|  | /* | 
|  | * handle transition of Linux booting another kernel | 
|  | * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"kexec: " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include <asm/init.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/io_apic.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/kexec-bzimage64.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/set_memory.h> | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | static struct kexec_file_ops *kexec_file_loaders[] = { | 
|  | &kexec_bzImage64_ops, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static void free_transition_pgtable(struct kimage *image) | 
|  | { | 
|  | free_page((unsigned long)image->arch.p4d); | 
|  | free_page((unsigned long)image->arch.pud); | 
|  | free_page((unsigned long)image->arch.pmd); | 
|  | free_page((unsigned long)image->arch.pte); | 
|  | } | 
|  |  | 
|  | static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | unsigned long vaddr, paddr; | 
|  | int result = -ENOMEM; | 
|  |  | 
|  | vaddr = (unsigned long)relocate_kernel; | 
|  | paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); | 
|  | pgd += pgd_index(vaddr); | 
|  | if (!pgd_present(*pgd)) { | 
|  | p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!p4d) | 
|  | goto err; | 
|  | image->arch.p4d = p4d; | 
|  | set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); | 
|  | } | 
|  | p4d = p4d_offset(pgd, vaddr); | 
|  | if (!p4d_present(*p4d)) { | 
|  | pud = (pud_t *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!pud) | 
|  | goto err; | 
|  | image->arch.pud = pud; | 
|  | set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); | 
|  | } | 
|  | pud = pud_offset(p4d, vaddr); | 
|  | if (!pud_present(*pud)) { | 
|  | pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!pmd) | 
|  | goto err; | 
|  | image->arch.pmd = pmd; | 
|  | set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); | 
|  | } | 
|  | pmd = pmd_offset(pud, vaddr); | 
|  | if (!pmd_present(*pmd)) { | 
|  | pte = (pte_t *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!pte) | 
|  | goto err; | 
|  | image->arch.pte = pte; | 
|  | set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); | 
|  | } | 
|  | pte = pte_offset_kernel(pmd, vaddr); | 
|  | set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); | 
|  | return 0; | 
|  | err: | 
|  | free_transition_pgtable(image); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void *alloc_pgt_page(void *data) | 
|  | { | 
|  | struct kimage *image = (struct kimage *)data; | 
|  | struct page *page; | 
|  | void *p = NULL; | 
|  |  | 
|  | page = kimage_alloc_control_pages(image, 0); | 
|  | if (page) { | 
|  | p = page_address(page); | 
|  | clear_page(p); | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static int init_pgtable(struct kimage *image, unsigned long start_pgtable) | 
|  | { | 
|  | struct x86_mapping_info info = { | 
|  | .alloc_pgt_page	= alloc_pgt_page, | 
|  | .context	= image, | 
|  | .page_flag	= __PAGE_KERNEL_LARGE_EXEC, | 
|  | .kernpg_flag	= _KERNPG_TABLE_NOENC, | 
|  | }; | 
|  | unsigned long mstart, mend; | 
|  | pgd_t *level4p; | 
|  | int result; | 
|  | int i; | 
|  |  | 
|  | level4p = (pgd_t *)__va(start_pgtable); | 
|  | clear_page(level4p); | 
|  |  | 
|  | if (direct_gbpages) | 
|  | info.direct_gbpages = true; | 
|  |  | 
|  | for (i = 0; i < nr_pfn_mapped; i++) { | 
|  | mstart = pfn_mapped[i].start << PAGE_SHIFT; | 
|  | mend   = pfn_mapped[i].end << PAGE_SHIFT; | 
|  |  | 
|  | result = kernel_ident_mapping_init(&info, | 
|  | level4p, mstart, mend); | 
|  | if (result) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * segments's mem ranges could be outside 0 ~ max_pfn, | 
|  | * for example when jump back to original kernel from kexeced kernel. | 
|  | * or first kernel is booted with user mem map, and second kernel | 
|  | * could be loaded out of that range. | 
|  | */ | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  |  | 
|  | result = kernel_ident_mapping_init(&info, | 
|  | level4p, mstart, mend); | 
|  |  | 
|  | if (result) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | return init_transition_pgtable(image, level4p); | 
|  | } | 
|  |  | 
|  | static void set_idt(void *newidt, u16 limit) | 
|  | { | 
|  | struct desc_ptr curidt; | 
|  |  | 
|  | /* x86-64 supports unaliged loads & stores */ | 
|  | curidt.size    = limit; | 
|  | curidt.address = (unsigned long)newidt; | 
|  |  | 
|  | __asm__ __volatile__ ( | 
|  | "lidtq %0\n" | 
|  | : : "m" (curidt) | 
|  | ); | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void set_gdt(void *newgdt, u16 limit) | 
|  | { | 
|  | struct desc_ptr curgdt; | 
|  |  | 
|  | /* x86-64 supports unaligned loads & stores */ | 
|  | curgdt.size    = limit; | 
|  | curgdt.address = (unsigned long)newgdt; | 
|  |  | 
|  | __asm__ __volatile__ ( | 
|  | "lgdtq %0\n" | 
|  | : : "m" (curgdt) | 
|  | ); | 
|  | }; | 
|  |  | 
|  | static void load_segments(void) | 
|  | { | 
|  | __asm__ __volatile__ ( | 
|  | "\tmovl %0,%%ds\n" | 
|  | "\tmovl %0,%%es\n" | 
|  | "\tmovl %0,%%ss\n" | 
|  | "\tmovl %0,%%fs\n" | 
|  | "\tmovl %0,%%gs\n" | 
|  | : : "a" (__KERNEL_DS) : "memory" | 
|  | ); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | /* Update purgatory as needed after various image segments have been prepared */ | 
|  | static int arch_update_purgatory(struct kimage *image) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!image->file_mode) | 
|  | return 0; | 
|  |  | 
|  | /* Setup copying of backup region */ | 
|  | if (image->type == KEXEC_TYPE_CRASH) { | 
|  | ret = kexec_purgatory_get_set_symbol(image, | 
|  | "purgatory_backup_dest", | 
|  | &image->arch.backup_load_addr, | 
|  | sizeof(image->arch.backup_load_addr), 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kexec_purgatory_get_set_symbol(image, | 
|  | "purgatory_backup_src", | 
|  | &image->arch.backup_src_start, | 
|  | sizeof(image->arch.backup_src_start), 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kexec_purgatory_get_set_symbol(image, | 
|  | "purgatory_backup_sz", | 
|  | &image->arch.backup_src_sz, | 
|  | sizeof(image->arch.backup_src_sz), 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else /* !CONFIG_KEXEC_FILE */ | 
|  | static inline int arch_update_purgatory(struct kimage *image) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_KEXEC_FILE */ | 
|  |  | 
|  | int machine_kexec_prepare(struct kimage *image) | 
|  | { | 
|  | unsigned long start_pgtable; | 
|  | int result; | 
|  |  | 
|  | /* Calculate the offsets */ | 
|  | start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; | 
|  |  | 
|  | /* Setup the identity mapped 64bit page table */ | 
|  | result = init_pgtable(image, start_pgtable); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | /* update purgatory as needed */ | 
|  | result = arch_update_purgatory(image); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void machine_kexec_cleanup(struct kimage *image) | 
|  | { | 
|  | free_transition_pgtable(image); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do not allocate memory (or fail in any way) in machine_kexec(). | 
|  | * We are past the point of no return, committed to rebooting now. | 
|  | */ | 
|  | void machine_kexec(struct kimage *image) | 
|  | { | 
|  | unsigned long page_list[PAGES_NR]; | 
|  | void *control_page; | 
|  | int save_ftrace_enabled; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (image->preserve_context) | 
|  | save_processor_state(); | 
|  | #endif | 
|  |  | 
|  | save_ftrace_enabled = __ftrace_enabled_save(); | 
|  |  | 
|  | /* Interrupts aren't acceptable while we reboot */ | 
|  | local_irq_disable(); | 
|  | hw_breakpoint_disable(); | 
|  |  | 
|  | if (image->preserve_context) { | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | /* | 
|  | * We need to put APICs in legacy mode so that we can | 
|  | * get timer interrupts in second kernel. kexec/kdump | 
|  | * paths already have calls to disable_IO_APIC() in | 
|  | * one form or other. kexec jump path also need | 
|  | * one. | 
|  | */ | 
|  | disable_IO_APIC(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | control_page = page_address(image->control_code_page) + PAGE_SIZE; | 
|  | memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); | 
|  |  | 
|  | page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); | 
|  | page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; | 
|  | page_list[PA_TABLE_PAGE] = | 
|  | (unsigned long)__pa(page_address(image->control_code_page)); | 
|  |  | 
|  | if (image->type == KEXEC_TYPE_DEFAULT) | 
|  | page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) | 
|  | << PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * The segment registers are funny things, they have both a | 
|  | * visible and an invisible part.  Whenever the visible part is | 
|  | * set to a specific selector, the invisible part is loaded | 
|  | * with from a table in memory.  At no other time is the | 
|  | * descriptor table in memory accessed. | 
|  | * | 
|  | * I take advantage of this here by force loading the | 
|  | * segments, before I zap the gdt with an invalid value. | 
|  | */ | 
|  | load_segments(); | 
|  | /* | 
|  | * The gdt & idt are now invalid. | 
|  | * If you want to load them you must set up your own idt & gdt. | 
|  | */ | 
|  | set_gdt(phys_to_virt(0), 0); | 
|  | set_idt(phys_to_virt(0), 0); | 
|  |  | 
|  | /* now call it */ | 
|  | image->start = relocate_kernel((unsigned long)image->head, | 
|  | (unsigned long)page_list, | 
|  | image->start, | 
|  | image->preserve_context, | 
|  | sme_active()); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (image->preserve_context) | 
|  | restore_processor_state(); | 
|  | #endif | 
|  |  | 
|  | __ftrace_enabled_restore(save_ftrace_enabled); | 
|  | } | 
|  |  | 
|  | void arch_crash_save_vmcoreinfo(void) | 
|  | { | 
|  | VMCOREINFO_NUMBER(phys_base); | 
|  | VMCOREINFO_SYMBOL(init_top_pgt); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | VMCOREINFO_SYMBOL(node_data); | 
|  | VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); | 
|  | #endif | 
|  | vmcoreinfo_append_str("KERNELOFFSET=%lx\n", | 
|  | kaslr_offset()); | 
|  | VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* arch-dependent functionality related to kexec file-based syscall */ | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | int i, ret = -ENOEXEC; | 
|  | struct kexec_file_ops *fops; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { | 
|  | fops = kexec_file_loaders[i]; | 
|  | if (!fops || !fops->probe) | 
|  | continue; | 
|  |  | 
|  | ret = fops->probe(buf, buf_len); | 
|  | if (!ret) { | 
|  | image->fops = fops; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *arch_kexec_kernel_image_load(struct kimage *image) | 
|  | { | 
|  | vfree(image->arch.elf_headers); | 
|  | image->arch.elf_headers = NULL; | 
|  |  | 
|  | if (!image->fops || !image->fops->load) | 
|  | return ERR_PTR(-ENOEXEC); | 
|  |  | 
|  | return image->fops->load(image, image->kernel_buf, | 
|  | image->kernel_buf_len, image->initrd_buf, | 
|  | image->initrd_buf_len, image->cmdline_buf, | 
|  | image->cmdline_buf_len); | 
|  | } | 
|  |  | 
|  | int arch_kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | if (!image->fops || !image->fops->cleanup) | 
|  | return 0; | 
|  |  | 
|  | return image->fops->cleanup(image->image_loader_data); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, | 
|  | unsigned long kernel_len) | 
|  | { | 
|  | if (!image->fops || !image->fops->verify_sig) { | 
|  | pr_debug("kernel loader does not support signature verification."); | 
|  | return -EKEYREJECTED; | 
|  | } | 
|  |  | 
|  | return image->fops->verify_sig(kernel, kernel_len); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Apply purgatory relocations. | 
|  | * | 
|  | * ehdr: Pointer to elf headers | 
|  | * sechdrs: Pointer to section headers. | 
|  | * relsec: section index of SHT_RELA section. | 
|  | * | 
|  | * TODO: Some of the code belongs to generic code. Move that in kexec.c. | 
|  | */ | 
|  | int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, | 
|  | Elf64_Shdr *sechdrs, unsigned int relsec) | 
|  | { | 
|  | unsigned int i; | 
|  | Elf64_Rela *rel; | 
|  | Elf64_Sym *sym; | 
|  | void *location; | 
|  | Elf64_Shdr *section, *symtabsec; | 
|  | unsigned long address, sec_base, value; | 
|  | const char *strtab, *name, *shstrtab; | 
|  |  | 
|  | /* | 
|  | * ->sh_offset has been modified to keep the pointer to section | 
|  | * contents in memory | 
|  | */ | 
|  | rel = (void *)sechdrs[relsec].sh_offset; | 
|  |  | 
|  | /* Section to which relocations apply */ | 
|  | section = &sechdrs[sechdrs[relsec].sh_info]; | 
|  |  | 
|  | pr_debug("Applying relocate section %u to %u\n", relsec, | 
|  | sechdrs[relsec].sh_info); | 
|  |  | 
|  | /* Associated symbol table */ | 
|  | symtabsec = &sechdrs[sechdrs[relsec].sh_link]; | 
|  |  | 
|  | /* String table */ | 
|  | if (symtabsec->sh_link >= ehdr->e_shnum) { | 
|  | /* Invalid strtab section number */ | 
|  | pr_err("Invalid string table section index %d\n", | 
|  | symtabsec->sh_link); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; | 
|  |  | 
|  | /* section header string table */ | 
|  | shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; | 
|  |  | 
|  | for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { | 
|  |  | 
|  | /* | 
|  | * rel[i].r_offset contains byte offset from beginning | 
|  | * of section to the storage unit affected. | 
|  | * | 
|  | * This is location to update (->sh_offset). This is temporary | 
|  | * buffer where section is currently loaded. This will finally | 
|  | * be loaded to a different address later, pointed to by | 
|  | * ->sh_addr. kexec takes care of moving it | 
|  | *  (kexec_load_segment()). | 
|  | */ | 
|  | location = (void *)(section->sh_offset + rel[i].r_offset); | 
|  |  | 
|  | /* Final address of the location */ | 
|  | address = section->sh_addr + rel[i].r_offset; | 
|  |  | 
|  | /* | 
|  | * rel[i].r_info contains information about symbol table index | 
|  | * w.r.t which relocation must be made and type of relocation | 
|  | * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get | 
|  | * these respectively. | 
|  | */ | 
|  | sym = (Elf64_Sym *)symtabsec->sh_offset + | 
|  | ELF64_R_SYM(rel[i].r_info); | 
|  |  | 
|  | if (sym->st_name) | 
|  | name = strtab + sym->st_name; | 
|  | else | 
|  | name = shstrtab + sechdrs[sym->st_shndx].sh_name; | 
|  |  | 
|  | pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", | 
|  | name, sym->st_info, sym->st_shndx, sym->st_value, | 
|  | sym->st_size); | 
|  |  | 
|  | if (sym->st_shndx == SHN_UNDEF) { | 
|  | pr_err("Undefined symbol: %s\n", name); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | if (sym->st_shndx == SHN_COMMON) { | 
|  | pr_err("symbol '%s' in common section\n", name); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | if (sym->st_shndx == SHN_ABS) | 
|  | sec_base = 0; | 
|  | else if (sym->st_shndx >= ehdr->e_shnum) { | 
|  | pr_err("Invalid section %d for symbol %s\n", | 
|  | sym->st_shndx, name); | 
|  | return -ENOEXEC; | 
|  | } else | 
|  | sec_base = sechdrs[sym->st_shndx].sh_addr; | 
|  |  | 
|  | value = sym->st_value; | 
|  | value += sec_base; | 
|  | value += rel[i].r_addend; | 
|  |  | 
|  | switch (ELF64_R_TYPE(rel[i].r_info)) { | 
|  | case R_X86_64_NONE: | 
|  | break; | 
|  | case R_X86_64_64: | 
|  | *(u64 *)location = value; | 
|  | break; | 
|  | case R_X86_64_32: | 
|  | *(u32 *)location = value; | 
|  | if (value != *(u32 *)location) | 
|  | goto overflow; | 
|  | break; | 
|  | case R_X86_64_32S: | 
|  | *(s32 *)location = value; | 
|  | if ((s64)value != *(s32 *)location) | 
|  | goto overflow; | 
|  | break; | 
|  | case R_X86_64_PC32: | 
|  | value -= (u64)address; | 
|  | *(u32 *)location = value; | 
|  | break; | 
|  | default: | 
|  | pr_err("Unknown rela relocation: %llu\n", | 
|  | ELF64_R_TYPE(rel[i].r_info)); | 
|  | return -ENOEXEC; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | overflow: | 
|  | pr_err("Overflow in relocation type %d value 0x%lx\n", | 
|  | (int)ELF64_R_TYPE(rel[i].r_info), value); | 
|  | return -ENOEXEC; | 
|  | } | 
|  | #endif /* CONFIG_KEXEC_FILE */ | 
|  |  | 
|  | static int | 
|  | kexec_mark_range(unsigned long start, unsigned long end, bool protect) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int nr_pages; | 
|  |  | 
|  | /* | 
|  | * For physical range: [start, end]. We must skip the unassigned | 
|  | * crashk resource with zero-valued "end" member. | 
|  | */ | 
|  | if (!end || start > end) | 
|  | return 0; | 
|  |  | 
|  | page = pfn_to_page(start >> PAGE_SHIFT); | 
|  | nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; | 
|  | if (protect) | 
|  | return set_pages_ro(page, nr_pages); | 
|  | else | 
|  | return set_pages_rw(page, nr_pages); | 
|  | } | 
|  |  | 
|  | static void kexec_mark_crashkres(bool protect) | 
|  | { | 
|  | unsigned long control; | 
|  |  | 
|  | kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); | 
|  |  | 
|  | /* Don't touch the control code page used in crash_kexec().*/ | 
|  | control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); | 
|  | /* Control code page is located in the 2nd page. */ | 
|  | kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); | 
|  | control += KEXEC_CONTROL_PAGE_SIZE; | 
|  | kexec_mark_range(control, crashk_res.end, protect); | 
|  | } | 
|  |  | 
|  | void arch_kexec_protect_crashkres(void) | 
|  | { | 
|  | kexec_mark_crashkres(true); | 
|  | } | 
|  |  | 
|  | void arch_kexec_unprotect_crashkres(void) | 
|  | { | 
|  | kexec_mark_crashkres(false); | 
|  | } | 
|  |  | 
|  | int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) | 
|  | { | 
|  | /* | 
|  | * If SME is active we need to be sure that kexec pages are | 
|  | * not encrypted because when we boot to the new kernel the | 
|  | * pages won't be accessed encrypted (initially). | 
|  | */ | 
|  | return set_memory_decrypted((unsigned long)vaddr, pages); | 
|  | } | 
|  |  | 
|  | void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) | 
|  | { | 
|  | /* | 
|  | * If SME is active we need to reset the pages back to being | 
|  | * an encrypted mapping before freeing them. | 
|  | */ | 
|  | set_memory_encrypted((unsigned long)vaddr, pages); | 
|  | } |