RECORD_SAMPLE:
if (evsel == NULL) {
++evlist->stats.nr_unknown_id;
return 0;
}
if (machine == NULL) {
++evlist->stats.nr_unprocessable_samples;
dump_sample(evsel, event, sample, perf_env__arch(NULL));
return 0;
}
dump_sample(evsel, event, sample, perf_env__arch(machine->env));
return evlist__deliver_sample(evlist, tool, event, sample, evsel, machine);
case PERF_RECORD_MMAP:
return tool->mmap(tool, event, sample, machine);
case PERF_RECORD_MMAP2:
if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT)
++evlist->stats.nr_proc_map_timeout;
return tool->mmap2(tool, event, sample, machine);
case PERF_RECORD_COMM:
return tool->comm(tool, event, sample, machine);
case PERF_RECORD_NAMESPACES:
return tool->namespaces(tool, event, sample, machine);
case PERF_RECORD_CGROUP:
return tool->cgroup(tool, event, sample, machine);
case PERF_RECORD_FORK:
return tool->fork(tool, event, sample, machine);
case PERF_RECORD_EXIT:
return tool->exit(tool, event, sample, machine);
case PERF_RECORD_LOST:
if (tool->lost == perf_event__process_lost)
evlist->stats.total_lost += event->lost.lost;
return tool->lost(tool, event, sample, machine);
case PERF_RECORD_LOST_SAMPLES:
if (tool->lost_samples == perf_event__process_lost_samples &&
!(event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF))
evlist->stats.total_lost_samples += event->lost_samples.lost;
return tool->lost_samples(tool, event, sample, machine);
case PERF_RECORD_READ:
dump_read(evsel, event);
return tool->read(tool, event, sample, evsel, machine);
case PERF_RECORD_THROTTLE:
return tool->throttle(tool, event, sample, machine);
case PERF_RECORD_UNTHROTTLE:
return tool->unthrottle(tool, event, sample, machine);
case PERF_RECORD_AUX:
if (tool->aux == perf_event__process_aux) {
if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
evlist->stats.total_aux_lost += 1;
if (event->aux.flags & PERF_AUX_FLAG_PARTIAL)
evlist->stats.total_aux_partial += 1;
if (event->aux.flags & PERF_AUX_FLAG_COLLISION)
evlist->stats.total_aux_collision += 1;
}
return tool->aux(tool, event, sample, machine);
case PERF_RECORD_ITRACE_START:
return tool->itrace_start(tool, event, sample, machine);
case PERF_RECORD_SWITCH:
case PERF_RECORD_SWITCH_CPU_WIDE:
return tool->context_switch(tool, event, sample, machine);
case PERF_RECORD_KSYMBOL:
return tool->ksymbol(tool, event, sample, machine);
case PERF_RECORD_BPF_EVENT:
return tool->bpf(tool, event, sample, machine);
case PERF_RECORD_TEXT_POKE:
return tool->text_poke(tool, event, sample, machine);
case PERF_RECORD_AUX_OUTPUT_HW_ID:
return tool->aux_output_hw_id(tool, event, sample, machine);
default:
++evlist->stats.nr_unknown_events;
return -1;
}
}
static int perf_session__deliver_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool,
u64 file_offset,
const char *file_path)
{
struct perf_sample sample;
int ret = evlist__parse_sample(session->evlist, event, &sample);
if (ret) {
pr_err("Can't parse sample, err = %d\n", ret);
return ret;
}
ret = auxtrace__process_event(session, event, &sample, tool);
if (ret < 0)
return ret;
if (ret > 0)
return 0;
ret = machines__deliver_event(&session->machines, session->evlist,
event, &sample, tool, file_offset, file_path);
if (dump_trace && sample.aux_sample.size)
auxtrace__dump_auxtrace_sample(session, &sample);
return ret;
}
static s64 perf_session__process_user_event(struct perf_session *session,
union perf_event *event,
u64 file_offset,
const char *file_path)
{
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
struct perf_sample sample = { .time = 0, };
int fd = perf_data__fd(session->data);
int err;
if (event->header.type != PERF_RECORD_COMPRESSED ||
tool->compressed == perf_session__process_compressed_event_stub)
dump_event(session->evlist, event, file_offset, &sample, file_path);
/* These events are processed right away */
switch (event->header.type) {
case PERF_RECORD_HEADER_ATTR:
err = tool->attr(tool, event, &session->evlist);
if (err == 0) {
perf_session__set_id_hdr_size(session);
perf_session__set_comm_exec(session);
}
return err;
case PERF_RECORD_EVENT_UPDATE:
return tool->event_update(tool, event, &session->evlist);
case PERF_RECORD_HEADER_EVENT_TYPE:
/*
* Deprecated, but we need to handle it for sake
* of old data files create in pipe mode.
*/
return 0;
case PERF_RECORD_HEADER_TRACING_DATA:
/*
* Setup for reading amidst mmap, but only when we
* are in 'file' mode. The 'pipe' fd is in proper
* place already.
*/
if (!perf_data__is_pipe(session->data))
lseek(fd, file_offset, SEEK_SET);
return tool->tracing_data(session, event);
case PERF_RECORD_HEADER_BUILD_ID:
return tool->build_id(session, event);
case PERF_RECORD_FINISHED_ROUND:
return tool->finished_round(tool, event, oe);
case PERF_RECORD_ID_INDEX:
return tool->id_index(session, event);
case PERF_RECORD_AUXTRACE_INFO:
return tool->auxtrace_info(session, event);
case PERF_RECORD_AUXTRACE:
/*
* Setup for reading amidst mmap, but only when we
* are in 'file' mode. The 'pipe' fd is in proper
* place already.
*/
if (!perf_data__is_pipe(session->data))
lseek(fd, file_offset + event->header.size, SEEK_SET);
return tool->auxtrace(session, event);
case PERF_RECORD_AUXTRACE_ERROR:
perf_session__auxtrace_error_inc(session, event);
return tool->auxtrace_error(session, event);
case PERF_RECORD_THREAD_MAP:
return tool->thread_map(session, event);
case PERF_RECORD_CPU_MAP:
return tool->cpu_map(session, event);
case PERF_RECORD_STAT_CONFIG:
return tool->stat_config(session, event);
case PERF_RECORD_STAT:
return tool->stat(session, event);
case PERF_RECORD_STAT_ROUND:
return tool->stat_round(session, event);
case PERF_RECORD_TIME_CONV:
session->time_conv = event->time_conv;
return tool->time_conv(session, event);
case PERF_RECORD_HEADER_FEATURE:
return tool->feature(session, event);
case PERF_RECORD_COMPRESSED:
err = tool->compressed(session, event, file_offset, file_path);
if (err)
dump_event(session->evlist, event, file_offset, &sample, file_path);
return err;
case PERF_RECORD_FINISHED_INIT:
return tool->finished_init(session, event);
default:
return -EINVAL;
}
}
int perf_session__deliver_synth_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample)
{
struct evlist *evlist = session->evlist;
struct perf_tool *tool = session->tool;
events_stats__inc(&evlist->stats, event->header.type);
if (event->header.type >= PERF_RECORD_USER_TYPE_START)
return perf_session__process_user_event(session, event, 0, NULL);
return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0, NULL);
}
static void event_swap(union perf_event *event, bool sample_id_all)
{
perf_event__swap_op swap;
swap = perf_event__swap_ops[event->header.type];
if (swap)
swap(event, sample_id_all);
}
int perf_session__peek_event(struct perf_session *session, off_t file_offset,
void *buf, size_t buf_sz,
union perf_event **event_ptr,
struct perf_sample *sample)
{
union perf_event *event;
size_t hdr_sz, rest;
int fd;
if (session->one_mmap && !session->header.needs_swap) {
event = file_offset - session->one_mmap_offset +
session->one_mmap_addr;
goto out_parse_sample;
}
if (perf_data__is_pipe(session->data))
return -1;
fd = perf_data__fd(session->data);
hdr_sz = sizeof(struct perf_event_header);
if (buf_sz < hdr_sz)
return -1;
if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 ||
readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz)
return -1;
event = (union perf_event *)buf;
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
if (event->header.size < hdr_sz || event->header.size > buf_sz)
return -1;
buf += hdr_sz;
rest = event->header.size - hdr_sz;
if (readn(fd, buf, rest) != (ssize_t)rest)
return -1;
if (session->header.needs_swap)
event_swap(event, evlist__sample_id_all(session->evlist));
out_parse_sample:
if (sample && event->header.type < PERF_RECORD_USER_TYPE_START &&
evlist__parse_sample(session->evlist, event, sample))
return -1;
*event_ptr = event;
return 0;
}
int perf_session__peek_events(struct perf_session *session, u64 offset,
u64 size, peek_events_cb_t cb, void *data)
{
u64 max_offset = offset + size;
char buf[PERF_SAMPLE_MAX_SIZE];
union perf_event *event;
int err;
do {
err = perf_session__peek_event(session, offset, buf,
PERF_SAMPLE_MAX_SIZE, &event,
NULL);
if (err)
return err;
err = cb(session, event, offset, data);
if (err)
return err;
offset += event->header.size;
if (event->header.type == PERF_RECORD_AUXTRACE)
offset += event->auxtrace.size;
} while (offset < max_offset);
return err;
}
static s64 perf_session__process_event(struct perf_session *session,
union perf_event *event, u64 file_offset,
const char *file_path)
{
struct evlist *evlist = session->evlist;
struct perf_tool *tool = session->tool;
int ret;
if (session->header.needs_swap)
event_swap(event, evlist__sample_id_all(evlist));
if (event->header.type >= PERF_RECORD_HEADER_MAX)
return -EINVAL;
events_stats__inc(&evlist->stats, event->header.type);
if (event->header.type >= PERF_RECORD_USER_TYPE_START)
return perf_session__process_user_event(session, event, file_offset, file_path);
if (tool->ordered_events) {
u64 timestamp = -1ULL;
ret = evlist__parse_sample_timestamp(evlist, event, &timestamp);
if (ret && ret != -1)
return ret;
ret = perf_session__queue_event(session, event, timestamp, file_offset, file_path);
if (ret != -ETIME)
return ret;
}
return perf_session__deliver_event(session, event, tool, file_offset, file_path);
}
void perf_event_header__bswap(struct perf_event_header *hdr)
{
hdr->type = bswap_32(hdr->type);
hdr->misc = bswap_16(hdr->misc);
hdr->size = bswap_16(hdr->size);
}
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
return machine__findnew_thread(&session->machines.host, -1, pid);
}
int perf_session__register_idle_thread(struct perf_session *session)
{
struct thread *thread = machine__idle_thread(&session->machines.host);
/* machine__idle_thread() got the thread, so put it */
thread__put(thread);
return thread ? 0 : -1;
}
static void
perf_session__warn_order(const struct perf_session *session)
{
const struct ordered_events *oe = &session->ordered_events;
struct evsel *evsel;
bool should_warn = true;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.write_backward)
should_warn = false;
}
if (!should_warn)
return;
if (oe->nr_unordered_events != 0)
ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events);
}
static void perf_session__warn_about_errors(const struct perf_session *session)
{
const struct events_stats *stats = &session->evlist->stats;
if (session->tool->lost == perf_event__process_lost &&
stats->nr_events[PERF_RECORD_LOST] != 0) {
ui__warning("Processed %d events and lost %d chunks!\n\n"
"Check IO/CPU overload!\n\n",
stats->nr_events[0],
stats->nr_events[PERF_RECORD_LOST]);
}
if (session->tool->lost_samples == perf_event__process_lost_samples) {
double drop_rate;
drop_rate = (double)stats->total_lost_samples /
(double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples);
if (drop_rate > 0.05) {
ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n",
stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples,
drop_rate * 100.0);
}
}
if (session->tool->aux == perf_event__process_aux &&
stats->total_aux_lost != 0) {
ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n",
stats->total_aux_lost,
stats->nr_events[PERF_RECORD_AUX]);
}
if (session->tool->aux == perf_event__process_aux &&
stats->total_aux_partial != 0) {
bool vmm_exclusive = false;
(void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive",
&vmm_exclusive);
ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n"
"Are you running a KVM guest in the background?%s\n\n",
stats->total_aux_partial,
stats->nr_events[PERF_RECORD_AUX],
vmm_exclusive ?
"\nReloading kvm_intel module with vmm_exclusive=0\n"
"will reduce the gaps to only guest's timeslices." :
"");
}
if (session->tool->aux == perf_event__process_aux &&
stats->total_aux_collision != 0) {
ui__warning("AUX data detected collision %" PRIu64 " times out of %u!\n\n",
stats->total_aux_collision,
stats->nr_events[PERF_RECORD_AUX]);
}
if (stats->nr_unknown_events != 0) {
ui__warning("Found %u unknown events!\n\n"
"Is this an older tool processing a perf.data "
"file generated by a more recent tool?\n\n"
"If that is not the case, consider "
"reporting to linux-kernel@vger.kernel.org.\n\n",
stats->nr_unknown_events);
}
if (stats->nr_unknown_id != 0) {
ui__warning("%u samples with id not present in the header\n",
stats->nr_unknown_id);
}
if (stats->nr_invalid_chains != 0) {
ui__warning("Found invalid callchains!\n\n"
"%u out of %u events were discarded for this reason.\n\n"
"Consider reporting to linux-kernel@vger.kernel.org.\n\n",
stats->nr_invalid_chains,
stats->nr_events[PERF_RECORD_SAMPLE]);
}
if (stats->nr_unprocessable_samples != 0) {
ui__warning("%u unprocessable samples recorded.\n"
"Do you have a KVM guest running and not using 'perf kvm'?\n",
stats->nr_unprocessable_samples);
}
perf_session__warn_order(session);
events_stats__auxtrace_error_warn(stats);
if (stats->nr_proc_map_timeout != 0) {
ui__warning("%d map information files for pre-existing threads were\n"
"not processed, if there are samples for addresses they\n"
"will not be resolved, you may find out which are these\n"
"threads by running with -v and redirecting the output\n"
"to a file.\n"
"The time limit to process proc map is too short?\n"
"Increase it by --proc-map-timeout\n",
stats->nr_proc_map_timeout);
}
}
static int perf_session__flush_thread_stack(struct thread *thread,
void *p __maybe_unused)
{
return thread_stack__flush(thread);
}
static int perf_session__flush_thread_stacks(struct perf_session *session)
{
return machines__for_each_thread(&session->machines,
perf_session__flush_thread_stack,
NULL);
}
volatile sig_atomic_t session_done;
static int __perf_session__process_decomp_events(struct perf_session *session);
static int __perf_session__process_pipe_events(struct perf_session *session)
{
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
union perf_event *event;
uint32_t size, cur_size = 0;
void *buf = NULL;
s64 skip = 0;
u64 head;
ssize_t err;
void *p;
perf_tool__fill_defaults(tool);
head = 0;
cur_size = sizeof(union perf_event);
buf = malloc(cur_size);
if (!buf)
return -errno;
ordered_events__set_copy_on_queue(oe, true);
more:
event = buf;
err = perf_data__read(session->data, event,
sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0)
goto done;
pr_err("failed to read event header\n");
goto out_err;
}
if (session->header.needs_swap)
perf_event_header__bswap(&event->header);
size = event->header.size;
if (size < sizeof(struct perf_event_header)) {
pr_err("bad event header size\n");
goto out_err;
}
if (size > cur_size) {
void *new = realloc(buf, size);
if (!new) {
pr_err("failed to allocate memory to read event\n");
goto out_err;
}
buf = new;
cur_size = size;
event = buf;
}
p = event;
p += sizeof(struct perf_event_header);
if (size - sizeof(struct perf_event_header)) {
err = perf_data__read(session->data, p,
size - sizeof(struct perf_event_header));
if (err <= 0) {
if (err == 0) {
pr_err("unexpected end of event stream\n");
goto done;
}
pr_err("failed to read event data\n");
goto out_err;
}
}
if ((skip = perf_session__process_event(session, event, head, "pipe")) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
head, event->header.size, event->header.type);
err = -EINVAL;
goto out_err;
}
head += size;
if (skip > 0)
head += skip;
err = __perf_session__process_decomp_events(session);
if (err)
goto out_err;
if (!session_done())
goto more;
done:
/* do the final flush for ordered samples */
err = ordered_events__flush(oe, OE_FLUSH__FINAL);
if (err)
goto out_err;
err = auxtrace__flush_events(session, tool);
if (err)
goto out_err;
err = perf_session__flush_thread_stacks(session);
out_err:
free(buf);
if (!tool->no_warn)
perf_session__warn_about_errors(session);
ordered_events__free(&session->ordered_events);
auxtrace__free_events(session);
return err;
}
static union perf_event *
prefetch_event(char *buf, u64 head, size_t mmap_size,
bool needs_swap, union perf_event *error)
{
union perf_event *event;
u16 event_size;
/*
* Ensure we have enough space remaining to read
* the size of the event in the headers.
*/
if (head + sizeof(event->header) > mmap_size)
return NULL;
event = (union perf_event *)(buf + head);
if (needs_swap)
perf_event_header__bswap(&event->header);
event_size = event->header.size;
if (head + event_size <= mmap_size)
return event;
/* We're not fetching the event so swap back again */
if (needs_swap)
perf_event_header__bswap(&event->header);
/* Check if the event fits into the next mmapped buf. */
if (event_size <= mmap_size - head % page_size) {
/* Remap buf and fetch again. */
return NULL;
}
/* Invalid input. Event size should never exceed mmap_size. */
pr_debug("%s: head=%#" PRIx64 " event->header.size=%#x, mmap_size=%#zx:"
" fuzzed or compressed perf.data?\n", __func__, head, event_size, mmap_size);
return error;
}
static union perf_event *
fetch_mmaped_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
{
return prefetch_event(buf, head, mmap_size, needs_swap, ERR_PTR(-EINVAL));
}
static union perf_event *
fetch_decomp_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
{
return prefetch_event(buf, head, mmap_size, needs_swap, NULL);
}
static int __perf_session__process_decomp_events(struct perf_session *session)
{
s64 skip;
u64 size;
struct decomp *decomp = session->active_decomp->decomp_last;
if (!decomp)
return 0;
while (decomp->head < decomp->size && !session_done()) {
union perf_event *event = fetch_decomp_event(decomp->head, decomp->size, decomp->data,
session->header.needs_swap);
if (!event)
break;
size = event->header.size;
if (size < sizeof(struct perf_event_header) ||
(skip = perf_session__process_event(session, event, decomp->file_pos,
decomp->file_path)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
decomp->file_pos + decomp->head, event->header.size, event->header.type);
return -EINVAL;
}
if (skip)
size += skip;
decomp->head += size;
}
return 0;
}
/*
* On 64bit we can mmap the data file in one go. No need for tiny mmap
* slices. On 32bit we use 32MB.
*/
#if BITS_PER_LONG == 64
#define MMAP_SIZE ULLONG_MAX
#define NUM_MMAPS 1
#else
#define MMAP_SIZE (32 * 1024 * 1024ULL)
#define NUM_MMAPS 128
#endif
struct reader;
typedef s64 (*reader_cb_t)(struct perf_session *session,
union perf_event *event,
u64 file_offset,
const char *file_path);
struct reader {
int fd;
const char *path;
u64 data_size;
u64 data_offset;
reader_cb_t process;
bool in_place_update;
char *mmaps[NUM_MMAPS];
size_t mmap_size;
int mmap_idx;
char *mmap_cur;
u64 file_pos;
u64 file_offset;
u64 head;
u64 size;
bool done;
struct zstd_data zstd_data;
struct decomp_data decomp_data;
};
static int
reader__init(struct reader *rd, bool *one_mmap)
{
u64 data_size = rd->data_size;
char **mmaps = rd->mmaps;
rd->head = rd->data_offset;
data_size += rd->data_offset;
rd->mmap_size = MMAP_SIZE;
if (rd->mmap_size > data_size) {
rd->mmap_size = data_size;
if (one_mmap)
*one_mmap = true;
}
memset(mmaps, 0, sizeof(rd->mmaps));
if (zstd_init(&rd->zstd_data, 0))
return -1;
rd->decomp_data.zstd_decomp = &rd->zstd_data;
return 0;
}
static void
reader__release_decomp(struct reader *rd)
{
perf_decomp__release_events(rd->decomp_data.decomp);
zstd_fini(&rd->zstd_data);
}
static int
reader__mmap(struct reader *rd, struct perf_session *session)
{
int mmap_prot, mmap_flags;
char *buf, **mmaps = rd->mmaps;
u64 page_offset;
mmap_prot = PROT_READ;
mmap_flags = MAP_SHARED;
if (rd->in_place_update) {
mmap_prot |= PROT_WRITE;
} else if (session->header.needs_swap) {
mmap_prot |= PROT_WRITE;
mmap_flags = MAP_PRIVATE;
}
if (mmaps[rd->mmap_idx]) {
munmap(mmaps[rd->mmap_idx], rd->mmap_size);
mmaps[rd->mmap_idx] = NULL;
}
page_offset = page_size * (rd->head / page_size);
rd->file_offset += page_offset;
rd->head -= page_offset;
buf = mmap(NULL, rd->mmap_size, mmap_prot, mmap_flags, rd->fd,
rd->file_offset);
if (buf == MAP_FAILED) {
pr_err("failed to mmap file\n");
return -errno;
}
mmaps[rd->mmap_idx] = rd->mmap_cur = buf;
rd->mmap_idx = (rd->mmap_idx + 1) & (ARRAY_SIZE(rd->mmaps) - 1);
rd->file_pos = rd->file_offset + rd->head;
if (session->one_mmap) {
session->one_mmap_addr = buf;
session->one_mmap_offset = rd->file_offset;
}
return 0;
}
enum {
READER_OK,
READER_NODATA,
};
static int
reader__read_event(struct reader *rd, struct perf_session *session,
struct ui_progress *prog)
{
u64 size;
int err = READER_OK;
union perf_event *event;
s64 skip;
event = fetch_mmaped_event(rd->head, rd->mmap_size, rd->mmap_cur,
session->header.needs_swap);
if (IS_ERR(event))
return PTR_ERR(event);
if (!event)
return READER_NODATA;
size = event->header.size;
skip = -EINVAL;
if (size < sizeof(struct perf_event_header) ||
(skip = rd->process(session, event, rd->file_pos, rd->path)) < 0) {
pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n",
rd->file_offset + rd->head, event->header.size,
event->header.type, strerror(-skip));
err = skip;
goto out;
}
if (skip)
size += skip;
rd->size += size;
rd->head += size;
rd->file_pos += size;
err = __perf_session__process_decomp_events(session);
if (err)
goto out;
ui_progress__update(prog, size);
out:
return err;
}
static inline bool
reader__eof(struct reader *rd)
{
return (rd->file_pos >= rd->data_size + rd->data_offset);
}
static int
reader__process_events(struct reader *rd, struct perf_session *session,
struct ui_progress *prog)
{
int err;
err = reader__init(rd, &session->one_mmap);
if (err)
goto out;
session->active_decomp = &rd->decomp_data;
remap:
err = reader__mmap(rd, session);
if (err)
goto out;
more:
err = reader__read_event(rd, session, prog);
if (err < 0)
goto out;
else if (err == READER_NODATA)
goto remap;
if (session_done())
goto out;
if (!reader__eof(rd))
goto more;
out:
session->active_decomp = &session->decomp_data;
return err;
}
static s64 process_simple(struct perf_session *session,
union perf_event *event,
u64 file_offset,
const char *file_path)
{
return perf_session__process_event(session, event, file_offset, file_path);
}
static int __perf_session__process_events(struct perf_session *session)
{
struct reader rd = {
.fd = perf_data__fd(session->data),
.path = session->data->file.path,
.data_size = session->header.data_size,
.data_offset = session->header.data_offset,
.process = process_simple,
.in_place_update = session->data->in_place_update,
};
struct ordered_events *oe = &session->ordered_events;
struct perf_tool *tool = session->tool;
struct ui_progress prog;
int err;
perf_tool__fill_defaults(tool);
if (rd.data_size == 0)
return -1;
ui_progress__init_size(&prog, rd.data_size, "Processing events...");
err = reader__process_events(&rd, session, &prog);
if (err)
goto out_err;
/* do the final flush for ordered samples */
err = ordered_events__flush(oe, OE_FLUSH__FINAL);
if (err)
goto out_err;
err = auxtrace__flush_events(session, tool);
if (err)
goto out_err;
err = perf_session__flush_thread_stacks(session);
out_err:
ui_progress__finish();
if (!tool->no_warn)
perf_session__warn_about_errors(session);
/*
* We may switching perf.data output, make ordered_events
* reusable.
*/
ordered_events__reinit(&session->ordered_events);
auxtrace__free_events(session);
reader__release_decomp(&rd);
session->one_mmap = false;
return err;
}
/*
* Processing 2 MB of data from each reader in sequence,
* because that's the way the ordered events sorting works
* most efficiently.
*/
#define READER_MAX_SIZE (2 * 1024 * 1024)
/*
* This function reads, merge and process directory data.
* It assumens the version 1 of directory data, where each
* data file holds per-cpu data, already sorted by kernel.
*/
static int __perf_session__process_dir_events(struct perf_session *session)
{
struct perf_data *data = session->data;
struct perf_tool *tool = session->tool;
int i, ret, readers, nr_readers;
struct ui_progress prog;
u64 total_size = perf_data__size(session->data);
struct reader *rd;
perf_tool__fill_defaults(tool);
ui_progress__init_size(&prog, total_size, "Sorting events...");
nr_readers = 1;
for (i = 0; i < data->dir.nr; i++) {
if (data->dir.files[i].size)
nr_readers++;
}
rd = zalloc(nr_readers * sizeof(struct reader));
if (!rd)
return -ENOMEM;
rd[0] = (struct reader) {
.fd = perf_data__fd(session->data),
.path = session->data->file.path,
.data_size = session->header.data_size,
.data_offset = session->header.data_offset,
.process = process_simple,
.in_place_update = session->data->in_place_update,
};
ret = reader__init(&rd[0], NULL);
if (ret)
goto out_err;
ret = reader__mmap(&rd[0], session);
if (ret)
goto out_err;
readers = 1;
for (i = 0; i < data->dir.nr; i++) {
if (!data->dir.files[i].size)
continue;
rd[readers] = (struct reader) {
.fd = data->dir.files[i].fd,
.path = data->dir.files[i].path,
.data_size = data->dir.files[i].size,
.data_offset = 0,
.process = process_simple,
.in_place_update = session->data->in_place_update,
};
ret = reader__init(&rd[readers], NULL);
if (ret)
goto out_err;
ret = reader__mmap(&rd[readers], session);
if (ret)
goto out_err;
readers++;
}
i = 0;
while (readers) {
if (session_done())
break;
if (rd[i].done) {
i = (i + 1) % nr_readers;
continue;
}
if (reader__eof(&rd[i])) {
rd[i].done = true;
readers--;
continue;
}
session->active_decomp = &rd[i].decomp_data;
ret = reader__read_event(&rd[i], session, &prog);
if (ret < 0) {
goto out_err;
} else if (ret == READER_NODATA) {
ret = reader__mmap(&rd[i], session);
if (ret)
goto out_err;
}
if (rd[i].size >= READER_MAX_SIZE) {
rd[i].size = 0;
i = (i + 1) % nr_readers;
}
}
ret = ordered_events__flush(&session->ordered_events, OE_FLUSH__FINAL);
if (ret)
goto out_err;
ret = perf_session__flush_thread_stacks(session);
out_err:
ui_progress__finish();
if (!tool->no_warn)
perf_session__warn_about_errors(session);
/*
* We may switching perf.data output, make ordered_events
* reusable.
*/
ordered_events__reinit(&session->ordered_events);
session->one_mmap = false;
session->active_decomp = &session->decomp_data;
for (i = 0; i < nr_readers; i++)
reader__release_decomp(&rd[i]);
zfree(&rd);
return ret;
}
int perf_session__process_events(struct perf_session *session)
{
if (perf_session__register_idle_thread(session) < 0)
return -ENOMEM;
if (perf_data__is_pipe(session->data))
return __perf_session__process_pipe_events(session);
if (perf_data__is_dir(session->data) && session->data->dir.nr)
return __perf_session__process_dir_events(session);
return __perf_session__process_events(session);
}
bool perf_session__has_traces(struct perf_session *session, const char *msg)
{
struct evsel *evsel;
evlist__for_each_entry(session->evlist, evsel) {
if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT)
return true;
}
pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
return false;
}
int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr)
{
char *bracket;
struct ref_reloc_sym *ref;
struct kmap *kmap;
ref = zalloc(sizeof(struct ref_reloc_sym));
if (ref == NULL)
return -ENOMEM;
ref->name = strdup(symbol_name);
if (ref->name == NULL) {
free(ref);
return -ENOMEM;
}
bracket = strchr(ref->name, ']');
if (bracket)
*bracket = '\0';
ref->addr = addr;
kmap = map__kmap(map);
if (kmap)
kmap->ref_reloc_sym = ref;
return 0;
}
size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
{
return machines__fprintf_dsos(&session->machines, fp);
}
size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
bool (skip)(struct dso *dso, int parm), int parm)
{
return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
}
size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp,
bool skip_empty)
{
size_t ret;
const char *msg = "";
if (perf_header__has_feat(&session->header, HEADER_AUXTRACE))
msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)";
ret = fprintf(fp, "\nAggregated stats:%s\n", msg);
ret += events_stats__fprintf(&session->evlist->stats, fp, skip_empty);
return ret;
}
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
/*
* FIXME: Here we have to actually print all the machines in this
* session, not just the host...
*/
return machine__fprintf(&session->machines.host, fp);
}
void perf_session__dump_kmaps(struct perf_session *session)
{
int save_verbose = verbose;
fflush(stdout);
fprintf(stderr, "Kernel and module maps:\n");
verbose = 0; /* Suppress verbose to print a summary only */
maps__fprintf(machine__kernel_maps(&session->machines.host), stderr);
verbose = save_verbose;
}
struct evsel *perf_session__find_first_evtype(struct perf_session *session,
unsigned int type)
{
struct evsel *pos;
evlist__for_each_entry(session->evlist, pos) {
if (pos->core.attr.type == type)
return pos;
}
return NULL;
}
int perf_session__cpu_bitmap(struct perf_session *session,
const char *cpu_list, unsigned long *cpu_bitmap)
{
int i, err = -1;
struct perf_cpu_map *map;
int nr_cpus = min(session->header.env.nr_cpus_avail, MAX_NR_CPUS);
for (i = 0; i < PERF_TYPE_MAX; ++i) {
struct evsel *evsel;
evsel = perf_session__find_first_evtype(session, i);
if (!evsel)
continue;
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) {
pr_err("File does not contain CPU events. "
"Remove -C option to proceed.\n");
return -1;
}
}
map = perf_cpu_map__new(cpu_list);
if (map == NULL) {
pr_err("Invalid cpu_list\n");
return -1;
}
for (i = 0; i < perf_cpu_map__nr(map); i++) {
struct perf_cpu cpu = perf_cpu_map__cpu(map, i);
if (cpu.cpu >= nr_cpus) {
pr_err("Requested CPU %d too large. "
"Consider raising MAX_NR_CPUS\n", cpu.cpu);
goto out_delete_map;
}
__set_bit(cpu.cpu, cpu_bitmap);
}
err = 0;
out_delete_map:
perf_cpu_map__put(map);
return err;
}
void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
bool full)
{
if (session == NULL || fp == NULL)
return;
fprintf(fp, "# ========\n");
perf_header__fprintf_info(session, fp, full);
fprintf(fp, "# ========\n#\n");
}
static int perf_session__register_guest(struct perf_session *session, pid_t machine_pid)
{
struct machine *machine = machines__findnew(&session->machines, machine_pid);
struct thread *thread;
if (!machine)
return -ENOMEM;
machine->single_address_space = session->machines.host.single_address_space;
thread = machine__idle_thread(machine);
if (!thread)
return -ENOMEM;
thread__put(thread);
machine->kallsyms_filename = perf_data__guest_kallsyms_name(session->data, machine_pid);
return 0;
}
static int perf_session__set_guest_cpu(struct perf_session *session, pid_t pid,
pid_t tid, int guest_cpu)
{
struct machine *machine = &session->machines.host;
struct thread *thread = machine__findnew_thread(machine, pid, tid);
if (!thread)
return -ENOMEM;
thread__set_guest_cpu(thread, guest_cpu);
thread__put(thread);
return 0;
}
int perf_event__process_id_index(struct perf_session *session,
union perf_event *event)
{
struct evlist *evlist = session->evlist;
struct perf_record_id_index *ie = &event->id_index;
size_t sz = ie->header.size - sizeof(*ie);
size_t i, nr, max_nr;
size_t e1_sz = sizeof(struct id_index_entry);
size_t e2_sz = sizeof(struct id_index_entry_2);
size_t etot_sz = e1_sz + e2_sz;
struct id_index_entry_2 *e2;
pid_t last_pid = 0;
max_nr = sz / e1_sz;
nr = ie->nr;
if (nr > max_nr) {
printf("Too big: nr %zu max_nr %zu\n", nr, max_nr);
return -EINVAL;
}
if (sz >= nr * etot_sz) {
max_nr = sz / etot_sz;
if (nr > max_nr) {
printf("Too big2: nr %zu max_nr %zu\n", nr, max_nr);
return -EINVAL;
}
e2 = (void *)ie + sizeof(*ie) + nr * e1_sz;
} else {
e2 = NULL;
}
if (dump_trace)
fprintf(stdout, " nr: %zu\n", nr);
for (i = 0; i < nr; i++, (e2 ? e2++ : 0)) {
struct id_index_entry *e = &ie->entries[i];
struct perf_sample_id *sid;
int ret;
if (dump_trace) {
fprintf(stdout, " ... id: %"PRI_lu64, e->id);
fprintf(stdout, " idx: %"PRI_lu64, e->idx);
fprintf(stdout, " cpu: %"PRI_ld64, e->cpu);
fprintf(stdout, " tid: %"PRI_ld64, e->tid);
if (e2) {
fprintf(stdout, " machine_pid: %"PRI_ld64, e2->machine_pid);
fprintf(stdout, " vcpu: %"PRI_lu64"\n", e2->vcpu);
} else {
fprintf(stdout, "\n");
}
}
sid = evlist__id2sid(evlist, e->id);
if (!sid)
return -ENOENT;
sid->idx = e->idx;
sid->cpu.cpu = e->cpu;
sid->tid = e->tid;
if (!e2)
continue;
sid->machine_pid = e2->machine_pid;
sid->vcpu.cpu = e2->vcpu;
if (!sid->machine_pid)
continue;
if (sid->machine_pid != last_pid) {
ret = perf_session__register_guest(session, sid->machine_pid);
if (ret)
return ret;
last_pid = sid->machine_pid;
perf_guest = true;
}
ret = perf_session__set_guest_cpu(session, sid->machine_pid, e->tid, e2->vcpu);
if (ret)
return ret;
}
return 0;
}