| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright 2020-2021 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/sched/task.h> |
| #include <linux/dynamic_debug.h> |
| #include <drm/ttm/ttm_tt.h> |
| #include <drm/drm_exec.h> |
| |
| #include "amdgpu_sync.h" |
| #include "amdgpu_object.h" |
| #include "amdgpu_vm.h" |
| #include "amdgpu_hmm.h" |
| #include "amdgpu.h" |
| #include "amdgpu_xgmi.h" |
| #include "kfd_priv.h" |
| #include "kfd_svm.h" |
| #include "kfd_migrate.h" |
| #include "kfd_smi_events.h" |
| |
| #ifdef dev_fmt |
| #undef dev_fmt |
| #endif |
| #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ |
| |
| #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 |
| |
| /* Long enough to ensure no retry fault comes after svm range is restored and |
| * page table is updated. |
| */ |
| #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC) |
| #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) |
| #define dynamic_svm_range_dump(svms) \ |
| _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms) |
| #else |
| #define dynamic_svm_range_dump(svms) \ |
| do { if (0) svm_range_debug_dump(svms); } while (0) |
| #endif |
| |
| /* Giant svm range split into smaller ranges based on this, it is decided using |
| * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to |
| * power of 2MB. |
| */ |
| static uint64_t max_svm_range_pages; |
| |
| struct criu_svm_metadata { |
| struct list_head list; |
| struct kfd_criu_svm_range_priv_data data; |
| }; |
| |
| static void svm_range_evict_svm_bo_worker(struct work_struct *work); |
| static bool |
| svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, |
| const struct mmu_notifier_range *range, |
| unsigned long cur_seq); |
| static int |
| svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, |
| uint64_t *bo_s, uint64_t *bo_l); |
| static const struct mmu_interval_notifier_ops svm_range_mn_ops = { |
| .invalidate = svm_range_cpu_invalidate_pagetables, |
| }; |
| |
| /** |
| * svm_range_unlink - unlink svm_range from lists and interval tree |
| * @prange: svm range structure to be removed |
| * |
| * Remove the svm_range from the svms and svm_bo lists and the svms |
| * interval tree. |
| * |
| * Context: The caller must hold svms->lock |
| */ |
| static void svm_range_unlink(struct svm_range *prange) |
| { |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, |
| prange, prange->start, prange->last); |
| |
| if (prange->svm_bo) { |
| spin_lock(&prange->svm_bo->list_lock); |
| list_del(&prange->svm_bo_list); |
| spin_unlock(&prange->svm_bo->list_lock); |
| } |
| |
| list_del(&prange->list); |
| if (prange->it_node.start != 0 && prange->it_node.last != 0) |
| interval_tree_remove(&prange->it_node, &prange->svms->objects); |
| } |
| |
| static void |
| svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) |
| { |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, |
| prange, prange->start, prange->last); |
| |
| mmu_interval_notifier_insert_locked(&prange->notifier, mm, |
| prange->start << PAGE_SHIFT, |
| prange->npages << PAGE_SHIFT, |
| &svm_range_mn_ops); |
| } |
| |
| /** |
| * svm_range_add_to_svms - add svm range to svms |
| * @prange: svm range structure to be added |
| * |
| * Add the svm range to svms interval tree and link list |
| * |
| * Context: The caller must hold svms->lock |
| */ |
| static void svm_range_add_to_svms(struct svm_range *prange) |
| { |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, |
| prange, prange->start, prange->last); |
| |
| list_move_tail(&prange->list, &prange->svms->list); |
| prange->it_node.start = prange->start; |
| prange->it_node.last = prange->last; |
| interval_tree_insert(&prange->it_node, &prange->svms->objects); |
| } |
| |
| static void svm_range_remove_notifier(struct svm_range *prange) |
| { |
| pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| prange->svms, prange, |
| prange->notifier.interval_tree.start >> PAGE_SHIFT, |
| prange->notifier.interval_tree.last >> PAGE_SHIFT); |
| |
| if (prange->notifier.interval_tree.start != 0 && |
| prange->notifier.interval_tree.last != 0) |
| mmu_interval_notifier_remove(&prange->notifier); |
| } |
| |
| static bool |
| svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) |
| { |
| return dma_addr && !dma_mapping_error(dev, dma_addr) && |
| !(dma_addr & SVM_RANGE_VRAM_DOMAIN); |
| } |
| |
| static int |
| svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, |
| unsigned long offset, unsigned long npages, |
| unsigned long *hmm_pfns, uint32_t gpuidx) |
| { |
| enum dma_data_direction dir = DMA_BIDIRECTIONAL; |
| dma_addr_t *addr = prange->dma_addr[gpuidx]; |
| struct device *dev = adev->dev; |
| struct page *page; |
| int i, r; |
| |
| if (!addr) { |
| addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); |
| if (!addr) |
| return -ENOMEM; |
| prange->dma_addr[gpuidx] = addr; |
| } |
| |
| addr += offset; |
| for (i = 0; i < npages; i++) { |
| if (svm_is_valid_dma_mapping_addr(dev, addr[i])) |
| dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); |
| |
| page = hmm_pfn_to_page(hmm_pfns[i]); |
| if (is_zone_device_page(page)) { |
| struct amdgpu_device *bo_adev = prange->svm_bo->node->adev; |
| |
| addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + |
| bo_adev->vm_manager.vram_base_offset - |
| bo_adev->kfd.pgmap.range.start; |
| addr[i] |= SVM_RANGE_VRAM_DOMAIN; |
| pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); |
| continue; |
| } |
| addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); |
| r = dma_mapping_error(dev, addr[i]); |
| if (r) { |
| dev_err(dev, "failed %d dma_map_page\n", r); |
| return r; |
| } |
| pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", |
| addr[i] >> PAGE_SHIFT, page_to_pfn(page)); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, |
| unsigned long offset, unsigned long npages, |
| unsigned long *hmm_pfns) |
| { |
| struct kfd_process *p; |
| uint32_t gpuidx; |
| int r; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { |
| struct kfd_process_device *pdd; |
| |
| pr_debug("mapping to gpu idx 0x%x\n", gpuidx); |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| return -EINVAL; |
| } |
| |
| r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, |
| hmm_pfns, gpuidx); |
| if (r) |
| break; |
| } |
| |
| return r; |
| } |
| |
| void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr, |
| unsigned long offset, unsigned long npages) |
| { |
| enum dma_data_direction dir = DMA_BIDIRECTIONAL; |
| int i; |
| |
| if (!dma_addr) |
| return; |
| |
| for (i = offset; i < offset + npages; i++) { |
| if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) |
| continue; |
| pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); |
| dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); |
| dma_addr[i] = 0; |
| } |
| } |
| |
| void svm_range_dma_unmap(struct svm_range *prange) |
| { |
| struct kfd_process_device *pdd; |
| dma_addr_t *dma_addr; |
| struct device *dev; |
| struct kfd_process *p; |
| uint32_t gpuidx; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { |
| dma_addr = prange->dma_addr[gpuidx]; |
| if (!dma_addr) |
| continue; |
| |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| continue; |
| } |
| dev = &pdd->dev->adev->pdev->dev; |
| |
| svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages); |
| } |
| } |
| |
| static void svm_range_free(struct svm_range *prange, bool do_unmap) |
| { |
| uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT; |
| struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); |
| uint32_t gpuidx; |
| |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, |
| prange->start, prange->last); |
| |
| svm_range_vram_node_free(prange); |
| if (do_unmap) |
| svm_range_dma_unmap(prange); |
| |
| if (do_unmap && !p->xnack_enabled) { |
| pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size); |
| amdgpu_amdkfd_unreserve_mem_limit(NULL, size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| } |
| |
| /* free dma_addr array for each gpu */ |
| for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { |
| if (prange->dma_addr[gpuidx]) { |
| kvfree(prange->dma_addr[gpuidx]); |
| prange->dma_addr[gpuidx] = NULL; |
| } |
| } |
| |
| mutex_destroy(&prange->lock); |
| mutex_destroy(&prange->migrate_mutex); |
| kfree(prange); |
| } |
| |
| static void |
| svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, |
| uint8_t *granularity, uint32_t *flags) |
| { |
| *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| *granularity = 9; |
| *flags = |
| KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; |
| } |
| |
| static struct |
| svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, |
| uint64_t last, bool update_mem_usage) |
| { |
| uint64_t size = last - start + 1; |
| struct svm_range *prange; |
| struct kfd_process *p; |
| |
| prange = kzalloc(sizeof(*prange), GFP_KERNEL); |
| if (!prange) |
| return NULL; |
| |
| p = container_of(svms, struct kfd_process, svms); |
| if (!p->xnack_enabled && update_mem_usage && |
| amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) { |
| pr_info("SVM mapping failed, exceeds resident system memory limit\n"); |
| kfree(prange); |
| return NULL; |
| } |
| prange->npages = size; |
| prange->svms = svms; |
| prange->start = start; |
| prange->last = last; |
| INIT_LIST_HEAD(&prange->list); |
| INIT_LIST_HEAD(&prange->update_list); |
| INIT_LIST_HEAD(&prange->svm_bo_list); |
| INIT_LIST_HEAD(&prange->deferred_list); |
| INIT_LIST_HEAD(&prange->child_list); |
| atomic_set(&prange->invalid, 0); |
| prange->validate_timestamp = 0; |
| prange->vram_pages = 0; |
| mutex_init(&prange->migrate_mutex); |
| mutex_init(&prange->lock); |
| |
| if (p->xnack_enabled) |
| bitmap_copy(prange->bitmap_access, svms->bitmap_supported, |
| MAX_GPU_INSTANCE); |
| |
| svm_range_set_default_attributes(&prange->preferred_loc, |
| &prange->prefetch_loc, |
| &prange->granularity, &prange->flags); |
| |
| pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); |
| |
| return prange; |
| } |
| |
| static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) |
| { |
| if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) |
| return false; |
| |
| return true; |
| } |
| |
| static void svm_range_bo_release(struct kref *kref) |
| { |
| struct svm_range_bo *svm_bo; |
| |
| svm_bo = container_of(kref, struct svm_range_bo, kref); |
| pr_debug("svm_bo 0x%p\n", svm_bo); |
| |
| spin_lock(&svm_bo->list_lock); |
| while (!list_empty(&svm_bo->range_list)) { |
| struct svm_range *prange = |
| list_first_entry(&svm_bo->range_list, |
| struct svm_range, svm_bo_list); |
| /* list_del_init tells a concurrent svm_range_vram_node_new when |
| * it's safe to reuse the svm_bo pointer and svm_bo_list head. |
| */ |
| list_del_init(&prange->svm_bo_list); |
| spin_unlock(&svm_bo->list_lock); |
| |
| pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, |
| prange->start, prange->last); |
| mutex_lock(&prange->lock); |
| prange->svm_bo = NULL; |
| /* prange should not hold vram page now */ |
| WARN_ONCE(prange->actual_loc, "prange should not hold vram page"); |
| mutex_unlock(&prange->lock); |
| |
| spin_lock(&svm_bo->list_lock); |
| } |
| spin_unlock(&svm_bo->list_lock); |
| if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) |
| /* We're not in the eviction worker. Signal the fence. */ |
| dma_fence_signal(&svm_bo->eviction_fence->base); |
| dma_fence_put(&svm_bo->eviction_fence->base); |
| amdgpu_bo_unref(&svm_bo->bo); |
| kfree(svm_bo); |
| } |
| |
| static void svm_range_bo_wq_release(struct work_struct *work) |
| { |
| struct svm_range_bo *svm_bo; |
| |
| svm_bo = container_of(work, struct svm_range_bo, release_work); |
| svm_range_bo_release(&svm_bo->kref); |
| } |
| |
| static void svm_range_bo_release_async(struct kref *kref) |
| { |
| struct svm_range_bo *svm_bo; |
| |
| svm_bo = container_of(kref, struct svm_range_bo, kref); |
| pr_debug("svm_bo 0x%p\n", svm_bo); |
| INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); |
| schedule_work(&svm_bo->release_work); |
| } |
| |
| void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) |
| { |
| kref_put(&svm_bo->kref, svm_range_bo_release_async); |
| } |
| |
| static void svm_range_bo_unref(struct svm_range_bo *svm_bo) |
| { |
| if (svm_bo) |
| kref_put(&svm_bo->kref, svm_range_bo_release); |
| } |
| |
| static bool |
| svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange) |
| { |
| mutex_lock(&prange->lock); |
| if (!prange->svm_bo) { |
| mutex_unlock(&prange->lock); |
| return false; |
| } |
| if (prange->ttm_res) { |
| /* We still have a reference, all is well */ |
| mutex_unlock(&prange->lock); |
| return true; |
| } |
| if (svm_bo_ref_unless_zero(prange->svm_bo)) { |
| /* |
| * Migrate from GPU to GPU, remove range from source svm_bo->node |
| * range list, and return false to allocate svm_bo from destination |
| * node. |
| */ |
| if (prange->svm_bo->node != node) { |
| mutex_unlock(&prange->lock); |
| |
| spin_lock(&prange->svm_bo->list_lock); |
| list_del_init(&prange->svm_bo_list); |
| spin_unlock(&prange->svm_bo->list_lock); |
| |
| svm_range_bo_unref(prange->svm_bo); |
| return false; |
| } |
| if (READ_ONCE(prange->svm_bo->evicting)) { |
| struct dma_fence *f; |
| struct svm_range_bo *svm_bo; |
| /* The BO is getting evicted, |
| * we need to get a new one |
| */ |
| mutex_unlock(&prange->lock); |
| svm_bo = prange->svm_bo; |
| f = dma_fence_get(&svm_bo->eviction_fence->base); |
| svm_range_bo_unref(prange->svm_bo); |
| /* wait for the fence to avoid long spin-loop |
| * at list_empty_careful |
| */ |
| dma_fence_wait(f, false); |
| dma_fence_put(f); |
| } else { |
| /* The BO was still around and we got |
| * a new reference to it |
| */ |
| mutex_unlock(&prange->lock); |
| pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", |
| prange->svms, prange->start, prange->last); |
| |
| prange->ttm_res = prange->svm_bo->bo->tbo.resource; |
| return true; |
| } |
| |
| } else { |
| mutex_unlock(&prange->lock); |
| } |
| |
| /* We need a new svm_bo. Spin-loop to wait for concurrent |
| * svm_range_bo_release to finish removing this range from |
| * its range list and set prange->svm_bo to null. After this, |
| * it is safe to reuse the svm_bo pointer and svm_bo_list head. |
| */ |
| while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo) |
| cond_resched(); |
| |
| return false; |
| } |
| |
| static struct svm_range_bo *svm_range_bo_new(void) |
| { |
| struct svm_range_bo *svm_bo; |
| |
| svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); |
| if (!svm_bo) |
| return NULL; |
| |
| kref_init(&svm_bo->kref); |
| INIT_LIST_HEAD(&svm_bo->range_list); |
| spin_lock_init(&svm_bo->list_lock); |
| |
| return svm_bo; |
| } |
| |
| int |
| svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange, |
| bool clear) |
| { |
| struct amdgpu_bo_param bp; |
| struct svm_range_bo *svm_bo; |
| struct amdgpu_bo_user *ubo; |
| struct amdgpu_bo *bo; |
| struct kfd_process *p; |
| struct mm_struct *mm; |
| int r; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, |
| prange->start, prange->last); |
| |
| if (svm_range_validate_svm_bo(node, prange)) |
| return 0; |
| |
| svm_bo = svm_range_bo_new(); |
| if (!svm_bo) { |
| pr_debug("failed to alloc svm bo\n"); |
| return -ENOMEM; |
| } |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| pr_debug("failed to get mm\n"); |
| kfree(svm_bo); |
| return -ESRCH; |
| } |
| svm_bo->node = node; |
| svm_bo->eviction_fence = |
| amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), |
| mm, |
| svm_bo); |
| mmput(mm); |
| INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); |
| svm_bo->evicting = 0; |
| memset(&bp, 0, sizeof(bp)); |
| bp.size = prange->npages * PAGE_SIZE; |
| bp.byte_align = PAGE_SIZE; |
| bp.domain = AMDGPU_GEM_DOMAIN_VRAM; |
| bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; |
| bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; |
| bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; |
| bp.type = ttm_bo_type_device; |
| bp.resv = NULL; |
| if (node->xcp) |
| bp.xcp_id_plus1 = node->xcp->id + 1; |
| |
| r = amdgpu_bo_create_user(node->adev, &bp, &ubo); |
| if (r) { |
| pr_debug("failed %d to create bo\n", r); |
| goto create_bo_failed; |
| } |
| bo = &ubo->bo; |
| |
| pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n", |
| bo->tbo.resource->start << PAGE_SHIFT, bp.size, |
| bp.xcp_id_plus1 - 1); |
| |
| r = amdgpu_bo_reserve(bo, true); |
| if (r) { |
| pr_debug("failed %d to reserve bo\n", r); |
| goto reserve_bo_failed; |
| } |
| |
| if (clear) { |
| r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); |
| if (r) { |
| pr_debug("failed %d to sync bo\n", r); |
| amdgpu_bo_unreserve(bo); |
| goto reserve_bo_failed; |
| } |
| } |
| |
| r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); |
| if (r) { |
| pr_debug("failed %d to reserve bo\n", r); |
| amdgpu_bo_unreserve(bo); |
| goto reserve_bo_failed; |
| } |
| amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); |
| |
| amdgpu_bo_unreserve(bo); |
| |
| svm_bo->bo = bo; |
| prange->svm_bo = svm_bo; |
| prange->ttm_res = bo->tbo.resource; |
| prange->offset = 0; |
| |
| spin_lock(&svm_bo->list_lock); |
| list_add(&prange->svm_bo_list, &svm_bo->range_list); |
| spin_unlock(&svm_bo->list_lock); |
| |
| return 0; |
| |
| reserve_bo_failed: |
| amdgpu_bo_unref(&bo); |
| create_bo_failed: |
| dma_fence_put(&svm_bo->eviction_fence->base); |
| kfree(svm_bo); |
| prange->ttm_res = NULL; |
| |
| return r; |
| } |
| |
| void svm_range_vram_node_free(struct svm_range *prange) |
| { |
| /* serialize prange->svm_bo unref */ |
| mutex_lock(&prange->lock); |
| /* prange->svm_bo has not been unref */ |
| if (prange->ttm_res) { |
| prange->ttm_res = NULL; |
| mutex_unlock(&prange->lock); |
| svm_range_bo_unref(prange->svm_bo); |
| } else |
| mutex_unlock(&prange->lock); |
| } |
| |
| struct kfd_node * |
| svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id) |
| { |
| struct kfd_process *p; |
| struct kfd_process_device *pdd; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| pdd = kfd_process_device_data_by_id(p, gpu_id); |
| if (!pdd) { |
| pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id); |
| return NULL; |
| } |
| |
| return pdd->dev; |
| } |
| |
| struct kfd_process_device * |
| svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node) |
| { |
| struct kfd_process *p; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| return kfd_get_process_device_data(node, p); |
| } |
| |
| static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) |
| { |
| struct ttm_operation_ctx ctx = { false, false }; |
| |
| amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); |
| |
| return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); |
| } |
| |
| static int |
| svm_range_check_attr(struct kfd_process *p, |
| uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < nattr; i++) { |
| uint32_t val = attrs[i].value; |
| int gpuidx = MAX_GPU_INSTANCE; |
| |
| switch (attrs[i].type) { |
| case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: |
| if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && |
| val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, val); |
| break; |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, val); |
| break; |
| case KFD_IOCTL_SVM_ATTR_ACCESS: |
| case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: |
| case KFD_IOCTL_SVM_ATTR_NO_ACCESS: |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, val); |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| break; |
| case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: |
| break; |
| case KFD_IOCTL_SVM_ATTR_GRANULARITY: |
| break; |
| default: |
| pr_debug("unknown attr type 0x%x\n", attrs[i].type); |
| return -EINVAL; |
| } |
| |
| if (gpuidx < 0) { |
| pr_debug("no GPU 0x%x found\n", val); |
| return -EINVAL; |
| } else if (gpuidx < MAX_GPU_INSTANCE && |
| !test_bit(gpuidx, p->svms.bitmap_supported)) { |
| pr_debug("GPU 0x%x not supported\n", val); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void |
| svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, |
| uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, |
| bool *update_mapping) |
| { |
| uint32_t i; |
| int gpuidx; |
| |
| for (i = 0; i < nattr; i++) { |
| switch (attrs[i].type) { |
| case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: |
| prange->preferred_loc = attrs[i].value; |
| break; |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| prange->prefetch_loc = attrs[i].value; |
| break; |
| case KFD_IOCTL_SVM_ATTR_ACCESS: |
| case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: |
| case KFD_IOCTL_SVM_ATTR_NO_ACCESS: |
| if (!p->xnack_enabled) |
| *update_mapping = true; |
| |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, |
| attrs[i].value); |
| if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { |
| bitmap_clear(prange->bitmap_access, gpuidx, 1); |
| bitmap_clear(prange->bitmap_aip, gpuidx, 1); |
| } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { |
| bitmap_set(prange->bitmap_access, gpuidx, 1); |
| bitmap_clear(prange->bitmap_aip, gpuidx, 1); |
| } else { |
| bitmap_clear(prange->bitmap_access, gpuidx, 1); |
| bitmap_set(prange->bitmap_aip, gpuidx, 1); |
| } |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| *update_mapping = true; |
| prange->flags |= attrs[i].value; |
| break; |
| case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: |
| *update_mapping = true; |
| prange->flags &= ~attrs[i].value; |
| break; |
| case KFD_IOCTL_SVM_ATTR_GRANULARITY: |
| prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F); |
| break; |
| default: |
| WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); |
| } |
| } |
| } |
| |
| static bool |
| svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, |
| uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) |
| { |
| uint32_t i; |
| int gpuidx; |
| |
| for (i = 0; i < nattr; i++) { |
| switch (attrs[i].type) { |
| case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: |
| if (prange->preferred_loc != attrs[i].value) |
| return false; |
| break; |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| /* Prefetch should always trigger a migration even |
| * if the value of the attribute didn't change. |
| */ |
| return false; |
| case KFD_IOCTL_SVM_ATTR_ACCESS: |
| case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: |
| case KFD_IOCTL_SVM_ATTR_NO_ACCESS: |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, |
| attrs[i].value); |
| if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { |
| if (test_bit(gpuidx, prange->bitmap_access) || |
| test_bit(gpuidx, prange->bitmap_aip)) |
| return false; |
| } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { |
| if (!test_bit(gpuidx, prange->bitmap_access)) |
| return false; |
| } else { |
| if (!test_bit(gpuidx, prange->bitmap_aip)) |
| return false; |
| } |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| if ((prange->flags & attrs[i].value) != attrs[i].value) |
| return false; |
| break; |
| case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: |
| if ((prange->flags & attrs[i].value) != 0) |
| return false; |
| break; |
| case KFD_IOCTL_SVM_ATTR_GRANULARITY: |
| if (prange->granularity != attrs[i].value) |
| return false; |
| break; |
| default: |
| WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * svm_range_debug_dump - print all range information from svms |
| * @svms: svm range list header |
| * |
| * debug output svm range start, end, prefetch location from svms |
| * interval tree and link list |
| * |
| * Context: The caller must hold svms->lock |
| */ |
| static void svm_range_debug_dump(struct svm_range_list *svms) |
| { |
| struct interval_tree_node *node; |
| struct svm_range *prange; |
| |
| pr_debug("dump svms 0x%p list\n", svms); |
| pr_debug("range\tstart\tpage\tend\t\tlocation\n"); |
| |
| list_for_each_entry(prange, &svms->list, list) { |
| pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", |
| prange, prange->start, prange->npages, |
| prange->start + prange->npages - 1, |
| prange->actual_loc); |
| } |
| |
| pr_debug("dump svms 0x%p interval tree\n", svms); |
| pr_debug("range\tstart\tpage\tend\t\tlocation\n"); |
| node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); |
| while (node) { |
| prange = container_of(node, struct svm_range, it_node); |
| pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", |
| prange, prange->start, prange->npages, |
| prange->start + prange->npages - 1, |
| prange->actual_loc); |
| node = interval_tree_iter_next(node, 0, ~0ULL); |
| } |
| } |
| |
| static void * |
| svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements, |
| uint64_t offset, uint64_t *vram_pages) |
| { |
| unsigned char *src = (unsigned char *)psrc + offset; |
| unsigned char *dst; |
| uint64_t i; |
| |
| dst = kvmalloc_array(num_elements, size, GFP_KERNEL); |
| if (!dst) |
| return NULL; |
| |
| if (!vram_pages) { |
| memcpy(dst, src, num_elements * size); |
| return (void *)dst; |
| } |
| |
| *vram_pages = 0; |
| for (i = 0; i < num_elements; i++) { |
| dma_addr_t *temp; |
| temp = (dma_addr_t *)dst + i; |
| *temp = *((dma_addr_t *)src + i); |
| if (*temp&SVM_RANGE_VRAM_DOMAIN) |
| (*vram_pages)++; |
| } |
| |
| return (void *)dst; |
| } |
| |
| static int |
| svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_GPU_INSTANCE; i++) { |
| if (!src->dma_addr[i]) |
| continue; |
| dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i], |
| sizeof(*src->dma_addr[i]), src->npages, 0, NULL); |
| if (!dst->dma_addr[i]) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| svm_range_split_array(void *ppnew, void *ppold, size_t size, |
| uint64_t old_start, uint64_t old_n, |
| uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages) |
| { |
| unsigned char *new, *old, *pold; |
| uint64_t d; |
| |
| if (!ppold) |
| return 0; |
| pold = *(unsigned char **)ppold; |
| if (!pold) |
| return 0; |
| |
| d = (new_start - old_start) * size; |
| /* get dma addr array for new range and calculte its vram page number */ |
| new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages); |
| if (!new) |
| return -ENOMEM; |
| d = (new_start == old_start) ? new_n * size : 0; |
| old = svm_range_copy_array(pold, size, old_n, d, NULL); |
| if (!old) { |
| kvfree(new); |
| return -ENOMEM; |
| } |
| kvfree(pold); |
| *(void **)ppold = old; |
| *(void **)ppnew = new; |
| |
| return 0; |
| } |
| |
| static int |
| svm_range_split_pages(struct svm_range *new, struct svm_range *old, |
| uint64_t start, uint64_t last) |
| { |
| uint64_t npages = last - start + 1; |
| int i, r; |
| |
| for (i = 0; i < MAX_GPU_INSTANCE; i++) { |
| r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], |
| sizeof(*old->dma_addr[i]), old->start, |
| npages, new->start, new->npages, |
| old->actual_loc ? &new->vram_pages : NULL); |
| if (r) |
| return r; |
| } |
| if (old->actual_loc) |
| old->vram_pages -= new->vram_pages; |
| |
| return 0; |
| } |
| |
| static int |
| svm_range_split_nodes(struct svm_range *new, struct svm_range *old, |
| uint64_t start, uint64_t last) |
| { |
| uint64_t npages = last - start + 1; |
| |
| pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", |
| new->svms, new, new->start, start, last); |
| |
| if (new->start == old->start) { |
| new->offset = old->offset; |
| old->offset += new->npages; |
| } else { |
| new->offset = old->offset + npages; |
| } |
| |
| new->svm_bo = svm_range_bo_ref(old->svm_bo); |
| new->ttm_res = old->ttm_res; |
| |
| spin_lock(&new->svm_bo->list_lock); |
| list_add(&new->svm_bo_list, &new->svm_bo->range_list); |
| spin_unlock(&new->svm_bo->list_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * svm_range_split_adjust - split range and adjust |
| * |
| * @new: new range |
| * @old: the old range |
| * @start: the old range adjust to start address in pages |
| * @last: the old range adjust to last address in pages |
| * |
| * Copy system memory dma_addr or vram ttm_res in old range to new |
| * range from new_start up to size new->npages, the remaining old range is from |
| * start to last |
| * |
| * Return: |
| * 0 - OK, -ENOMEM - out of memory |
| */ |
| static int |
| svm_range_split_adjust(struct svm_range *new, struct svm_range *old, |
| uint64_t start, uint64_t last) |
| { |
| int r; |
| |
| pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", |
| new->svms, new->start, old->start, old->last, start, last); |
| |
| if (new->start < old->start || |
| new->last > old->last) { |
| WARN_ONCE(1, "invalid new range start or last\n"); |
| return -EINVAL; |
| } |
| |
| r = svm_range_split_pages(new, old, start, last); |
| if (r) |
| return r; |
| |
| if (old->actual_loc && old->ttm_res) { |
| r = svm_range_split_nodes(new, old, start, last); |
| if (r) |
| return r; |
| } |
| |
| old->npages = last - start + 1; |
| old->start = start; |
| old->last = last; |
| new->flags = old->flags; |
| new->preferred_loc = old->preferred_loc; |
| new->prefetch_loc = old->prefetch_loc; |
| new->actual_loc = old->actual_loc; |
| new->granularity = old->granularity; |
| new->mapped_to_gpu = old->mapped_to_gpu; |
| bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); |
| bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); |
| |
| return 0; |
| } |
| |
| /** |
| * svm_range_split - split a range in 2 ranges |
| * |
| * @prange: the svm range to split |
| * @start: the remaining range start address in pages |
| * @last: the remaining range last address in pages |
| * @new: the result new range generated |
| * |
| * Two cases only: |
| * case 1: if start == prange->start |
| * prange ==> prange[start, last] |
| * new range [last + 1, prange->last] |
| * |
| * case 2: if last == prange->last |
| * prange ==> prange[start, last] |
| * new range [prange->start, start - 1] |
| * |
| * Return: |
| * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last |
| */ |
| static int |
| svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, |
| struct svm_range **new) |
| { |
| uint64_t old_start = prange->start; |
| uint64_t old_last = prange->last; |
| struct svm_range_list *svms; |
| int r = 0; |
| |
| pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, |
| old_start, old_last, start, last); |
| |
| if (old_start != start && old_last != last) |
| return -EINVAL; |
| if (start < old_start || last > old_last) |
| return -EINVAL; |
| |
| svms = prange->svms; |
| if (old_start == start) |
| *new = svm_range_new(svms, last + 1, old_last, false); |
| else |
| *new = svm_range_new(svms, old_start, start - 1, false); |
| if (!*new) |
| return -ENOMEM; |
| |
| r = svm_range_split_adjust(*new, prange, start, last); |
| if (r) { |
| pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", |
| r, old_start, old_last, start, last); |
| svm_range_free(*new, false); |
| *new = NULL; |
| } |
| |
| return r; |
| } |
| |
| static int |
| svm_range_split_tail(struct svm_range *prange, uint64_t new_last, |
| struct list_head *insert_list, struct list_head *remap_list) |
| { |
| struct svm_range *tail = NULL; |
| int r = svm_range_split(prange, prange->start, new_last, &tail); |
| |
| if (!r) { |
| list_add(&tail->list, insert_list); |
| if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity)) |
| list_add(&tail->update_list, remap_list); |
| } |
| return r; |
| } |
| |
| static int |
| svm_range_split_head(struct svm_range *prange, uint64_t new_start, |
| struct list_head *insert_list, struct list_head *remap_list) |
| { |
| struct svm_range *head = NULL; |
| int r = svm_range_split(prange, new_start, prange->last, &head); |
| |
| if (!r) { |
| list_add(&head->list, insert_list); |
| if (!IS_ALIGNED(new_start, 1UL << prange->granularity)) |
| list_add(&head->update_list, remap_list); |
| } |
| return r; |
| } |
| |
| static void |
| svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, |
| struct svm_range *pchild, enum svm_work_list_ops op) |
| { |
| pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", |
| pchild, pchild->start, pchild->last, prange, op); |
| |
| pchild->work_item.mm = mm; |
| pchild->work_item.op = op; |
| list_add_tail(&pchild->child_list, &prange->child_list); |
| } |
| |
| static bool |
| svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b) |
| { |
| return (node_a->adev == node_b->adev || |
| amdgpu_xgmi_same_hive(node_a->adev, node_b->adev)); |
| } |
| |
| static uint64_t |
| svm_range_get_pte_flags(struct kfd_node *node, |
| struct svm_range *prange, int domain) |
| { |
| struct kfd_node *bo_node; |
| uint32_t flags = prange->flags; |
| uint32_t mapping_flags = 0; |
| uint64_t pte_flags; |
| bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); |
| bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT); |
| bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT; |
| bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/ |
| unsigned int mtype_local; |
| |
| if (domain == SVM_RANGE_VRAM_DOMAIN) |
| bo_node = prange->svm_bo->node; |
| |
| switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) { |
| case IP_VERSION(9, 4, 1): |
| if (domain == SVM_RANGE_VRAM_DOMAIN) { |
| if (bo_node == node) { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; |
| } else { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| if (svm_nodes_in_same_hive(node, bo_node)) |
| snoop = true; |
| } |
| } else { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| } |
| break; |
| case IP_VERSION(9, 4, 2): |
| if (domain == SVM_RANGE_VRAM_DOMAIN) { |
| if (bo_node == node) { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; |
| if (node->adev->gmc.xgmi.connected_to_cpu) |
| snoop = true; |
| } else { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| if (svm_nodes_in_same_hive(node, bo_node)) |
| snoop = true; |
| } |
| } else { |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| } |
| break; |
| case IP_VERSION(9, 4, 3): |
| if (ext_coherent) |
| mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC; |
| else |
| mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC : |
| amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; |
| snoop = true; |
| if (uncached) { |
| mapping_flags |= AMDGPU_VM_MTYPE_UC; |
| } else if (domain == SVM_RANGE_VRAM_DOMAIN) { |
| /* local HBM region close to partition */ |
| if (bo_node->adev == node->adev && |
| (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id)) |
| mapping_flags |= mtype_local; |
| /* local HBM region far from partition or remote XGMI GPU |
| * with regular system scope coherence |
| */ |
| else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent) |
| mapping_flags |= AMDGPU_VM_MTYPE_NC; |
| /* PCIe P2P or extended system scope coherence */ |
| else |
| mapping_flags |= AMDGPU_VM_MTYPE_UC; |
| /* system memory accessed by the APU */ |
| } else if (node->adev->flags & AMD_IS_APU) { |
| /* On NUMA systems, locality is determined per-page |
| * in amdgpu_gmc_override_vm_pte_flags |
| */ |
| if (num_possible_nodes() <= 1) |
| mapping_flags |= mtype_local; |
| else |
| mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| /* system memory accessed by the dGPU */ |
| } else { |
| mapping_flags |= AMDGPU_VM_MTYPE_UC; |
| } |
| break; |
| default: |
| mapping_flags |= coherent ? |
| AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; |
| } |
| |
| mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; |
| |
| if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) |
| mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; |
| if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) |
| mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; |
| |
| pte_flags = AMDGPU_PTE_VALID; |
| pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; |
| pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; |
| |
| pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags); |
| return pte_flags; |
| } |
| |
| static int |
| svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, |
| uint64_t start, uint64_t last, |
| struct dma_fence **fence) |
| { |
| uint64_t init_pte_value = 0; |
| |
| pr_debug("[0x%llx 0x%llx]\n", start, last); |
| |
| return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start, |
| last, init_pte_value, 0, 0, NULL, NULL, |
| fence); |
| } |
| |
| static int |
| svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, |
| unsigned long last, uint32_t trigger) |
| { |
| DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); |
| struct kfd_process_device *pdd; |
| struct dma_fence *fence = NULL; |
| struct kfd_process *p; |
| uint32_t gpuidx; |
| int r = 0; |
| |
| if (!prange->mapped_to_gpu) { |
| pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", |
| prange, prange->start, prange->last); |
| return 0; |
| } |
| |
| if (prange->start == start && prange->last == last) { |
| pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); |
| prange->mapped_to_gpu = false; |
| } |
| |
| bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, |
| MAX_GPU_INSTANCE); |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { |
| pr_debug("unmap from gpu idx 0x%x\n", gpuidx); |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| return -EINVAL; |
| } |
| |
| kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid, |
| start, last, trigger); |
| |
| r = svm_range_unmap_from_gpu(pdd->dev->adev, |
| drm_priv_to_vm(pdd->drm_priv), |
| start, last, &fence); |
| if (r) |
| break; |
| |
| if (fence) { |
| r = dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| fence = NULL; |
| if (r) |
| break; |
| } |
| kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); |
| } |
| |
| return r; |
| } |
| |
| static int |
| svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, |
| unsigned long offset, unsigned long npages, bool readonly, |
| dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, |
| struct dma_fence **fence, bool flush_tlb) |
| { |
| struct amdgpu_device *adev = pdd->dev->adev; |
| struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); |
| uint64_t pte_flags; |
| unsigned long last_start; |
| int last_domain; |
| int r = 0; |
| int64_t i, j; |
| |
| last_start = prange->start + offset; |
| |
| pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, |
| last_start, last_start + npages - 1, readonly); |
| |
| for (i = offset; i < offset + npages; i++) { |
| last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; |
| dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; |
| |
| /* Collect all pages in the same address range and memory domain |
| * that can be mapped with a single call to update mapping. |
| */ |
| if (i < offset + npages - 1 && |
| last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) |
| continue; |
| |
| pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", |
| last_start, prange->start + i, last_domain ? "GPU" : "CPU"); |
| |
| pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain); |
| if (readonly) |
| pte_flags &= ~AMDGPU_PTE_WRITEABLE; |
| |
| pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", |
| prange->svms, last_start, prange->start + i, |
| (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, |
| pte_flags); |
| |
| /* For dGPU mode, we use same vm_manager to allocate VRAM for |
| * different memory partition based on fpfn/lpfn, we should use |
| * same vm_manager.vram_base_offset regardless memory partition. |
| */ |
| r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true, |
| NULL, last_start, prange->start + i, |
| pte_flags, |
| (last_start - prange->start) << PAGE_SHIFT, |
| bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, |
| NULL, dma_addr, &vm->last_update); |
| |
| for (j = last_start - prange->start; j <= i; j++) |
| dma_addr[j] |= last_domain; |
| |
| if (r) { |
| pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); |
| goto out; |
| } |
| last_start = prange->start + i + 1; |
| } |
| |
| r = amdgpu_vm_update_pdes(adev, vm, false); |
| if (r) { |
| pr_debug("failed %d to update directories 0x%lx\n", r, |
| prange->start); |
| goto out; |
| } |
| |
| if (fence) |
| *fence = dma_fence_get(vm->last_update); |
| |
| out: |
| return r; |
| } |
| |
| static int |
| svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, |
| unsigned long npages, bool readonly, |
| unsigned long *bitmap, bool wait, bool flush_tlb) |
| { |
| struct kfd_process_device *pdd; |
| struct amdgpu_device *bo_adev = NULL; |
| struct kfd_process *p; |
| struct dma_fence *fence = NULL; |
| uint32_t gpuidx; |
| int r = 0; |
| |
| if (prange->svm_bo && prange->ttm_res) |
| bo_adev = prange->svm_bo->node->adev; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { |
| pr_debug("mapping to gpu idx 0x%x\n", gpuidx); |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| return -EINVAL; |
| } |
| |
| pdd = kfd_bind_process_to_device(pdd->dev, p); |
| if (IS_ERR(pdd)) |
| return -EINVAL; |
| |
| if (bo_adev && pdd->dev->adev != bo_adev && |
| !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { |
| pr_debug("cannot map to device idx %d\n", gpuidx); |
| continue; |
| } |
| |
| r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, |
| prange->dma_addr[gpuidx], |
| bo_adev, wait ? &fence : NULL, |
| flush_tlb); |
| if (r) |
| break; |
| |
| if (fence) { |
| r = dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| fence = NULL; |
| if (r) { |
| pr_debug("failed %d to dma fence wait\n", r); |
| break; |
| } |
| } |
| |
| kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); |
| } |
| |
| return r; |
| } |
| |
| struct svm_validate_context { |
| struct kfd_process *process; |
| struct svm_range *prange; |
| bool intr; |
| DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); |
| struct drm_exec exec; |
| }; |
| |
| static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr) |
| { |
| struct kfd_process_device *pdd; |
| struct amdgpu_vm *vm; |
| uint32_t gpuidx; |
| int r; |
| |
| drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0); |
| drm_exec_until_all_locked(&ctx->exec) { |
| for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { |
| pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| r = -EINVAL; |
| goto unreserve_out; |
| } |
| vm = drm_priv_to_vm(pdd->drm_priv); |
| |
| r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); |
| drm_exec_retry_on_contention(&ctx->exec); |
| if (unlikely(r)) { |
| pr_debug("failed %d to reserve bo\n", r); |
| goto unreserve_out; |
| } |
| } |
| } |
| |
| for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { |
| pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to find device idx %d\n", gpuidx); |
| r = -EINVAL; |
| goto unreserve_out; |
| } |
| |
| r = amdgpu_vm_validate(pdd->dev->adev, |
| drm_priv_to_vm(pdd->drm_priv), NULL, |
| svm_range_bo_validate, NULL); |
| if (r) { |
| pr_debug("failed %d validate pt bos\n", r); |
| goto unreserve_out; |
| } |
| } |
| |
| return 0; |
| |
| unreserve_out: |
| drm_exec_fini(&ctx->exec); |
| return r; |
| } |
| |
| static void svm_range_unreserve_bos(struct svm_validate_context *ctx) |
| { |
| drm_exec_fini(&ctx->exec); |
| } |
| |
| static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) |
| { |
| struct kfd_process_device *pdd; |
| |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) |
| return NULL; |
| |
| return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); |
| } |
| |
| /* |
| * Validation+GPU mapping with concurrent invalidation (MMU notifiers) |
| * |
| * To prevent concurrent destruction or change of range attributes, the |
| * svm_read_lock must be held. The caller must not hold the svm_write_lock |
| * because that would block concurrent evictions and lead to deadlocks. To |
| * serialize concurrent migrations or validations of the same range, the |
| * prange->migrate_mutex must be held. |
| * |
| * For VRAM ranges, the SVM BO must be allocated and valid (protected by its |
| * eviction fence. |
| * |
| * The following sequence ensures race-free validation and GPU mapping: |
| * |
| * 1. Reserve page table (and SVM BO if range is in VRAM) |
| * 2. hmm_range_fault to get page addresses (if system memory) |
| * 3. DMA-map pages (if system memory) |
| * 4-a. Take notifier lock |
| * 4-b. Check that pages still valid (mmu_interval_read_retry) |
| * 4-c. Check that the range was not split or otherwise invalidated |
| * 4-d. Update GPU page table |
| * 4.e. Release notifier lock |
| * 5. Release page table (and SVM BO) reservation |
| */ |
| static int svm_range_validate_and_map(struct mm_struct *mm, |
| unsigned long map_start, unsigned long map_last, |
| struct svm_range *prange, int32_t gpuidx, |
| bool intr, bool wait, bool flush_tlb) |
| { |
| struct svm_validate_context *ctx; |
| unsigned long start, end, addr; |
| struct kfd_process *p; |
| void *owner; |
| int32_t idx; |
| int r = 0; |
| |
| ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| ctx->process = container_of(prange->svms, struct kfd_process, svms); |
| ctx->prange = prange; |
| ctx->intr = intr; |
| |
| if (gpuidx < MAX_GPU_INSTANCE) { |
| bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE); |
| bitmap_set(ctx->bitmap, gpuidx, 1); |
| } else if (ctx->process->xnack_enabled) { |
| bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); |
| |
| /* If prefetch range to GPU, or GPU retry fault migrate range to |
| * GPU, which has ACCESS attribute to the range, create mapping |
| * on that GPU. |
| */ |
| if (prange->actual_loc) { |
| gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process, |
| prange->actual_loc); |
| if (gpuidx < 0) { |
| WARN_ONCE(1, "failed get device by id 0x%x\n", |
| prange->actual_loc); |
| r = -EINVAL; |
| goto free_ctx; |
| } |
| if (test_bit(gpuidx, prange->bitmap_access)) |
| bitmap_set(ctx->bitmap, gpuidx, 1); |
| } |
| |
| /* |
| * If prange is already mapped or with always mapped flag, |
| * update mapping on GPUs with ACCESS attribute |
| */ |
| if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { |
| if (prange->mapped_to_gpu || |
| prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED) |
| bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); |
| } |
| } else { |
| bitmap_or(ctx->bitmap, prange->bitmap_access, |
| prange->bitmap_aip, MAX_GPU_INSTANCE); |
| } |
| |
| if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { |
| r = 0; |
| goto free_ctx; |
| } |
| |
| if (prange->actual_loc && !prange->ttm_res) { |
| /* This should never happen. actual_loc gets set by |
| * svm_migrate_ram_to_vram after allocating a BO. |
| */ |
| WARN_ONCE(1, "VRAM BO missing during validation\n"); |
| r = -EINVAL; |
| goto free_ctx; |
| } |
| |
| r = svm_range_reserve_bos(ctx, intr); |
| if (r) |
| goto free_ctx; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap, |
| MAX_GPU_INSTANCE)); |
| for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) { |
| if (kfd_svm_page_owner(p, idx) != owner) { |
| owner = NULL; |
| break; |
| } |
| } |
| |
| start = map_start << PAGE_SHIFT; |
| end = (map_last + 1) << PAGE_SHIFT; |
| for (addr = start; !r && addr < end; ) { |
| struct hmm_range *hmm_range; |
| unsigned long map_start_vma; |
| unsigned long map_last_vma; |
| struct vm_area_struct *vma; |
| unsigned long next = 0; |
| unsigned long offset; |
| unsigned long npages; |
| bool readonly; |
| |
| vma = vma_lookup(mm, addr); |
| if (vma) { |
| readonly = !(vma->vm_flags & VM_WRITE); |
| |
| next = min(vma->vm_end, end); |
| npages = (next - addr) >> PAGE_SHIFT; |
| WRITE_ONCE(p->svms.faulting_task, current); |
| r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages, |
| readonly, owner, NULL, |
| &hmm_range); |
| WRITE_ONCE(p->svms.faulting_task, NULL); |
| if (r) { |
| pr_debug("failed %d to get svm range pages\n", r); |
| if (r == -EBUSY) |
| r = -EAGAIN; |
| } |
| } else { |
| r = -EFAULT; |
| } |
| |
| if (!r) { |
| offset = (addr >> PAGE_SHIFT) - prange->start; |
| r = svm_range_dma_map(prange, ctx->bitmap, offset, npages, |
| hmm_range->hmm_pfns); |
| if (r) |
| pr_debug("failed %d to dma map range\n", r); |
| } |
| |
| svm_range_lock(prange); |
| if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) { |
| pr_debug("hmm update the range, need validate again\n"); |
| r = -EAGAIN; |
| } |
| |
| if (!r && !list_empty(&prange->child_list)) { |
| pr_debug("range split by unmap in parallel, validate again\n"); |
| r = -EAGAIN; |
| } |
| |
| if (!r) { |
| map_start_vma = max(map_start, prange->start + offset); |
| map_last_vma = min(map_last, prange->start + offset + npages - 1); |
| if (map_start_vma <= map_last_vma) { |
| offset = map_start_vma - prange->start; |
| npages = map_last_vma - map_start_vma + 1; |
| r = svm_range_map_to_gpus(prange, offset, npages, readonly, |
| ctx->bitmap, wait, flush_tlb); |
| } |
| } |
| |
| if (!r && next == end) |
| prange->mapped_to_gpu = true; |
| |
| svm_range_unlock(prange); |
| |
| addr = next; |
| } |
| |
| svm_range_unreserve_bos(ctx); |
| if (!r) |
| prange->validate_timestamp = ktime_get_boottime(); |
| |
| free_ctx: |
| kfree(ctx); |
| |
| return r; |
| } |
| |
| /** |
| * svm_range_list_lock_and_flush_work - flush pending deferred work |
| * |
| * @svms: the svm range list |
| * @mm: the mm structure |
| * |
| * Context: Returns with mmap write lock held, pending deferred work flushed |
| * |
| */ |
| void |
| svm_range_list_lock_and_flush_work(struct svm_range_list *svms, |
| struct mm_struct *mm) |
| { |
| retry_flush_work: |
| flush_work(&svms->deferred_list_work); |
| mmap_write_lock(mm); |
| |
| if (list_empty(&svms->deferred_range_list)) |
| return; |
| mmap_write_unlock(mm); |
| pr_debug("retry flush\n"); |
| goto retry_flush_work; |
| } |
| |
| static void svm_range_restore_work(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct amdkfd_process_info *process_info; |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| struct kfd_process *p; |
| struct mm_struct *mm; |
| int evicted_ranges; |
| int invalid; |
| int r; |
| |
| svms = container_of(dwork, struct svm_range_list, restore_work); |
| evicted_ranges = atomic_read(&svms->evicted_ranges); |
| if (!evicted_ranges) |
| return; |
| |
| pr_debug("restore svm ranges\n"); |
| |
| p = container_of(svms, struct kfd_process, svms); |
| process_info = p->kgd_process_info; |
| |
| /* Keep mm reference when svm_range_validate_and_map ranges */ |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| pr_debug("svms 0x%p process mm gone\n", svms); |
| return; |
| } |
| |
| mutex_lock(&process_info->lock); |
| svm_range_list_lock_and_flush_work(svms, mm); |
| mutex_lock(&svms->lock); |
| |
| evicted_ranges = atomic_read(&svms->evicted_ranges); |
| |
| list_for_each_entry(prange, &svms->list, list) { |
| invalid = atomic_read(&prange->invalid); |
| if (!invalid) |
| continue; |
| |
| pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", |
| prange->svms, prange, prange->start, prange->last, |
| invalid); |
| |
| /* |
| * If range is migrating, wait for migration is done. |
| */ |
| mutex_lock(&prange->migrate_mutex); |
| |
| r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, |
| MAX_GPU_INSTANCE, false, true, false); |
| if (r) |
| pr_debug("failed %d to map 0x%lx to gpus\n", r, |
| prange->start); |
| |
| mutex_unlock(&prange->migrate_mutex); |
| if (r) |
| goto out_reschedule; |
| |
| if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) |
| goto out_reschedule; |
| } |
| |
| if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != |
| evicted_ranges) |
| goto out_reschedule; |
| |
| evicted_ranges = 0; |
| |
| r = kgd2kfd_resume_mm(mm); |
| if (r) { |
| /* No recovery from this failure. Probably the CP is |
| * hanging. No point trying again. |
| */ |
| pr_debug("failed %d to resume KFD\n", r); |
| } |
| |
| pr_debug("restore svm ranges successfully\n"); |
| |
| out_reschedule: |
| mutex_unlock(&svms->lock); |
| mmap_write_unlock(mm); |
| mutex_unlock(&process_info->lock); |
| |
| /* If validation failed, reschedule another attempt */ |
| if (evicted_ranges) { |
| pr_debug("reschedule to restore svm range\n"); |
| queue_delayed_work(system_freezable_wq, &svms->restore_work, |
| msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); |
| |
| kfd_smi_event_queue_restore_rescheduled(mm); |
| } |
| mmput(mm); |
| } |
| |
| /** |
| * svm_range_evict - evict svm range |
| * @prange: svm range structure |
| * @mm: current process mm_struct |
| * @start: starting process queue number |
| * @last: last process queue number |
| * @event: mmu notifier event when range is evicted or migrated |
| * |
| * Stop all queues of the process to ensure GPU doesn't access the memory, then |
| * return to let CPU evict the buffer and proceed CPU pagetable update. |
| * |
| * Don't need use lock to sync cpu pagetable invalidation with GPU execution. |
| * If invalidation happens while restore work is running, restore work will |
| * restart to ensure to get the latest CPU pages mapping to GPU, then start |
| * the queues. |
| */ |
| static int |
| svm_range_evict(struct svm_range *prange, struct mm_struct *mm, |
| unsigned long start, unsigned long last, |
| enum mmu_notifier_event event) |
| { |
| struct svm_range_list *svms = prange->svms; |
| struct svm_range *pchild; |
| struct kfd_process *p; |
| int r = 0; |
| |
| p = container_of(svms, struct kfd_process, svms); |
| |
| pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", |
| svms, prange->start, prange->last, start, last); |
| |
| if (!p->xnack_enabled || |
| (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) { |
| int evicted_ranges; |
| bool mapped = prange->mapped_to_gpu; |
| |
| list_for_each_entry(pchild, &prange->child_list, child_list) { |
| if (!pchild->mapped_to_gpu) |
| continue; |
| mapped = true; |
| mutex_lock_nested(&pchild->lock, 1); |
| if (pchild->start <= last && pchild->last >= start) { |
| pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", |
| pchild->start, pchild->last); |
| atomic_inc(&pchild->invalid); |
| } |
| mutex_unlock(&pchild->lock); |
| } |
| |
| if (!mapped) |
| return r; |
| |
| if (prange->start <= last && prange->last >= start) |
| atomic_inc(&prange->invalid); |
| |
| evicted_ranges = atomic_inc_return(&svms->evicted_ranges); |
| if (evicted_ranges != 1) |
| return r; |
| |
| pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", |
| prange->svms, prange->start, prange->last); |
| |
| /* First eviction, stop the queues */ |
| r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); |
| if (r) |
| pr_debug("failed to quiesce KFD\n"); |
| |
| pr_debug("schedule to restore svm %p ranges\n", svms); |
| queue_delayed_work(system_freezable_wq, &svms->restore_work, |
| msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); |
| } else { |
| unsigned long s, l; |
| uint32_t trigger; |
| |
| if (event == MMU_NOTIFY_MIGRATE) |
| trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE; |
| else |
| trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY; |
| |
| pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", |
| prange->svms, start, last); |
| list_for_each_entry(pchild, &prange->child_list, child_list) { |
| mutex_lock_nested(&pchild->lock, 1); |
| s = max(start, pchild->start); |
| l = min(last, pchild->last); |
| if (l >= s) |
| svm_range_unmap_from_gpus(pchild, s, l, trigger); |
| mutex_unlock(&pchild->lock); |
| } |
| s = max(start, prange->start); |
| l = min(last, prange->last); |
| if (l >= s) |
| svm_range_unmap_from_gpus(prange, s, l, trigger); |
| } |
| |
| return r; |
| } |
| |
| static struct svm_range *svm_range_clone(struct svm_range *old) |
| { |
| struct svm_range *new; |
| |
| new = svm_range_new(old->svms, old->start, old->last, false); |
| if (!new) |
| return NULL; |
| if (svm_range_copy_dma_addrs(new, old)) { |
| svm_range_free(new, false); |
| return NULL; |
| } |
| if (old->svm_bo) { |
| new->ttm_res = old->ttm_res; |
| new->offset = old->offset; |
| new->svm_bo = svm_range_bo_ref(old->svm_bo); |
| spin_lock(&new->svm_bo->list_lock); |
| list_add(&new->svm_bo_list, &new->svm_bo->range_list); |
| spin_unlock(&new->svm_bo->list_lock); |
| } |
| new->flags = old->flags; |
| new->preferred_loc = old->preferred_loc; |
| new->prefetch_loc = old->prefetch_loc; |
| new->actual_loc = old->actual_loc; |
| new->granularity = old->granularity; |
| new->mapped_to_gpu = old->mapped_to_gpu; |
| new->vram_pages = old->vram_pages; |
| bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); |
| bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); |
| |
| return new; |
| } |
| |
| void svm_range_set_max_pages(struct amdgpu_device *adev) |
| { |
| uint64_t max_pages; |
| uint64_t pages, _pages; |
| uint64_t min_pages = 0; |
| int i, id; |
| |
| for (i = 0; i < adev->kfd.dev->num_nodes; i++) { |
| if (adev->kfd.dev->nodes[i]->xcp) |
| id = adev->kfd.dev->nodes[i]->xcp->id; |
| else |
| id = -1; |
| pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17; |
| pages = clamp(pages, 1ULL << 9, 1ULL << 18); |
| pages = rounddown_pow_of_two(pages); |
| min_pages = min_not_zero(min_pages, pages); |
| } |
| |
| do { |
| max_pages = READ_ONCE(max_svm_range_pages); |
| _pages = min_not_zero(max_pages, min_pages); |
| } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages); |
| } |
| |
| static int |
| svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last, |
| uint64_t max_pages, struct list_head *insert_list, |
| struct list_head *update_list) |
| { |
| struct svm_range *prange; |
| uint64_t l; |
| |
| pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n", |
| max_pages, start, last); |
| |
| while (last >= start) { |
| l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1); |
| |
| prange = svm_range_new(svms, start, l, true); |
| if (!prange) |
| return -ENOMEM; |
| list_add(&prange->list, insert_list); |
| list_add(&prange->update_list, update_list); |
| |
| start = l + 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * svm_range_add - add svm range and handle overlap |
| * @p: the range add to this process svms |
| * @start: page size aligned |
| * @size: page size aligned |
| * @nattr: number of attributes |
| * @attrs: array of attributes |
| * @update_list: output, the ranges need validate and update GPU mapping |
| * @insert_list: output, the ranges need insert to svms |
| * @remove_list: output, the ranges are replaced and need remove from svms |
| * @remap_list: output, remap unaligned svm ranges |
| * |
| * Check if the virtual address range has overlap with any existing ranges, |
| * split partly overlapping ranges and add new ranges in the gaps. All changes |
| * should be applied to the range_list and interval tree transactionally. If |
| * any range split or allocation fails, the entire update fails. Therefore any |
| * existing overlapping svm_ranges are cloned and the original svm_ranges left |
| * unchanged. |
| * |
| * If the transaction succeeds, the caller can update and insert clones and |
| * new ranges, then free the originals. |
| * |
| * Otherwise the caller can free the clones and new ranges, while the old |
| * svm_ranges remain unchanged. |
| * |
| * Context: Process context, caller must hold svms->lock |
| * |
| * Return: |
| * 0 - OK, otherwise error code |
| */ |
| static int |
| svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, |
| uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, |
| struct list_head *update_list, struct list_head *insert_list, |
| struct list_head *remove_list, struct list_head *remap_list) |
| { |
| unsigned long last = start + size - 1UL; |
| struct svm_range_list *svms = &p->svms; |
| struct interval_tree_node *node; |
| struct svm_range *prange; |
| struct svm_range *tmp; |
| struct list_head new_list; |
| int r = 0; |
| |
| pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); |
| |
| INIT_LIST_HEAD(update_list); |
| INIT_LIST_HEAD(insert_list); |
| INIT_LIST_HEAD(remove_list); |
| INIT_LIST_HEAD(&new_list); |
| INIT_LIST_HEAD(remap_list); |
| |
| node = interval_tree_iter_first(&svms->objects, start, last); |
| while (node) { |
| struct interval_tree_node *next; |
| unsigned long next_start; |
| |
| pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, |
| node->last); |
| |
| prange = container_of(node, struct svm_range, it_node); |
| next = interval_tree_iter_next(node, start, last); |
| next_start = min(node->last, last) + 1; |
| |
| if (svm_range_is_same_attrs(p, prange, nattr, attrs) && |
| prange->mapped_to_gpu) { |
| /* nothing to do */ |
| } else if (node->start < start || node->last > last) { |
| /* node intersects the update range and its attributes |
| * will change. Clone and split it, apply updates only |
| * to the overlapping part |
| */ |
| struct svm_range *old = prange; |
| |
| prange = svm_range_clone(old); |
| if (!prange) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| list_add(&old->update_list, remove_list); |
| list_add(&prange->list, insert_list); |
| list_add(&prange->update_list, update_list); |
| |
| if (node->start < start) { |
| pr_debug("change old range start\n"); |
| r = svm_range_split_head(prange, start, |
| insert_list, remap_list); |
| if (r) |
| goto out; |
| } |
| if (node->last > last) { |
| pr_debug("change old range last\n"); |
| r = svm_range_split_tail(prange, last, |
| insert_list, remap_list); |
| if (r) |
| goto out; |
| } |
| } else { |
| /* The node is contained within start..last, |
| * just update it |
| */ |
| list_add(&prange->update_list, update_list); |
| } |
| |
| /* insert a new node if needed */ |
| if (node->start > start) { |
| r = svm_range_split_new(svms, start, node->start - 1, |
| READ_ONCE(max_svm_range_pages), |
| &new_list, update_list); |
| if (r) |
| goto out; |
| } |
| |
| node = next; |
| start = next_start; |
| } |
| |
| /* add a final range at the end if needed */ |
| if (start <= last) |
| r = svm_range_split_new(svms, start, last, |
| READ_ONCE(max_svm_range_pages), |
| &new_list, update_list); |
| |
| out: |
| if (r) { |
| list_for_each_entry_safe(prange, tmp, insert_list, list) |
| svm_range_free(prange, false); |
| list_for_each_entry_safe(prange, tmp, &new_list, list) |
| svm_range_free(prange, true); |
| } else { |
| list_splice(&new_list, insert_list); |
| } |
| |
| return r; |
| } |
| |
| static void |
| svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, |
| struct svm_range *prange) |
| { |
| unsigned long start; |
| unsigned long last; |
| |
| start = prange->notifier.interval_tree.start >> PAGE_SHIFT; |
| last = prange->notifier.interval_tree.last >> PAGE_SHIFT; |
| |
| if (prange->start == start && prange->last == last) |
| return; |
| |
| pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", |
| prange->svms, prange, start, last, prange->start, |
| prange->last); |
| |
| if (start != 0 && last != 0) { |
| interval_tree_remove(&prange->it_node, &prange->svms->objects); |
| svm_range_remove_notifier(prange); |
| } |
| prange->it_node.start = prange->start; |
| prange->it_node.last = prange->last; |
| |
| interval_tree_insert(&prange->it_node, &prange->svms->objects); |
| svm_range_add_notifier_locked(mm, prange); |
| } |
| |
| static void |
| svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, |
| struct mm_struct *mm) |
| { |
| switch (prange->work_item.op) { |
| case SVM_OP_NULL: |
| pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| svms, prange, prange->start, prange->last); |
| break; |
| case SVM_OP_UNMAP_RANGE: |
| pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| svms, prange, prange->start, prange->last); |
| svm_range_unlink(prange); |
| svm_range_remove_notifier(prange); |
| svm_range_free(prange, true); |
| break; |
| case SVM_OP_UPDATE_RANGE_NOTIFIER: |
| pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| svms, prange, prange->start, prange->last); |
| svm_range_update_notifier_and_interval_tree(mm, prange); |
| break; |
| case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: |
| pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| svms, prange, prange->start, prange->last); |
| svm_range_update_notifier_and_interval_tree(mm, prange); |
| /* TODO: implement deferred validation and mapping */ |
| break; |
| case SVM_OP_ADD_RANGE: |
| pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, |
| prange->start, prange->last); |
| svm_range_add_to_svms(prange); |
| svm_range_add_notifier_locked(mm, prange); |
| break; |
| case SVM_OP_ADD_RANGE_AND_MAP: |
| pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, |
| prange, prange->start, prange->last); |
| svm_range_add_to_svms(prange); |
| svm_range_add_notifier_locked(mm, prange); |
| /* TODO: implement deferred validation and mapping */ |
| break; |
| default: |
| WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, |
| prange->work_item.op); |
| } |
| } |
| |
| static void svm_range_drain_retry_fault(struct svm_range_list *svms) |
| { |
| struct kfd_process_device *pdd; |
| struct kfd_process *p; |
| int drain; |
| uint32_t i; |
| |
| p = container_of(svms, struct kfd_process, svms); |
| |
| restart: |
| drain = atomic_read(&svms->drain_pagefaults); |
| if (!drain) |
| return; |
| |
| for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { |
| pdd = p->pdds[i]; |
| if (!pdd) |
| continue; |
| |
| pr_debug("drain retry fault gpu %d svms %p\n", i, svms); |
| |
| amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, |
| pdd->dev->adev->irq.retry_cam_enabled ? |
| &pdd->dev->adev->irq.ih : |
| &pdd->dev->adev->irq.ih1); |
| |
| if (pdd->dev->adev->irq.retry_cam_enabled) |
| amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, |
| &pdd->dev->adev->irq.ih_soft); |
| |
| |
| pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); |
| } |
| if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) |
| goto restart; |
| } |
| |
| static void svm_range_deferred_list_work(struct work_struct *work) |
| { |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| struct mm_struct *mm; |
| |
| svms = container_of(work, struct svm_range_list, deferred_list_work); |
| pr_debug("enter svms 0x%p\n", svms); |
| |
| spin_lock(&svms->deferred_list_lock); |
| while (!list_empty(&svms->deferred_range_list)) { |
| prange = list_first_entry(&svms->deferred_range_list, |
| struct svm_range, deferred_list); |
| spin_unlock(&svms->deferred_list_lock); |
| |
| pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, |
| prange->start, prange->last, prange->work_item.op); |
| |
| mm = prange->work_item.mm; |
| retry: |
| mmap_write_lock(mm); |
| |
| /* Checking for the need to drain retry faults must be inside |
| * mmap write lock to serialize with munmap notifiers. |
| */ |
| if (unlikely(atomic_read(&svms->drain_pagefaults))) { |
| mmap_write_unlock(mm); |
| svm_range_drain_retry_fault(svms); |
| goto retry; |
| } |
| |
| /* Remove from deferred_list must be inside mmap write lock, for |
| * two race cases: |
| * 1. unmap_from_cpu may change work_item.op and add the range |
| * to deferred_list again, cause use after free bug. |
| * 2. svm_range_list_lock_and_flush_work may hold mmap write |
| * lock and continue because deferred_list is empty, but |
| * deferred_list work is actually waiting for mmap lock. |
| */ |
| spin_lock(&svms->deferred_list_lock); |
| list_del_init(&prange->deferred_list); |
| spin_unlock(&svms->deferred_list_lock); |
| |
| mutex_lock(&svms->lock); |
| mutex_lock(&prange->migrate_mutex); |
| while (!list_empty(&prange->child_list)) { |
| struct svm_range *pchild; |
| |
| pchild = list_first_entry(&prange->child_list, |
| struct svm_range, child_list); |
| pr_debug("child prange 0x%p op %d\n", pchild, |
| pchild->work_item.op); |
| list_del_init(&pchild->child_list); |
| svm_range_handle_list_op(svms, pchild, mm); |
| } |
| mutex_unlock(&prange->migrate_mutex); |
| |
| svm_range_handle_list_op(svms, prange, mm); |
| mutex_unlock(&svms->lock); |
| mmap_write_unlock(mm); |
| |
| /* Pairs with mmget in svm_range_add_list_work. If dropping the |
| * last mm refcount, schedule release work to avoid circular locking |
| */ |
| mmput_async(mm); |
| |
| spin_lock(&svms->deferred_list_lock); |
| } |
| spin_unlock(&svms->deferred_list_lock); |
| pr_debug("exit svms 0x%p\n", svms); |
| } |
| |
| void |
| svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, |
| struct mm_struct *mm, enum svm_work_list_ops op) |
| { |
| spin_lock(&svms->deferred_list_lock); |
| /* if prange is on the deferred list */ |
| if (!list_empty(&prange->deferred_list)) { |
| pr_debug("update exist prange 0x%p work op %d\n", prange, op); |
| WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); |
| if (op != SVM_OP_NULL && |
| prange->work_item.op != SVM_OP_UNMAP_RANGE) |
| prange->work_item.op = op; |
| } else { |
| prange->work_item.op = op; |
| |
| /* Pairs with mmput in deferred_list_work */ |
| mmget(mm); |
| prange->work_item.mm = mm; |
| list_add_tail(&prange->deferred_list, |
| &prange->svms->deferred_range_list); |
| pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", |
| prange, prange->start, prange->last, op); |
| } |
| spin_unlock(&svms->deferred_list_lock); |
| } |
| |
| void schedule_deferred_list_work(struct svm_range_list *svms) |
| { |
| spin_lock(&svms->deferred_list_lock); |
| if (!list_empty(&svms->deferred_range_list)) |
| schedule_work(&svms->deferred_list_work); |
| spin_unlock(&svms->deferred_list_lock); |
| } |
| |
| static void |
| svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, |
| struct svm_range *prange, unsigned long start, |
| unsigned long last) |
| { |
| struct svm_range *head; |
| struct svm_range *tail; |
| |
| if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { |
| pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, |
| prange->start, prange->last); |
| return; |
| } |
| if (start > prange->last || last < prange->start) |
| return; |
| |
| head = tail = prange; |
| if (start > prange->start) |
| svm_range_split(prange, prange->start, start - 1, &tail); |
| if (last < tail->last) |
| svm_range_split(tail, last + 1, tail->last, &head); |
| |
| if (head != prange && tail != prange) { |
| svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); |
| svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); |
| } else if (tail != prange) { |
| svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); |
| } else if (head != prange) { |
| svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); |
| } else if (parent != prange) { |
| prange->work_item.op = SVM_OP_UNMAP_RANGE; |
| } |
| } |
| |
| static void |
| svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, |
| unsigned long start, unsigned long last) |
| { |
| uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU; |
| struct svm_range_list *svms; |
| struct svm_range *pchild; |
| struct kfd_process *p; |
| unsigned long s, l; |
| bool unmap_parent; |
| |
| p = kfd_lookup_process_by_mm(mm); |
| if (!p) |
| return; |
| svms = &p->svms; |
| |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, |
| prange, prange->start, prange->last, start, last); |
| |
| /* Make sure pending page faults are drained in the deferred worker |
| * before the range is freed to avoid straggler interrupts on |
| * unmapped memory causing "phantom faults". |
| */ |
| atomic_inc(&svms->drain_pagefaults); |
| |
| unmap_parent = start <= prange->start && last >= prange->last; |
| |
| list_for_each_entry(pchild, &prange->child_list, child_list) { |
| mutex_lock_nested(&pchild->lock, 1); |
| s = max(start, pchild->start); |
| l = min(last, pchild->last); |
| if (l >= s) |
| svm_range_unmap_from_gpus(pchild, s, l, trigger); |
| svm_range_unmap_split(mm, prange, pchild, start, last); |
| mutex_unlock(&pchild->lock); |
| } |
| s = max(start, prange->start); |
| l = min(last, prange->last); |
| if (l >= s) |
| svm_range_unmap_from_gpus(prange, s, l, trigger); |
| svm_range_unmap_split(mm, prange, prange, start, last); |
| |
| if (unmap_parent) |
| svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); |
| else |
| svm_range_add_list_work(svms, prange, mm, |
| SVM_OP_UPDATE_RANGE_NOTIFIER); |
| schedule_deferred_list_work(svms); |
| |
| kfd_unref_process(p); |
| } |
| |
| /** |
| * svm_range_cpu_invalidate_pagetables - interval notifier callback |
| * @mni: mmu_interval_notifier struct |
| * @range: mmu_notifier_range struct |
| * @cur_seq: value to pass to mmu_interval_set_seq() |
| * |
| * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it |
| * is from migration, or CPU page invalidation callback. |
| * |
| * For unmap event, unmap range from GPUs, remove prange from svms in a delayed |
| * work thread, and split prange if only part of prange is unmapped. |
| * |
| * For invalidation event, if GPU retry fault is not enabled, evict the queues, |
| * then schedule svm_range_restore_work to update GPU mapping and resume queues. |
| * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will |
| * update GPU mapping to recover. |
| * |
| * Context: mmap lock, notifier_invalidate_start lock are held |
| * for invalidate event, prange lock is held if this is from migration |
| */ |
| static bool |
| svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, |
| const struct mmu_notifier_range *range, |
| unsigned long cur_seq) |
| { |
| struct svm_range *prange; |
| unsigned long start; |
| unsigned long last; |
| |
| if (range->event == MMU_NOTIFY_RELEASE) |
| return true; |
| if (!mmget_not_zero(mni->mm)) |
| return true; |
| |
| start = mni->interval_tree.start; |
| last = mni->interval_tree.last; |
| start = max(start, range->start) >> PAGE_SHIFT; |
| last = min(last, range->end - 1) >> PAGE_SHIFT; |
| pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", |
| start, last, range->start >> PAGE_SHIFT, |
| (range->end - 1) >> PAGE_SHIFT, |
| mni->interval_tree.start >> PAGE_SHIFT, |
| mni->interval_tree.last >> PAGE_SHIFT, range->event); |
| |
| prange = container_of(mni, struct svm_range, notifier); |
| |
| svm_range_lock(prange); |
| mmu_interval_set_seq(mni, cur_seq); |
| |
| switch (range->event) { |
| case MMU_NOTIFY_UNMAP: |
| svm_range_unmap_from_cpu(mni->mm, prange, start, last); |
| break; |
| default: |
| svm_range_evict(prange, mni->mm, start, last, range->event); |
| break; |
| } |
| |
| svm_range_unlock(prange); |
| mmput(mni->mm); |
| |
| return true; |
| } |
| |
| /** |
| * svm_range_from_addr - find svm range from fault address |
| * @svms: svm range list header |
| * @addr: address to search range interval tree, in pages |
| * @parent: parent range if range is on child list |
| * |
| * Context: The caller must hold svms->lock |
| * |
| * Return: the svm_range found or NULL |
| */ |
| struct svm_range * |
| svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, |
| struct svm_range **parent) |
| { |
| struct interval_tree_node *node; |
| struct svm_range *prange; |
| struct svm_range *pchild; |
| |
| node = interval_tree_iter_first(&svms->objects, addr, addr); |
| if (!node) |
| return NULL; |
| |
| prange = container_of(node, struct svm_range, it_node); |
| pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", |
| addr, prange->start, prange->last, node->start, node->last); |
| |
| if (addr >= prange->start && addr <= prange->last) { |
| if (parent) |
| *parent = prange; |
| return prange; |
| } |
| list_for_each_entry(pchild, &prange->child_list, child_list) |
| if (addr >= pchild->start && addr <= pchild->last) { |
| pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", |
| addr, pchild->start, pchild->last); |
| if (parent) |
| *parent = prange; |
| return pchild; |
| } |
| |
| return NULL; |
| } |
| |
| /* svm_range_best_restore_location - decide the best fault restore location |
| * @prange: svm range structure |
| * @adev: the GPU on which vm fault happened |
| * |
| * This is only called when xnack is on, to decide the best location to restore |
| * the range mapping after GPU vm fault. Caller uses the best location to do |
| * migration if actual loc is not best location, then update GPU page table |
| * mapping to the best location. |
| * |
| * If the preferred loc is accessible by faulting GPU, use preferred loc. |
| * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu |
| * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then |
| * if range actual loc is cpu, best_loc is cpu |
| * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is |
| * range actual loc. |
| * Otherwise, GPU no access, best_loc is -1. |
| * |
| * Return: |
| * -1 means vm fault GPU no access |
| * 0 for CPU or GPU id |
| */ |
| static int32_t |
| svm_range_best_restore_location(struct svm_range *prange, |
| struct kfd_node *node, |
| int32_t *gpuidx) |
| { |
| struct kfd_node *bo_node, *preferred_node; |
| struct kfd_process *p; |
| uint32_t gpuid; |
| int r; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx); |
| if (r < 0) { |
| pr_debug("failed to get gpuid from kgd\n"); |
| return -1; |
| } |
| |
| if (node->adev->gmc.is_app_apu || |
| node->adev->flags & AMD_IS_APU) |
| return 0; |
| |
| if (prange->preferred_loc == gpuid || |
| prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { |
| return prange->preferred_loc; |
| } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { |
| preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc); |
| if (preferred_node && svm_nodes_in_same_hive(node, preferred_node)) |
| return prange->preferred_loc; |
| /* fall through */ |
| } |
| |
| if (test_bit(*gpuidx, prange->bitmap_access)) |
| return gpuid; |
| |
| if (test_bit(*gpuidx, prange->bitmap_aip)) { |
| if (!prange->actual_loc) |
| return 0; |
| |
| bo_node = svm_range_get_node_by_id(prange, prange->actual_loc); |
| if (bo_node && svm_nodes_in_same_hive(node, bo_node)) |
| return prange->actual_loc; |
| else |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static int |
| svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, |
| unsigned long *start, unsigned long *last, |
| bool *is_heap_stack) |
| { |
| struct vm_area_struct *vma; |
| struct interval_tree_node *node; |
| struct rb_node *rb_node; |
| unsigned long start_limit, end_limit; |
| |
| vma = vma_lookup(p->mm, addr << PAGE_SHIFT); |
| if (!vma) { |
| pr_debug("VMA does not exist in address [0x%llx]\n", addr); |
| return -EFAULT; |
| } |
| |
| *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma); |
| |
| start_limit = max(vma->vm_start >> PAGE_SHIFT, |
| (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); |
| end_limit = min(vma->vm_end >> PAGE_SHIFT, |
| (unsigned long)ALIGN(addr + 1, 2UL << 8)); |
| /* First range that starts after the fault address */ |
| node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); |
| if (node) { |
| end_limit = min(end_limit, node->start); |
| /* Last range that ends before the fault address */ |
| rb_node = rb_prev(&node->rb); |
| } else { |
| /* Last range must end before addr because |
| * there was no range after addr |
| */ |
| rb_node = rb_last(&p->svms.objects.rb_root); |
| } |
| if (rb_node) { |
| node = container_of(rb_node, struct interval_tree_node, rb); |
| if (node->last >= addr) { |
| WARN(1, "Overlap with prev node and page fault addr\n"); |
| return -EFAULT; |
| } |
| start_limit = max(start_limit, node->last + 1); |
| } |
| |
| *start = start_limit; |
| *last = end_limit - 1; |
| |
| pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", |
| vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, |
| *start, *last, *is_heap_stack); |
| |
| return 0; |
| } |
| |
| static int |
| svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, |
| uint64_t *bo_s, uint64_t *bo_l) |
| { |
| struct amdgpu_bo_va_mapping *mapping; |
| struct interval_tree_node *node; |
| struct amdgpu_bo *bo = NULL; |
| unsigned long userptr; |
| uint32_t i; |
| int r; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct amdgpu_vm *vm; |
| |
| if (!p->pdds[i]->drm_priv) |
| continue; |
| |
| vm = drm_priv_to_vm(p->pdds[i]->drm_priv); |
| r = amdgpu_bo_reserve(vm->root.bo, false); |
| if (r) |
| return r; |
| |
| /* Check userptr by searching entire vm->va interval tree */ |
| node = interval_tree_iter_first(&vm->va, 0, ~0ULL); |
| while (node) { |
| mapping = container_of((struct rb_node *)node, |
| struct amdgpu_bo_va_mapping, rb); |
| bo = mapping->bo_va->base.bo; |
| |
| if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, |
| start << PAGE_SHIFT, |
| last << PAGE_SHIFT, |
| &userptr)) { |
| node = interval_tree_iter_next(node, 0, ~0ULL); |
| continue; |
| } |
| |
| pr_debug("[0x%llx 0x%llx] already userptr mapped\n", |
| start, last); |
| if (bo_s && bo_l) { |
| *bo_s = userptr >> PAGE_SHIFT; |
| *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; |
| } |
| amdgpu_bo_unreserve(vm->root.bo); |
| return -EADDRINUSE; |
| } |
| amdgpu_bo_unreserve(vm->root.bo); |
| } |
| return 0; |
| } |
| |
| static struct |
| svm_range *svm_range_create_unregistered_range(struct kfd_node *node, |
| struct kfd_process *p, |
| struct mm_struct *mm, |
| int64_t addr) |
| { |
| struct svm_range *prange = NULL; |
| unsigned long start, last; |
| uint32_t gpuid, gpuidx; |
| bool is_heap_stack; |
| uint64_t bo_s = 0; |
| uint64_t bo_l = 0; |
| int r; |
| |
| if (svm_range_get_range_boundaries(p, addr, &start, &last, |
| &is_heap_stack)) |
| return NULL; |
| |
| r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); |
| if (r != -EADDRINUSE) |
| r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); |
| |
| if (r == -EADDRINUSE) { |
| if (addr >= bo_s && addr <= bo_l) |
| return NULL; |
| |
| /* Create one page svm range if 2MB range overlapping */ |
| start = addr; |
| last = addr; |
| } |
| |
| prange = svm_range_new(&p->svms, start, last, true); |
| if (!prange) { |
| pr_debug("Failed to create prange in address [0x%llx]\n", addr); |
| return NULL; |
| } |
| if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { |
| pr_debug("failed to get gpuid from kgd\n"); |
| svm_range_free(prange, true); |
| return NULL; |
| } |
| |
| if (is_heap_stack) |
| prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; |
| |
| svm_range_add_to_svms(prange); |
| svm_range_add_notifier_locked(mm, prange); |
| |
| return prange; |
| } |
| |
| /* svm_range_skip_recover - decide if prange can be recovered |
| * @prange: svm range structure |
| * |
| * GPU vm retry fault handle skip recover the range for cases: |
| * 1. prange is on deferred list to be removed after unmap, it is stale fault, |
| * deferred list work will drain the stale fault before free the prange. |
| * 2. prange is on deferred list to add interval notifier after split, or |
| * 3. prange is child range, it is split from parent prange, recover later |
| * after interval notifier is added. |
| * |
| * Return: true to skip recover, false to recover |
| */ |
| static bool svm_range_skip_recover(struct svm_range *prange) |
| { |
| struct svm_range_list *svms = prange->svms; |
| |
| spin_lock(&svms->deferred_list_lock); |
| if (list_empty(&prange->deferred_list) && |
| list_empty(&prange->child_list)) { |
| spin_unlock(&svms->deferred_list_lock); |
| return false; |
| } |
| spin_unlock(&svms->deferred_list_lock); |
| |
| if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", |
| svms, prange, prange->start, prange->last); |
| return true; |
| } |
| if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || |
| prange->work_item.op == SVM_OP_ADD_RANGE) { |
| pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", |
| svms, prange, prange->start, prange->last); |
| return true; |
| } |
| return false; |
| } |
| |
| static void |
| svm_range_count_fault(struct kfd_node *node, struct kfd_process *p, |
| int32_t gpuidx) |
| { |
| struct kfd_process_device *pdd; |
| |
| /* fault is on different page of same range |
| * or fault is skipped to recover later |
| * or fault is on invalid virtual address |
| */ |
| if (gpuidx == MAX_GPU_INSTANCE) { |
| uint32_t gpuid; |
| int r; |
| |
| r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx); |
| if (r < 0) |
| return; |
| } |
| |
| /* fault is recovered |
| * or fault cannot recover because GPU no access on the range |
| */ |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (pdd) |
| WRITE_ONCE(pdd->faults, pdd->faults + 1); |
| } |
| |
| static bool |
| svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) |
| { |
| unsigned long requested = VM_READ; |
| |
| if (write_fault) |
| requested |= VM_WRITE; |
| |
| pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, |
| vma->vm_flags); |
| return (vma->vm_flags & requested) == requested; |
| } |
| |
| int |
| svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, |
| uint32_t vmid, uint32_t node_id, |
| uint64_t addr, bool write_fault) |
| { |
| unsigned long start, last, size; |
| struct mm_struct *mm = NULL; |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| struct kfd_process *p; |
| ktime_t timestamp = ktime_get_boottime(); |
| struct kfd_node *node; |
| int32_t best_loc; |
| int32_t gpuidx = MAX_GPU_INSTANCE; |
| bool write_locked = false; |
| struct vm_area_struct *vma; |
| bool migration = false; |
| int r = 0; |
| |
| if (!KFD_IS_SVM_API_SUPPORTED(adev)) { |
| pr_debug("device does not support SVM\n"); |
| return -EFAULT; |
| } |
| |
| p = kfd_lookup_process_by_pasid(pasid); |
| if (!p) { |
| pr_debug("kfd process not founded pasid 0x%x\n", pasid); |
| return 0; |
| } |
| svms = &p->svms; |
| |
| pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); |
| |
| if (atomic_read(&svms->drain_pagefaults)) { |
| pr_debug("draining retry fault, drop fault 0x%llx\n", addr); |
| r = 0; |
| goto out; |
| } |
| |
| if (!p->xnack_enabled) { |
| pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); |
| r = -EFAULT; |
| goto out; |
| } |
| |
| /* p->lead_thread is available as kfd_process_wq_release flush the work |
| * before releasing task ref. |
| */ |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| pr_debug("svms 0x%p failed to get mm\n", svms); |
| r = 0; |
| goto out; |
| } |
| |
| node = kfd_node_by_irq_ids(adev, node_id, vmid); |
| if (!node) { |
| pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id, |
| vmid); |
| r = -EFAULT; |
| goto out; |
| } |
| mmap_read_lock(mm); |
| retry_write_locked: |
| mutex_lock(&svms->lock); |
| prange = svm_range_from_addr(svms, addr, NULL); |
| if (!prange) { |
| pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", |
| svms, addr); |
| if (!write_locked) { |
| /* Need the write lock to create new range with MMU notifier. |
| * Also flush pending deferred work to make sure the interval |
| * tree is up to date before we add a new range |
| */ |
| mutex_unlock(&svms->lock); |
| mmap_read_unlock(mm); |
| mmap_write_lock(mm); |
| write_locked = true; |
| goto retry_write_locked; |
| } |
| prange = svm_range_create_unregistered_range(node, p, mm, addr); |
| if (!prange) { |
| pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", |
| svms, addr); |
| mmap_write_downgrade(mm); |
| r = -EFAULT; |
| goto out_unlock_svms; |
| } |
| } |
| if (write_locked) |
| mmap_write_downgrade(mm); |
| |
| mutex_lock(&prange->migrate_mutex); |
| |
| if (svm_range_skip_recover(prange)) { |
| amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); |
| r = 0; |
| goto out_unlock_range; |
| } |
| |
| /* skip duplicate vm fault on different pages of same range */ |
| if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp, |
| AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) { |
| pr_debug("svms 0x%p [0x%lx %lx] already restored\n", |
| svms, prange->start, prange->last); |
| r = 0; |
| goto out_unlock_range; |
| } |
| |
| /* __do_munmap removed VMA, return success as we are handling stale |
| * retry fault. |
| */ |
| vma = vma_lookup(mm, addr << PAGE_SHIFT); |
| if (!vma) { |
| pr_debug("address 0x%llx VMA is removed\n", addr); |
| r = 0; |
| goto out_unlock_range; |
| } |
| |
| if (!svm_fault_allowed(vma, write_fault)) { |
| pr_debug("fault addr 0x%llx no %s permission\n", addr, |
| write_fault ? "write" : "read"); |
| r = -EPERM; |
| goto out_unlock_range; |
| } |
| |
| best_loc = svm_range_best_restore_location(prange, node, &gpuidx); |
| if (best_loc == -1) { |
| pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", |
| svms, prange->start, prange->last); |
| r = -EACCES; |
| goto out_unlock_range; |
| } |
| |
| pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", |
| svms, prange->start, prange->last, best_loc, |
| prange->actual_loc); |
| |
| kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr, |
| write_fault, timestamp); |
| |
| /* Align migration range start and size to granularity size */ |
| size = 1UL << prange->granularity; |
| start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start); |
| last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last); |
| if (prange->actual_loc != 0 || best_loc != 0) { |
| migration = true; |
| |
| if (best_loc) { |
| r = svm_migrate_to_vram(prange, best_loc, start, last, |
| mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU); |
| if (r) { |
| pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", |
| r, addr); |
| /* Fallback to system memory if migration to |
| * VRAM failed |
| */ |
| if (prange->actual_loc && prange->actual_loc != best_loc) |
| r = svm_migrate_vram_to_ram(prange, mm, start, last, |
| KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); |
| else |
| r = 0; |
| } |
| } else { |
| r = svm_migrate_vram_to_ram(prange, mm, start, last, |
| KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); |
| } |
| if (r) { |
| pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", |
| r, svms, start, last); |
| goto out_unlock_range; |
| } |
| } |
| |
| r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false, |
| false, false); |
| if (r) |
| pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", |
| r, svms, start, last); |
| |
| kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr, |
| migration); |
| |
| out_unlock_range: |
| mutex_unlock(&prange->migrate_mutex); |
| out_unlock_svms: |
| mutex_unlock(&svms->lock); |
| mmap_read_unlock(mm); |
| |
| svm_range_count_fault(node, p, gpuidx); |
| |
| mmput(mm); |
| out: |
| kfd_unref_process(p); |
| |
| if (r == -EAGAIN) { |
| pr_debug("recover vm fault later\n"); |
| amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); |
| r = 0; |
| } |
| return r; |
| } |
| |
| int |
| svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled) |
| { |
| struct svm_range *prange, *pchild; |
| uint64_t reserved_size = 0; |
| uint64_t size; |
| int r = 0; |
| |
| pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled); |
| |
| mutex_lock(&p->svms.lock); |
| |
| list_for_each_entry(prange, &p->svms.list, list) { |
| svm_range_lock(prange); |
| list_for_each_entry(pchild, &prange->child_list, child_list) { |
| size = (pchild->last - pchild->start + 1) << PAGE_SHIFT; |
| if (xnack_enabled) { |
| amdgpu_amdkfd_unreserve_mem_limit(NULL, size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| } else { |
| r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| if (r) |
| goto out_unlock; |
| reserved_size += size; |
| } |
| } |
| |
| size = (prange->last - prange->start + 1) << PAGE_SHIFT; |
| if (xnack_enabled) { |
| amdgpu_amdkfd_unreserve_mem_limit(NULL, size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| } else { |
| r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| if (r) |
| goto out_unlock; |
| reserved_size += size; |
| } |
| out_unlock: |
| svm_range_unlock(prange); |
| if (r) |
| break; |
| } |
| |
| if (r) |
| amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size, |
| KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); |
| else |
| /* Change xnack mode must be inside svms lock, to avoid race with |
| * svm_range_deferred_list_work unreserve memory in parallel. |
| */ |
| p->xnack_enabled = xnack_enabled; |
| |
| mutex_unlock(&p->svms.lock); |
| return r; |
| } |
| |
| void svm_range_list_fini(struct kfd_process *p) |
| { |
| struct svm_range *prange; |
| struct svm_range *next; |
| |
| pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); |
| |
| cancel_delayed_work_sync(&p->svms.restore_work); |
| |
| /* Ensure list work is finished before process is destroyed */ |
| flush_work(&p->svms.deferred_list_work); |
| |
| /* |
| * Ensure no retry fault comes in afterwards, as page fault handler will |
| * not find kfd process and take mm lock to recover fault. |
| */ |
| atomic_inc(&p->svms.drain_pagefaults); |
| svm_range_drain_retry_fault(&p->svms); |
| |
| list_for_each_entry_safe(prange, next, &p->svms.list, list) { |
| svm_range_unlink(prange); |
| svm_range_remove_notifier(prange); |
| svm_range_free(prange, true); |
| } |
| |
| mutex_destroy(&p->svms.lock); |
| |
| pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); |
| } |
| |
| int svm_range_list_init(struct kfd_process *p) |
| { |
| struct svm_range_list *svms = &p->svms; |
| int i; |
| |
| svms->objects = RB_ROOT_CACHED; |
| mutex_init(&svms->lock); |
| INIT_LIST_HEAD(&svms->list); |
| atomic_set(&svms->evicted_ranges, 0); |
| atomic_set(&svms->drain_pagefaults, 0); |
| INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); |
| INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); |
| INIT_LIST_HEAD(&svms->deferred_range_list); |
| INIT_LIST_HEAD(&svms->criu_svm_metadata_list); |
| spin_lock_init(&svms->deferred_list_lock); |
| |
| for (i = 0; i < p->n_pdds; i++) |
| if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev)) |
| bitmap_set(svms->bitmap_supported, i, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * svm_range_check_vm - check if virtual address range mapped already |
| * @p: current kfd_process |
| * @start: range start address, in pages |
| * @last: range last address, in pages |
| * @bo_s: mapping start address in pages if address range already mapped |
| * @bo_l: mapping last address in pages if address range already mapped |
| * |
| * The purpose is to avoid virtual address ranges already allocated by |
| * kfd_ioctl_alloc_memory_of_gpu ioctl. |
| * It looks for each pdd in the kfd_process. |
| * |
| * Context: Process context |
| * |
| * Return 0 - OK, if the range is not mapped. |
| * Otherwise error code: |
| * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu |
| * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by |
| * a signal. Release all buffer reservations and return to user-space. |
| */ |
| static int |
| svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, |
| uint64_t *bo_s, uint64_t *bo_l) |
| { |
| struct amdgpu_bo_va_mapping *mapping; |
| struct interval_tree_node *node; |
| uint32_t i; |
| int r; |
| |
| for (i = 0; i < p->n_pdds; i++) { |
| struct amdgpu_vm *vm; |
| |
| if (!p->pdds[i]->drm_priv) |
| continue; |
| |
| vm = drm_priv_to_vm(p->pdds[i]->drm_priv); |
| r = amdgpu_bo_reserve(vm->root.bo, false); |
| if (r) |
| return r; |
| |
| node = interval_tree_iter_first(&vm->va, start, last); |
| if (node) { |
| pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", |
| start, last); |
| mapping = container_of((struct rb_node *)node, |
| struct amdgpu_bo_va_mapping, rb); |
| if (bo_s && bo_l) { |
| *bo_s = mapping->start; |
| *bo_l = mapping->last; |
| } |
| amdgpu_bo_unreserve(vm->root.bo); |
| return -EADDRINUSE; |
| } |
| amdgpu_bo_unreserve(vm->root.bo); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * svm_range_is_valid - check if virtual address range is valid |
| * @p: current kfd_process |
| * @start: range start address, in pages |
| * @size: range size, in pages |
| * |
| * Valid virtual address range means it belongs to one or more VMAs |
| * |
| * Context: Process context |
| * |
| * Return: |
| * 0 - OK, otherwise error code |
| */ |
| static int |
| svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) |
| { |
| const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; |
| struct vm_area_struct *vma; |
| unsigned long end; |
| unsigned long start_unchg = start; |
| |
| start <<= PAGE_SHIFT; |
| end = start + (size << PAGE_SHIFT); |
| do { |
| vma = vma_lookup(p->mm, start); |
| if (!vma || (vma->vm_flags & device_vma)) |
| return -EFAULT; |
| start = min(end, vma->vm_end); |
| } while (start < end); |
| |
| return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, |
| NULL); |
| } |
| |
| /** |
| * svm_range_best_prefetch_location - decide the best prefetch location |
| * @prange: svm range structure |
| * |
| * For xnack off: |
| * If range map to single GPU, the best prefetch location is prefetch_loc, which |
| * can be CPU or GPU. |
| * |
| * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on |
| * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise |
| * the best prefetch location is always CPU, because GPU can not have coherent |
| * mapping VRAM of other GPUs even with large-BAR PCIe connection. |
| * |
| * For xnack on: |
| * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is |
| * prefetch_loc, other GPU access will generate vm fault and trigger migration. |
| * |
| * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same |
| * hive, the best prefetch location is prefetch_loc GPU, otherwise the best |
| * prefetch location is always CPU. |
| * |
| * Context: Process context |
| * |
| * Return: |
| * 0 for CPU or GPU id |
| */ |
| static uint32_t |
| svm_range_best_prefetch_location(struct svm_range *prange) |
| { |
| DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); |
| uint32_t best_loc = prange->prefetch_loc; |
| struct kfd_process_device *pdd; |
| struct kfd_node *bo_node; |
| struct kfd_process *p; |
| uint32_t gpuidx; |
| |
| p = container_of(prange->svms, struct kfd_process, svms); |
| |
| if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) |
| goto out; |
| |
| bo_node = svm_range_get_node_by_id(prange, best_loc); |
| if (!bo_node) { |
| WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc); |
| best_loc = 0; |
| goto out; |
| } |
| |
| if (bo_node->adev->gmc.is_app_apu || |
| bo_node->adev->flags & AMD_IS_APU) { |
| best_loc = 0; |
| goto out; |
| } |
| |
| if (p->xnack_enabled) |
| bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); |
| else |
| bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, |
| MAX_GPU_INSTANCE); |
| |
| for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { |
| pdd = kfd_process_device_from_gpuidx(p, gpuidx); |
| if (!pdd) { |
| pr_debug("failed to get device by idx 0x%x\n", gpuidx); |
| continue; |
| } |
| |
| if (pdd->dev->adev == bo_node->adev) |
| continue; |
| |
| if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) { |
| best_loc = 0; |
| break; |
| } |
| } |
| |
| out: |
| pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", |
| p->xnack_enabled, &p->svms, prange->start, prange->last, |
| best_loc); |
| |
| return best_loc; |
| } |
| |
| /* svm_range_trigger_migration - start page migration if prefetch loc changed |
| * @mm: current process mm_struct |
| * @prange: svm range structure |
| * @migrated: output, true if migration is triggered |
| * |
| * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range |
| * from ram to vram. |
| * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range |
| * from vram to ram. |
| * |
| * If GPU vm fault retry is not enabled, migration interact with MMU notifier |
| * and restore work: |
| * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict |
| * stops all queues, schedule restore work |
| * 2. svm_range_restore_work wait for migration is done by |
| * a. svm_range_validate_vram takes prange->migrate_mutex |
| * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns |
| * 3. restore work update mappings of GPU, resume all queues. |
| * |
| * Context: Process context |
| * |
| * Return: |
| * 0 - OK, otherwise - error code of migration |
| */ |
| static int |
| svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, |
| bool *migrated) |
| { |
| uint32_t best_loc; |
| int r = 0; |
| |
| *migrated = false; |
| best_loc = svm_range_best_prefetch_location(prange); |
| |
| /* when best_loc is a gpu node and same as prange->actual_loc |
| * we still need do migration as prange->actual_loc !=0 does |
| * not mean all pages in prange are vram. hmm migrate will pick |
| * up right pages during migration. |
| */ |
| if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) || |
| (best_loc == 0 && prange->actual_loc == 0)) |
| return 0; |
| |
| if (!best_loc) { |
| r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, |
| KFD_MIGRATE_TRIGGER_PREFETCH, NULL); |
| *migrated = !r; |
| return r; |
| } |
| |
| r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last, |
| mm, KFD_MIGRATE_TRIGGER_PREFETCH); |
| *migrated = !r; |
| |
| return 0; |
| } |
| |
| int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) |
| { |
| /* Dereferencing fence->svm_bo is safe here because the fence hasn't |
| * signaled yet and we're under the protection of the fence->lock. |
| * After the fence is signaled in svm_range_bo_release, we cannot get |
| * here any more. |
| * |
| * Reference is dropped in svm_range_evict_svm_bo_worker. |
| */ |
| if (svm_bo_ref_unless_zero(fence->svm_bo)) { |
| WRITE_ONCE(fence->svm_bo->evicting, 1); |
| schedule_work(&fence->svm_bo->eviction_work); |
| } |
| |
| return 0; |
| } |
| |
| static void svm_range_evict_svm_bo_worker(struct work_struct *work) |
| { |
| struct svm_range_bo *svm_bo; |
| struct mm_struct *mm; |
| int r = 0; |
| |
| svm_bo = container_of(work, struct svm_range_bo, eviction_work); |
| |
| if (mmget_not_zero(svm_bo->eviction_fence->mm)) { |
| mm = svm_bo->eviction_fence->mm; |
| } else { |
| svm_range_bo_unref(svm_bo); |
| return; |
| } |
| |
| mmap_read_lock(mm); |
| spin_lock(&svm_bo->list_lock); |
| while (!list_empty(&svm_bo->range_list) && !r) { |
| struct svm_range *prange = |
| list_first_entry(&svm_bo->range_list, |
| struct svm_range, svm_bo_list); |
| int retries = 3; |
| |
| list_del_init(&prange->svm_bo_list); |
| spin_unlock(&svm_bo->list_lock); |
| |
| pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, |
| prange->start, prange->last); |
| |
| mutex_lock(&prange->migrate_mutex); |
| do { |
| /* migrate all vram pages in this prange to sys ram |
| * after that prange->actual_loc should be zero |
| */ |
| r = svm_migrate_vram_to_ram(prange, mm, |
| prange->start, prange->last, |
| KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL); |
| } while (!r && prange->actual_loc && --retries); |
| |
| if (!r && prange->actual_loc) |
| pr_info_once("Migration failed during eviction"); |
| |
| if (!prange->actual_loc) { |
| mutex_lock(&prange->lock); |
| prange->svm_bo = NULL; |
| mutex_unlock(&prange->lock); |
| } |
| mutex_unlock(&prange->migrate_mutex); |
| |
| spin_lock(&svm_bo->list_lock); |
| } |
| spin_unlock(&svm_bo->list_lock); |
| mmap_read_unlock(mm); |
| mmput(mm); |
| |
| dma_fence_signal(&svm_bo->eviction_fence->base); |
| |
| /* This is the last reference to svm_bo, after svm_range_vram_node_free |
| * has been called in svm_migrate_vram_to_ram |
| */ |
| WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); |
| svm_range_bo_unref(svm_bo); |
| } |
| |
| static int |
| svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, |
| uint64_t start, uint64_t size, uint32_t nattr, |
| struct kfd_ioctl_svm_attribute *attrs) |
| { |
| struct amdkfd_process_info *process_info = p->kgd_process_info; |
| struct list_head update_list; |
| struct list_head insert_list; |
| struct list_head remove_list; |
| struct list_head remap_list; |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| struct svm_range *next; |
| bool update_mapping = false; |
| bool flush_tlb; |
| int r, ret = 0; |
| |
| pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", |
| p->pasid, &p->svms, start, start + size - 1, size); |
| |
| r = svm_range_check_attr(p, nattr, attrs); |
| if (r) |
| return r; |
| |
| svms = &p->svms; |
| |
| mutex_lock(&process_info->lock); |
| |
| svm_range_list_lock_and_flush_work(svms, mm); |
| |
| r = svm_range_is_valid(p, start, size); |
| if (r) { |
| pr_debug("invalid range r=%d\n", r); |
| mmap_write_unlock(mm); |
| goto out; |
| } |
| |
| mutex_lock(&svms->lock); |
| |
| /* Add new range and split existing ranges as needed */ |
| r = svm_range_add(p, start, size, nattr, attrs, &update_list, |
| &insert_list, &remove_list, &remap_list); |
| if (r) { |
| mutex_unlock(&svms->lock); |
| mmap_write_unlock(mm); |
| goto out; |
| } |
| /* Apply changes as a transaction */ |
| list_for_each_entry_safe(prange, next, &insert_list, list) { |
| svm_range_add_to_svms(prange); |
| svm_range_add_notifier_locked(mm, prange); |
| } |
| list_for_each_entry(prange, &update_list, update_list) { |
| svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); |
| /* TODO: unmap ranges from GPU that lost access */ |
| } |
| list_for_each_entry_safe(prange, next, &remove_list, update_list) { |
| pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", |
| prange->svms, prange, prange->start, |
| prange->last); |
| svm_range_unlink(prange); |
| svm_range_remove_notifier(prange); |
| svm_range_free(prange, false); |
| } |
| |
| mmap_write_downgrade(mm); |
| /* Trigger migrations and revalidate and map to GPUs as needed. If |
| * this fails we may be left with partially completed actions. There |
| * is no clean way of rolling back to the previous state in such a |
| * case because the rollback wouldn't be guaranteed to work either. |
| */ |
| list_for_each_entry(prange, &update_list, update_list) { |
| bool migrated; |
| |
| mutex_lock(&prange->migrate_mutex); |
| |
| r = svm_range_trigger_migration(mm, prange, &migrated); |
| if (r) |
| goto out_unlock_range; |
| |
| if (migrated && (!p->xnack_enabled || |
| (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) && |
| prange->mapped_to_gpu) { |
| pr_debug("restore_work will update mappings of GPUs\n"); |
| mutex_unlock(&prange->migrate_mutex); |
| continue; |
| } |
| |
| if (!migrated && !update_mapping) { |
| mutex_unlock(&prange->migrate_mutex); |
| continue; |
| } |
| |
| flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; |
| |
| r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, |
| MAX_GPU_INSTANCE, true, true, flush_tlb); |
| if (r) |
| pr_debug("failed %d to map svm range\n", r); |
| |
| out_unlock_range: |
| mutex_unlock(&prange->migrate_mutex); |
| if (r) |
| ret = r; |
| } |
| |
| list_for_each_entry(prange, &remap_list, update_list) { |
| pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n", |
| prange, prange->start, prange->last); |
| mutex_lock(&prange->migrate_mutex); |
| r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, |
| MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu); |
| if (r) |
| pr_debug("failed %d on remap svm range\n", r); |
| mutex_unlock(&prange->migrate_mutex); |
| if (r) |
| ret = r; |
| } |
| |
| dynamic_svm_range_dump(svms); |
| |
| mutex_unlock(&svms->lock); |
| mmap_read_unlock(mm); |
| out: |
| mutex_unlock(&process_info->lock); |
| |
| pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, |
| &p->svms, start, start + size - 1, r); |
| |
| return ret ? ret : r; |
| } |
| |
| static int |
| svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, |
| uint64_t start, uint64_t size, uint32_t nattr, |
| struct kfd_ioctl_svm_attribute *attrs) |
| { |
| DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); |
| DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); |
| bool get_preferred_loc = false; |
| bool get_prefetch_loc = false; |
| bool get_granularity = false; |
| bool get_accessible = false; |
| bool get_flags = false; |
| uint64_t last = start + size - 1UL; |
| uint8_t granularity = 0xff; |
| struct interval_tree_node *node; |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| uint32_t flags_and = 0xffffffff; |
| uint32_t flags_or = 0; |
| int gpuidx; |
| uint32_t i; |
| int r = 0; |
| |
| pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, |
| start + size - 1, nattr); |
| |
| /* Flush pending deferred work to avoid racing with deferred actions from |
| * previous memory map changes (e.g. munmap). Concurrent memory map changes |
| * can still race with get_attr because we don't hold the mmap lock. But that |
| * would be a race condition in the application anyway, and undefined |
| * behaviour is acceptable in that case. |
| */ |
| flush_work(&p->svms.deferred_list_work); |
| |
| mmap_read_lock(mm); |
| r = svm_range_is_valid(p, start, size); |
| mmap_read_unlock(mm); |
| if (r) { |
| pr_debug("invalid range r=%d\n", r); |
| return r; |
| } |
| |
| for (i = 0; i < nattr; i++) { |
| switch (attrs[i].type) { |
| case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: |
| get_preferred_loc = true; |
| break; |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| get_prefetch_loc = true; |
| break; |
| case KFD_IOCTL_SVM_ATTR_ACCESS: |
| get_accessible = true; |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: |
| get_flags = true; |
| break; |
| case KFD_IOCTL_SVM_ATTR_GRANULARITY: |
| get_granularity = true; |
| break; |
| case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: |
| case KFD_IOCTL_SVM_ATTR_NO_ACCESS: |
| fallthrough; |
| default: |
| pr_debug("get invalid attr type 0x%x\n", attrs[i].type); |
| return -EINVAL; |
| } |
| } |
| |
| svms = &p->svms; |
| |
| mutex_lock(&svms->lock); |
| |
| node = interval_tree_iter_first(&svms->objects, start, last); |
| if (!node) { |
| pr_debug("range attrs not found return default values\n"); |
| svm_range_set_default_attributes(&location, &prefetch_loc, |
| &granularity, &flags_and); |
| flags_or = flags_and; |
| if (p->xnack_enabled) |
| bitmap_copy(bitmap_access, svms->bitmap_supported, |
| MAX_GPU_INSTANCE); |
| else |
| bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); |
| bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); |
| goto fill_values; |
| } |
| bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); |
| bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); |
| |
| while (node) { |
| struct interval_tree_node *next; |
| |
| prange = container_of(node, struct svm_range, it_node); |
| next = interval_tree_iter_next(node, start, last); |
| |
| if (get_preferred_loc) { |
| if (prange->preferred_loc == |
| KFD_IOCTL_SVM_LOCATION_UNDEFINED || |
| (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && |
| location != prange->preferred_loc)) { |
| location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| get_preferred_loc = false; |
| } else { |
| location = prange->preferred_loc; |
| } |
| } |
| if (get_prefetch_loc) { |
| if (prange->prefetch_loc == |
| KFD_IOCTL_SVM_LOCATION_UNDEFINED || |
| (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && |
| prefetch_loc != prange->prefetch_loc)) { |
| prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; |
| get_prefetch_loc = false; |
| } else { |
| prefetch_loc = prange->prefetch_loc; |
| } |
| } |
| if (get_accessible) { |
| bitmap_and(bitmap_access, bitmap_access, |
| prange->bitmap_access, MAX_GPU_INSTANCE); |
| bitmap_and(bitmap_aip, bitmap_aip, |
| prange->bitmap_aip, MAX_GPU_INSTANCE); |
| } |
| if (get_flags) { |
| flags_and &= prange->flags; |
| flags_or |= prange->flags; |
| } |
| |
| if (get_granularity && prange->granularity < granularity) |
| granularity = prange->granularity; |
| |
| node = next; |
| } |
| fill_values: |
| mutex_unlock(&svms->lock); |
| |
| for (i = 0; i < nattr; i++) { |
| switch (attrs[i].type) { |
| case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: |
| attrs[i].value = location; |
| break; |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| attrs[i].value = prefetch_loc; |
| break; |
| case KFD_IOCTL_SVM_ATTR_ACCESS: |
| gpuidx = kfd_process_gpuidx_from_gpuid(p, |
| attrs[i].value); |
| if (gpuidx < 0) { |
| pr_debug("invalid gpuid %x\n", attrs[i].value); |
| return -EINVAL; |
| } |
| if (test_bit(gpuidx, bitmap_access)) |
| attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; |
| else if (test_bit(gpuidx, bitmap_aip)) |
| attrs[i].type = |
| KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; |
| else |
| attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| attrs[i].value = flags_and; |
| break; |
| case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: |
| attrs[i].value = ~flags_or; |
| break; |
| case KFD_IOCTL_SVM_ATTR_GRANULARITY: |
| attrs[i].value = (uint32_t)granularity; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int kfd_criu_resume_svm(struct kfd_process *p) |
| { |
| struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; |
| int nattr_common = 4, nattr_accessibility = 1; |
| struct criu_svm_metadata *criu_svm_md = NULL; |
| struct svm_range_list *svms = &p->svms; |
| struct criu_svm_metadata *next = NULL; |
| uint32_t set_flags = 0xffffffff; |
| int i, j, num_attrs, ret = 0; |
| uint64_t set_attr_size; |
| struct mm_struct *mm; |
| |
| if (list_empty(&svms->criu_svm_metadata_list)) { |
| pr_debug("No SVM data from CRIU restore stage 2\n"); |
| return ret; |
| } |
| |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| pr_err("failed to get mm for the target process\n"); |
| return -ESRCH; |
| } |
| |
| num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); |
| |
| i = j = 0; |
| list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { |
| pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", |
| i, criu_svm_md->data.start_addr, criu_svm_md->data.size); |
| |
| for (j = 0; j < num_attrs; j++) { |
| pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", |
| i, j, criu_svm_md->data.attrs[j].type, |
| i, j, criu_svm_md->data.attrs[j].value); |
| switch (criu_svm_md->data.attrs[j].type) { |
| /* During Checkpoint operation, the query for |
| * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might |
| * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were |
| * not used by the range which was checkpointed. Care |
| * must be taken to not restore with an invalid value |
| * otherwise the gpuidx value will be invalid and |
| * set_attr would eventually fail so just replace those |
| * with another dummy attribute such as |
| * KFD_IOCTL_SVM_ATTR_SET_FLAGS. |
| */ |
| case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: |
| if (criu_svm_md->data.attrs[j].value == |
| KFD_IOCTL_SVM_LOCATION_UNDEFINED) { |
| criu_svm_md->data.attrs[j].type = |
| KFD_IOCTL_SVM_ATTR_SET_FLAGS; |
| criu_svm_md->data.attrs[j].value = 0; |
| } |
| break; |
| case KFD_IOCTL_SVM_ATTR_SET_FLAGS: |
| set_flags = criu_svm_md->data.attrs[j].value; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* CLR_FLAGS is not available via get_attr during checkpoint but |
| * it needs to be inserted before restoring the ranges so |
| * allocate extra space for it before calling set_attr |
| */ |
| set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * |
| (num_attrs + 1); |
| set_attr_new = krealloc(set_attr, set_attr_size, |
| GFP_KERNEL); |
| if (!set_attr_new) { |
| ret = -ENOMEM; |
| goto exit; |
| } |
| set_attr = set_attr_new; |
| |
| memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * |
| sizeof(struct kfd_ioctl_svm_attribute)); |
| set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; |
| set_attr[num_attrs].value = ~set_flags; |
| |
| ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, |
| criu_svm_md->data.size, num_attrs + 1, |
| set_attr); |
| if (ret) { |
| pr_err("CRIU: failed to set range attributes\n"); |
| goto exit; |
| } |
| |
| i++; |
| } |
| exit: |
| kfree(set_attr); |
| list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { |
| pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", |
| criu_svm_md->data.start_addr); |
| kfree(criu_svm_md); |
| } |
| |
| mmput(mm); |
| return ret; |
| |
| } |
| |
| int kfd_criu_restore_svm(struct kfd_process *p, |
| uint8_t __user *user_priv_ptr, |
| uint64_t *priv_data_offset, |
| uint64_t max_priv_data_size) |
| { |
| uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; |
| int nattr_common = 4, nattr_accessibility = 1; |
| struct criu_svm_metadata *criu_svm_md = NULL; |
| struct svm_range_list *svms = &p->svms; |
| uint32_t num_devices; |
| int ret = 0; |
| |
| num_devices = p->n_pdds; |
| /* Handle one SVM range object at a time, also the number of gpus are |
| * assumed to be same on the restore node, checking must be done while |
| * evaluating the topology earlier |
| */ |
| |
| svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * |
| (nattr_common + nattr_accessibility * num_devices); |
| svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; |
| |
| svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + |
| svm_attrs_size; |
| |
| criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); |
| if (!criu_svm_md) { |
| pr_err("failed to allocate memory to store svm metadata\n"); |
| return -ENOMEM; |
| } |
| if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, |
| svm_priv_data_size); |
| if (ret) { |
| ret = -EFAULT; |
| goto exit; |
| } |
| *priv_data_offset += svm_priv_data_size; |
| |
| list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); |
| |
| return 0; |
| |
| |
| exit: |
| kfree(criu_svm_md); |
| return ret; |
| } |
| |
| int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, |
| uint64_t *svm_priv_data_size) |
| { |
| uint64_t total_size, accessibility_size, common_attr_size; |
| int nattr_common = 4, nattr_accessibility = 1; |
| int num_devices = p->n_pdds; |
| struct svm_range_list *svms; |
| struct svm_range *prange; |
| uint32_t count = 0; |
| |
| *svm_priv_data_size = 0; |
| |
| svms = &p->svms; |
| if (!svms) |
| return -EINVAL; |
| |
| mutex_lock(&svms->lock); |
| list_for_each_entry(prange, &svms->list, list) { |
| pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", |
| prange, prange->start, prange->npages, |
| prange->start + prange->npages - 1); |
| count++; |
| } |
| mutex_unlock(&svms->lock); |
| |
| *num_svm_ranges = count; |
| /* Only the accessbility attributes need to be queried for all the gpus |
| * individually, remaining ones are spanned across the entire process |
| * regardless of the various gpu nodes. Of the remaining attributes, |
| * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. |
| * |
| * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC |
| * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC |
| * KFD_IOCTL_SVM_ATTR_SET_FLAGS |
| * KFD_IOCTL_SVM_ATTR_GRANULARITY |
| * |
| * ** ACCESSBILITY ATTRIBUTES ** |
| * (Considered as one, type is altered during query, value is gpuid) |
| * KFD_IOCTL_SVM_ATTR_ACCESS |
| * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE |
| * KFD_IOCTL_SVM_ATTR_NO_ACCESS |
| */ |
| if (*num_svm_ranges > 0) { |
| common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * |
| nattr_common; |
| accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * |
| nattr_accessibility * num_devices; |
| |
| total_size = sizeof(struct kfd_criu_svm_range_priv_data) + |
| common_attr_size + accessibility_size; |
| |
| *svm_priv_data_size = *num_svm_ranges * total_size; |
| } |
| |
| pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, |
| *svm_priv_data_size); |
| return 0; |
| } |
| |
| int kfd_criu_checkpoint_svm(struct kfd_process *p, |
| uint8_t __user *user_priv_data, |
| uint64_t *priv_data_offset) |
| { |
| struct kfd_criu_svm_range_priv_data *svm_priv = NULL; |
| struct kfd_ioctl_svm_attribute *query_attr = NULL; |
| uint64_t svm_priv_data_size, query_attr_size = 0; |
| int index, nattr_common = 4, ret = 0; |
| struct svm_range_list *svms; |
| int num_devices = p->n_pdds; |
| struct svm_range *prange; |
| struct mm_struct *mm; |
| |
| svms = &p->svms; |
| if (!svms) |
| return -EINVAL; |
| |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| pr_err("failed to get mm for the target process\n"); |
| return -ESRCH; |
| } |
| |
| query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * |
| (nattr_common + num_devices); |
| |
| query_attr = kzalloc(query_attr_size, GFP_KERNEL); |
| if (!query_attr) { |
| ret = -ENOMEM; |
| goto exit; |
| } |
| |
| query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; |
| query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; |
| query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; |
| query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; |
| |
| for (index = 0; index < num_devices; index++) { |
| struct kfd_process_device *pdd = p->pdds[index]; |
| |
| query_attr[index + nattr_common].type = |
| KFD_IOCTL_SVM_ATTR_ACCESS; |
| query_attr[index + nattr_common].value = pdd->user_gpu_id; |
| } |
| |
| svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; |
| |
| svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); |
| if (!svm_priv) { |
| ret = -ENOMEM; |
| goto exit_query; |
| } |
| |
| index = 0; |
| list_for_each_entry(prange, &svms->list, list) { |
| |
| svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; |
| svm_priv->start_addr = prange->start; |
| svm_priv->size = prange->npages; |
| memcpy(&svm_priv->attrs, query_attr, query_attr_size); |
| pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", |
| prange, prange->start, prange->npages, |
| prange->start + prange->npages - 1, |
| prange->npages * PAGE_SIZE); |
| |
| ret = svm_range_get_attr(p, mm, svm_priv->start_addr, |
| svm_priv->size, |
| (nattr_common + num_devices), |
| svm_priv->attrs); |
| if (ret) { |
| pr_err("CRIU: failed to obtain range attributes\n"); |
| goto exit_priv; |
| } |
| |
| if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, |
| svm_priv_data_size)) { |
| pr_err("Failed to copy svm priv to user\n"); |
| ret = -EFAULT; |
| goto exit_priv; |
| } |
| |
| *priv_data_offset += svm_priv_data_size; |
| |
| } |
| |
| |
| exit_priv: |
| kfree(svm_priv); |
| exit_query: |
| kfree(query_attr); |
| exit: |
| mmput(mm); |
| return ret; |
| } |
| |
| int |
| svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, |
| uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) |
| { |
| struct mm_struct *mm = current->mm; |
| int r; |
| |
| start >>= PAGE_SHIFT; |
| size >>= PAGE_SHIFT; |
| |
| switch (op) { |
| case KFD_IOCTL_SVM_OP_SET_ATTR: |
| r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); |
| break; |
| case KFD_IOCTL_SVM_OP_GET_ATTR: |
| r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); |
| break; |
| default: |
| r = EINVAL; |
| break; |
| } |
| |
| return r; |
| } |